Skip to main content
Top
Published in: Current Cardiology Reports 4/2023

16-02-2023 | Tyrosine Kinase Inhibitors | Cardio-Oncology (LA Baldassarre, Section Editor)

Cardiovascular Toxicities Associated with Tyrosine Kinase Inhibitors

Authors: Nicolas Sayegh, Juliet Yirerong, Neeraj Agarwal, Daniel Addison, Michael Fradley, Jorge Cortes, Neal L. Weintraub, Nazish Sayed, Girindra Raval, Avirup Guha

Published in: Current Cardiology Reports | Issue 4/2023

Login to get access

Abstract

Purpose of Review

To provide a detailed overview of cardiovascular adverse events associated with the use of tyrosine kinase inhibitors across different tumor types.

Recent Findings

Despite an undeniable survival advantage of tyrosine kinase inhibitors (TKIs) in patients with hematologic or solid malignancies, the accompanying off-target cardiovascular adverse events can be life-threatening. In patients with B cell malignancies, the use of Bruton tyrosine kinase inhibitors has been associated with atrial and ventricular arrhythmias, as well as hypertension. Cardiovascular toxic profiles are heterogeneous among the several approved breakpoint cluster region (BCR)-ABL TKIS. Notably, imatinib might be cardioprotective. Vascular endothelial growth factor TKIs, constituting the central axis in the treatment of several solid tumors, including renal cell carcinoma and hepatocellular carcinoma, have strongly been associated with hypertension and arterial ischemic events. Epidermal growth factor TKIs as therapy for advanced non-small cell lung cancer (NSCLC) have been reported to be infrequently associated with heart failure and QT prolongation.

Summary

While tyrosine kinase inhibitors have been demonstrated to increase overall survival across different types of cancers, special consideration should be given to cardiovascular toxicities. High-risk patients can be identified by undergoing a comprehensive workup at baseline.
Literature
2.
go back to reference Burger JA, Tedeschi A, Barr PM, et al. Ibrutinib as initial therapy for patients with chronic lymphocytic leukemia. N Engl J Med. 2015;373(25):2425–37.PubMedPubMedCentralCrossRef Burger JA, Tedeschi A, Barr PM, et al. Ibrutinib as initial therapy for patients with chronic lymphocytic leukemia. N Engl J Med. 2015;373(25):2425–37.PubMedPubMedCentralCrossRef
3.
go back to reference Treon SP, Tripsas CK, Meid K, et al. Ibrutinib in previously treated Waldenström’s macroglobulinemia. N Engl J Med. 2015;372(15):1430–40.PubMedCrossRef Treon SP, Tripsas CK, Meid K, et al. Ibrutinib in previously treated Waldenström’s macroglobulinemia. N Engl J Med. 2015;372(15):1430–40.PubMedCrossRef
4.
go back to reference Byrd JC, Furman RR, Coutre SE, et al. Three-year follow-up of treatment-naïve and previously treated patients with CLL and SLL receiving single-agent ibrutinib. Blood. 2015;125(16):2497–506.PubMedPubMedCentralCrossRef Byrd JC, Furman RR, Coutre SE, et al. Three-year follow-up of treatment-naïve and previously treated patients with CLL and SLL receiving single-agent ibrutinib. Blood. 2015;125(16):2497–506.PubMedPubMedCentralCrossRef
5.
6.
7.
go back to reference O’Brian S, Jones JA, Coutre S, et al. Ibrutinib for patients with relapsed or refractory chronic lymphocytic leukaemia with 17p deletion (RESONATE-17): a phase 2, open-label, multicentre study. Lancet Oncol. 2016;17(10):1409–18.CrossRef O’Brian S, Jones JA, Coutre S, et al. Ibrutinib for patients with relapsed or refractory chronic lymphocytic leukaemia with 17p deletion (RESONATE-17): a phase 2, open-label, multicentre study. Lancet Oncol. 2016;17(10):1409–18.CrossRef
8.
go back to reference Sharman JP, Egyed M, Jurczak W, et al. Acalabrutinib with or without obinutuzumab versus chlorambucil and obinutuzmab for treatment-naive chronic lymphocytic leukaemia (ELEVATE TN): a randomised, controlled, phase 3 trial. Lancet. 2020;395(10232):1278–91.PubMedPubMedCentralCrossRef Sharman JP, Egyed M, Jurczak W, et al. Acalabrutinib with or without obinutuzumab versus chlorambucil and obinutuzmab for treatment-naive chronic lymphocytic leukaemia (ELEVATE TN): a randomised, controlled, phase 3 trial. Lancet. 2020;395(10232):1278–91.PubMedPubMedCentralCrossRef
9.
go back to reference McMullen JR, Boey EJ, Ooi JY, et al. Ibrutinib increases the risk of atrial fibrillation, potentially through inhibition of cardiac PI3K-Akt signaling. Blood. 2014;124(25):3829–30.PubMedCrossRef McMullen JR, Boey EJ, Ooi JY, et al. Ibrutinib increases the risk of atrial fibrillation, potentially through inhibition of cardiac PI3K-Akt signaling. Blood. 2014;124(25):3829–30.PubMedCrossRef
10.
go back to reference Abbas HA, Wierda W. Acalabrutinib: a selective bruton tyrosine kinase inhibitor for the treatment of B-cell malignancies. Front Oncol. 2021;11: 668162.PubMedPubMedCentralCrossRef Abbas HA, Wierda W. Acalabrutinib: a selective bruton tyrosine kinase inhibitor for the treatment of B-cell malignancies. Front Oncol. 2021;11: 668162.PubMedPubMedCentralCrossRef
11.
go back to reference Jiang L, Li L, Ruan Y, et al. Ibrutinib promotes atrial fibrillation by inducing structural remodeling and calcium dysregulation in the atrium. Heart Rhythm. 2019;16(9):1374–82.PubMedCrossRef Jiang L, Li L, Ruan Y, et al. Ibrutinib promotes atrial fibrillation by inducing structural remodeling and calcium dysregulation in the atrium. Heart Rhythm. 2019;16(9):1374–82.PubMedCrossRef
12.
go back to reference • Xiao L, Salem JE, Clauss S, et al. Ibrutinib-mediated atrial fibrillation attributable to inhibition of C-terminal Src kinase. Circulation. 2020;142(25):2443–55. Findings from this study suggest that inhibition of the C-terminal Src kinase is an underlying mechanism for atrial fibrillation induced by imatinib.PubMedPubMedCentralCrossRef • Xiao L, Salem JE, Clauss S, et al. Ibrutinib-mediated atrial fibrillation attributable to inhibition of C-terminal Src kinase. Circulation. 2020;142(25):2443–55. Findings from this study suggest that inhibition of the C-terminal Src kinase is an underlying mechanism for atrial fibrillation induced by imatinib.PubMedPubMedCentralCrossRef
13.
go back to reference Pineda-Gayoso R, Alomar M, Lee DH, et al. Cardiovascular toxicities of Bruton’s tyrosine kinase inhibitors. Curr Treat Options Oncol. 2020;21(8):67.PubMedCrossRef Pineda-Gayoso R, Alomar M, Lee DH, et al. Cardiovascular toxicities of Bruton’s tyrosine kinase inhibitors. Curr Treat Options Oncol. 2020;21(8):67.PubMedCrossRef
14.
go back to reference Brown JR, Hillmen P, O’Brien S, et al. Extended follow-up and impact of high-risk prognostic factors from the phase 3 RESONATE study in patients with previously treated CLL/SLL. Leukemia. 2018;32(1):83–91.PubMedCrossRef Brown JR, Hillmen P, O’Brien S, et al. Extended follow-up and impact of high-risk prognostic factors from the phase 3 RESONATE study in patients with previously treated CLL/SLL. Leukemia. 2018;32(1):83–91.PubMedCrossRef
15.
go back to reference Burger JA, Barr PM, Robak T, et al. Long-term efficacy and safety of first-line ibrutinib treatment for patients with CLL/SLL: 5 years of follow-up from the phase 3 RESONATE-2 study. Leukemia. 2020;34(3):787–98.PubMedCrossRef Burger JA, Barr PM, Robak T, et al. Long-term efficacy and safety of first-line ibrutinib treatment for patients with CLL/SLL: 5 years of follow-up from the phase 3 RESONATE-2 study. Leukemia. 2020;34(3):787–98.PubMedCrossRef
16.
go back to reference Wiczer TE, Levine LB, Brumbaugh J, et al. Cumulative incidence, risk factors, and management of atrial fibrillation in patients receiving ibrutinib. Blood Adv. 2017;1(20):1739–48.PubMedPubMedCentralCrossRef Wiczer TE, Levine LB, Brumbaugh J, et al. Cumulative incidence, risk factors, and management of atrial fibrillation in patients receiving ibrutinib. Blood Adv. 2017;1(20):1739–48.PubMedPubMedCentralCrossRef
17.
go back to reference Batiste F, Cautela J, Ancedy Y, et al. High incidence of atrial fibrillation in patients treated with ibrutinib. Open Heart. 2019;6(1):e001049.CrossRef Batiste F, Cautela J, Ancedy Y, et al. High incidence of atrial fibrillation in patients treated with ibrutinib. Open Heart. 2019;6(1):e001049.CrossRef
18.
go back to reference Byrd JC, Hillmen P, Ghia P, et al. Acalabrutinib versus ibrutinib in previously treated chronic lymphocytic leukemia: results of the first randomized phase III trial. J Clin Oncol. 2021;39(31):3441–52.PubMedPubMedCentralCrossRef Byrd JC, Hillmen P, Ghia P, et al. Acalabrutinib versus ibrutinib in previously treated chronic lymphocytic leukemia: results of the first randomized phase III trial. J Clin Oncol. 2021;39(31):3441–52.PubMedPubMedCentralCrossRef
19.
go back to reference Brown JR, Moslehi J, O’Brien S, et al. Characterization of atrial fibrillation adverse events reported in ibrutinib randomized controlled registration trials. Haematologica. 2017;102(10):1796–805.PubMedPubMedCentralCrossRef Brown JR, Moslehi J, O’Brien S, et al. Characterization of atrial fibrillation adverse events reported in ibrutinib randomized controlled registration trials. Haematologica. 2017;102(10):1796–805.PubMedPubMedCentralCrossRef
20.
go back to reference Reda G, Fattizzo B, Cassin R, et al. Predictors of atrial fibrillation in ibrutinib-treated CLL patients: a prospective study. J Hematol Oncol. 2018;11(1):79.PubMedPubMedCentralCrossRef Reda G, Fattizzo B, Cassin R, et al. Predictors of atrial fibrillation in ibrutinib-treated CLL patients: a prospective study. J Hematol Oncol. 2018;11(1):79.PubMedPubMedCentralCrossRef
21.
go back to reference Mato AR, Clasen S, Pickens P, et al. Left atrial abnormality (LAA) as a predictor of ibrutinib-associated atrial fibrillation in patients with chronic lymphocytic leukemia. Cancer Biol Ther. 2018;19(1):1–2.PubMedCrossRef Mato AR, Clasen S, Pickens P, et al. Left atrial abnormality (LAA) as a predictor of ibrutinib-associated atrial fibrillation in patients with chronic lymphocytic leukemia. Cancer Biol Ther. 2018;19(1):1–2.PubMedCrossRef
22.
go back to reference Fradley MG, Gliksman M, Emole J, et al. Rates and risk of atrial arrhythmias in patients treated with ibrutinib compared with cytotoxic chemotherapy. Am J Cardiol. 2019;124(4):539–44.PubMedCrossRef Fradley MG, Gliksman M, Emole J, et al. Rates and risk of atrial arrhythmias in patients treated with ibrutinib compared with cytotoxic chemotherapy. Am J Cardiol. 2019;124(4):539–44.PubMedCrossRef
23.
go back to reference D’Souza M, Carlson N, Fosbøl E, et al. CHA 2 DS 2-VASc score and risk of thromboembolism and bleeding in patients with atrial fibrillation and recent cancer. Eur J Prev Cardiol. 2018;25(6):651–8.PubMedCrossRef D’Souza M, Carlson N, Fosbøl E, et al. CHA 2 DS 2-VASc score and risk of thromboembolism and bleeding in patients with atrial fibrillation and recent cancer. Eur J Prev Cardiol. 2018;25(6):651–8.PubMedCrossRef
25.
go back to reference Wang ML, Blum KA, Martin P, et al. Long-term follow-up of MCL patients treated with single-agent ibrutinib: updated safety and efficacy results. Blood. 2015;126(6):739–45.PubMedPubMedCentralCrossRef Wang ML, Blum KA, Martin P, et al. Long-term follow-up of MCL patients treated with single-agent ibrutinib: updated safety and efficacy results. Blood. 2015;126(6):739–45.PubMedPubMedCentralCrossRef
26.
go back to reference Guha A, Derbala MH, Zhao Q, et al. Ventricular arrhythmias following ibrutinib initiation for lymphoid malignancies. J Am Coll Cardiol. 2018;72(6):697–8.PubMedPubMedCentralCrossRef Guha A, Derbala MH, Zhao Q, et al. Ventricular arrhythmias following ibrutinib initiation for lymphoid malignancies. J Am Coll Cardiol. 2018;72(6):697–8.PubMedPubMedCentralCrossRef
27.
go back to reference Salem JE, Manouchehri A, Bretagne M, et al. Cardiovascular toxicities associated with ibrutinib. J Am Coll Cardiol. 2019;74(13):1667–78.PubMedCrossRef Salem JE, Manouchehri A, Bretagne M, et al. Cardiovascular toxicities associated with ibrutinib. J Am Coll Cardiol. 2019;74(13):1667–78.PubMedCrossRef
28.
go back to reference O’Brien S, Hillmen P, Coutre S, et al. Safety analysis of four randomized controlled studies of ibrutinib in patients with chronic lymphocytic leukemia/small lymphocytic lymphoma or mantle cell lymphoma. Clin Lymphoma Myeloma Leuk. 2018;18(10):648–57.PubMedCrossRef O’Brien S, Hillmen P, Coutre S, et al. Safety analysis of four randomized controlled studies of ibrutinib in patients with chronic lymphocytic leukemia/small lymphocytic lymphoma or mantle cell lymphoma. Clin Lymphoma Myeloma Leuk. 2018;18(10):648–57.PubMedCrossRef
29.
30.
go back to reference Chen ST, Azali L, Rosen L, et al. Hypertension and incident cardiovascular events after next-generation BTKi therapy initiation. J Hematol Oncol. 2022;15(1):92.PubMedPubMedCentralCrossRef Chen ST, Azali L, Rosen L, et al. Hypertension and incident cardiovascular events after next-generation BTKi therapy initiation. J Hematol Oncol. 2022;15(1):92.PubMedPubMedCentralCrossRef
31.
go back to reference • Abdel-Qadir H, Sabrie N, Leong D, et al. Cardiovascular risk associated with ibrutinib use in chronic lymphocytic leukemia: a population-based cohort study. J Clin Oncol. 2021;39(31):3453–62. Findings from this real-world study suggest that ibrutinib is associated with high risks of atrial fibrillation, bleeding, and heart failure but not stroke or acute myocardial infarction.PubMedCrossRef • Abdel-Qadir H, Sabrie N, Leong D, et al. Cardiovascular risk associated with ibrutinib use in chronic lymphocytic leukemia: a population-based cohort study. J Clin Oncol. 2021;39(31):3453–62. Findings from this real-world study suggest that ibrutinib is associated with high risks of atrial fibrillation, bleeding, and heart failure but not stroke or acute myocardial infarction.PubMedCrossRef
32.
go back to reference Giles FJ, Mauro MJ, Hong F, et al. Rates of peripheral arterial occlusive disease in patients with chronic myeloid leukemia in the chronic phase treated with imatinib, nilotinib, or non-tyrosine kinase therapy: a retrospective cohort analysis. Leukemia. 2013;27(6):1310–5.PubMedCrossRef Giles FJ, Mauro MJ, Hong F, et al. Rates of peripheral arterial occlusive disease in patients with chronic myeloid leukemia in the chronic phase treated with imatinib, nilotinib, or non-tyrosine kinase therapy: a retrospective cohort analysis. Leukemia. 2013;27(6):1310–5.PubMedCrossRef
33.
go back to reference Shah AM, Campbell P, Querejeta Rocha G, et al. Effect of imatinib as add-on therapy on echocardiographic measures of right ventricular function in patients with significant pulmonary arterial hypertension. Eur Heart J. 2015;36(10):623–32.PubMedCrossRef Shah AM, Campbell P, Querejeta Rocha G, et al. Effect of imatinib as add-on therapy on echocardiographic measures of right ventricular function in patients with significant pulmonary arterial hypertension. Eur Heart J. 2015;36(10):623–32.PubMedCrossRef
34.
go back to reference Gustafson D, Fish JE, Lipton JH, et al. Mechanisms of cardiovascular toxicity of BCR-ABL1 tyrosine kinase inhibitors in chronic myelogenous leukemia. Curr Hematol Malig Rep. 2020;15(1):20–30.PubMedCrossRef Gustafson D, Fish JE, Lipton JH, et al. Mechanisms of cardiovascular toxicity of BCR-ABL1 tyrosine kinase inhibitors in chronic myelogenous leukemia. Curr Hematol Malig Rep. 2020;15(1):20–30.PubMedCrossRef
35.
go back to reference Trent JC, Patel SS, Zhang J, et al. Rare incidence of congestive heart failure in gastrointestinal stromal tumor and other sarcoma patients receiving imatinib mesylate. Cancer. 2010;116(1):184–92.PubMed Trent JC, Patel SS, Zhang J, et al. Rare incidence of congestive heart failure in gastrointestinal stromal tumor and other sarcoma patients receiving imatinib mesylate. Cancer. 2010;116(1):184–92.PubMed
36.
go back to reference Chintalgattu V, Patel SS, Khakoo AY, et al. Cardiovascular effects of tyrosine kinase inhibitors used for gastrointestinal stromal tumors. Hematol Oncol Clin North Am. 2009;23(1):97–107.PubMedCrossRef Chintalgattu V, Patel SS, Khakoo AY, et al. Cardiovascular effects of tyrosine kinase inhibitors used for gastrointestinal stromal tumors. Hematol Oncol Clin North Am. 2009;23(1):97–107.PubMedCrossRef
38.
go back to reference Guignabert C, Phan C, Seferian A, et al. Dasatinib induces lung vascular toxicity and predisposes to pulmonary hypertension. J Clin Invest. 2016;126(9):3207–18.PubMedPubMedCentralCrossRef Guignabert C, Phan C, Seferian A, et al. Dasatinib induces lung vascular toxicity and predisposes to pulmonary hypertension. J Clin Invest. 2016;126(9):3207–18.PubMedPubMedCentralCrossRef
39.
go back to reference Montani D, Bergot E, Günther S, et al. Pulmonary arterial hypertension in patients treated by dasatinib. Circulation. 2012;125(17):2128–37.PubMedCrossRef Montani D, Bergot E, Günther S, et al. Pulmonary arterial hypertension in patients treated by dasatinib. Circulation. 2012;125(17):2128–37.PubMedCrossRef
40.
go back to reference Weatherald J, Chaumais M, Savale L, et al. Long-term outcomes of dasatinib-induced pulmonary arterial hypertension: a population-based study. Eur Respir J. 2017;50(1):1700217.PubMedCrossRef Weatherald J, Chaumais M, Savale L, et al. Long-term outcomes of dasatinib-induced pulmonary arterial hypertension: a population-based study. Eur Respir J. 2017;50(1):1700217.PubMedCrossRef
41.
go back to reference Baumgart B, Guha M, Hennan J, et al. In vitro and in vivo evaluation of dasatinib and imatinib on physiological parameters of pulmonary arterial hypertension. Cancer Chemother Pharmacol. 2017;79(4):711–23.PubMedCrossRef Baumgart B, Guha M, Hennan J, et al. In vitro and in vivo evaluation of dasatinib and imatinib on physiological parameters of pulmonary arterial hypertension. Cancer Chemother Pharmacol. 2017;79(4):711–23.PubMedCrossRef
42.
go back to reference Shah NP, Kantarjian HM, Kim DW, et al. Intermittent target inhibition with dasatinib 100 mg once daily preserves efficacy and improves tolerability in imatinib-resistant and -intolerant chronic-phase chronic myeloid leukemia. J Clin Oncol. 2008;26(19):3204–12.PubMedCrossRef Shah NP, Kantarjian HM, Kim DW, et al. Intermittent target inhibition with dasatinib 100 mg once daily preserves efficacy and improves tolerability in imatinib-resistant and -intolerant chronic-phase chronic myeloid leukemia. J Clin Oncol. 2008;26(19):3204–12.PubMedCrossRef
43.
go back to reference •• Kantarjian HM, Hughes TP, Larson RA, et al. Long-term outcomes with frontline nilotinib versus imatinib in newly diagnosed chronic myeloid leukemia in chronic phase: ENESTnd 10-year analysis. Leukemia. 2021;35(2):440–53. Findings from this study suggest that nilotinib is associated with higher rates of ischemic heart disease, cerebrovascular events, and peripheral arterial disease than imatinib.PubMedPubMedCentralCrossRef •• Kantarjian HM, Hughes TP, Larson RA, et al. Long-term outcomes with frontline nilotinib versus imatinib in newly diagnosed chronic myeloid leukemia in chronic phase: ENESTnd 10-year analysis. Leukemia. 2021;35(2):440–53. Findings from this study suggest that nilotinib is associated with higher rates of ischemic heart disease, cerebrovascular events, and peripheral arterial disease than imatinib.PubMedPubMedCentralCrossRef
44.
go back to reference Alhawiti N, Burbury KL, Kwa FA, et al. The tyrosine kinase inhibitor, nilotinib potentiates a prothrombotic state. Thromb Res. 2016;145:54–64.PubMedCrossRef Alhawiti N, Burbury KL, Kwa FA, et al. The tyrosine kinase inhibitor, nilotinib potentiates a prothrombotic state. Thromb Res. 2016;145:54–64.PubMedCrossRef
45.
go back to reference Sadiq S, Owen E, Foster T, et al. Nilotinib-induced metabolic dysfunction: insights from a translational study using in vitro adipocyte models and patient cohorts. Leukemia. 2019;33(7):1810–4.PubMedPubMedCentralCrossRef Sadiq S, Owen E, Foster T, et al. Nilotinib-induced metabolic dysfunction: insights from a translational study using in vitro adipocyte models and patient cohorts. Leukemia. 2019;33(7):1810–4.PubMedPubMedCentralCrossRef
46.
go back to reference Kota V, Brümmendorf TH, Gambacorti-Passerini C, et al. Efficacy and safety following bosutinib dose reduction in patients with Philadelphia chromosome-positive leukemias. Leuk Res. 2021;111: 106690.PubMedCrossRef Kota V, Brümmendorf TH, Gambacorti-Passerini C, et al. Efficacy and safety following bosutinib dose reduction in patients with Philadelphia chromosome-positive leukemias. Leuk Res. 2021;111: 106690.PubMedCrossRef
47.
go back to reference Cortes JE, Kim DW, Pinilla-Ibarz J, et al. A phase 2 trial of ponatinib in Philadelphia chromosome-positive leukemias. N Engl J Med. 2013;369(19):1783–96.PubMedCrossRef Cortes JE, Kim DW, Pinilla-Ibarz J, et al. A phase 2 trial of ponatinib in Philadelphia chromosome-positive leukemias. N Engl J Med. 2013;369(19):1783–96.PubMedCrossRef
48.
go back to reference Cortes JE, Kim DW, Pinilla-Ibarz J, et al. Ponatinib efficacy and safety in Philadelphia chromosome-positive leukemia: final 5-year results of the phase 2 PACE trial. Blood. 2018;132(4):393–404.PubMedPubMedCentralCrossRef Cortes JE, Kim DW, Pinilla-Ibarz J, et al. Ponatinib efficacy and safety in Philadelphia chromosome-positive leukemia: final 5-year results of the phase 2 PACE trial. Blood. 2018;132(4):393–404.PubMedPubMedCentralCrossRef
49.
go back to reference Cortes J, Apperley J, Lomaia E, et al. Ponatinib dose-ranging study in chronic-phase chronic myeloid leukemia: a randomized, open-label phase 2 clinical trial. Blood. 2021;138(21):2042–50.PubMedPubMedCentralCrossRef Cortes J, Apperley J, Lomaia E, et al. Ponatinib dose-ranging study in chronic-phase chronic myeloid leukemia: a randomized, open-label phase 2 clinical trial. Blood. 2021;138(21):2042–50.PubMedPubMedCentralCrossRef
51.
go back to reference Réa D, Mauro M, Boquimpani C, et al. A phase 3, open-label, randomized study of asciminib, a STAMP inhibitor, vs bosutinib in CML after 2 or more prior TKIs. Blood. 2021;138(21):2031–41.PubMedPubMedCentralCrossRef Réa D, Mauro M, Boquimpani C, et al. A phase 3, open-label, randomized study of asciminib, a STAMP inhibitor, vs bosutinib in CML after 2 or more prior TKIs. Blood. 2021;138(21):2031–41.PubMedPubMedCentralCrossRef
52.
53.
go back to reference Guha A, Sayegh N, Agarwal N. Targeting cardiovascular adverse events of metastatic renal cell carcinoma therapies. JACC CardioOncol. 2022;4(2):235–7.PubMedPubMedCentralCrossRef Guha A, Sayegh N, Agarwal N. Targeting cardiovascular adverse events of metastatic renal cell carcinoma therapies. JACC CardioOncol. 2022;4(2):235–7.PubMedPubMedCentralCrossRef
54.
go back to reference Dobbin SJH, Petrie MC, Myles RC, et al. Cardiotoxic effects of angiogenesis inhibitors. Clin Sci (Lond). 2021;135(1):71–100.PubMedCrossRef Dobbin SJH, Petrie MC, Myles RC, et al. Cardiotoxic effects of angiogenesis inhibitors. Clin Sci (Lond). 2021;135(1):71–100.PubMedCrossRef
55.
go back to reference Hamnvik OR, Choueiri TK, Turchin A, et al. Clinical risk factors for the development of hypertension in patients treated with inhibitors of the VEGF signaling pathway. Cancer. 2015;121(2):311–9.PubMedCrossRef Hamnvik OR, Choueiri TK, Turchin A, et al. Clinical risk factors for the development of hypertension in patients treated with inhibitors of the VEGF signaling pathway. Cancer. 2015;121(2):311–9.PubMedCrossRef
56.
go back to reference Zhu X, Stergiopoulos K, Wu S, et al. Risk of hypertension and renal dysfunction with an angiogenesis inhibitor sunitinib: systematic review and meta-analysis. Acta Oncol. 2009;48(1):9–17.PubMedCrossRef Zhu X, Stergiopoulos K, Wu S, et al. Risk of hypertension and renal dysfunction with an angiogenesis inhibitor sunitinib: systematic review and meta-analysis. Acta Oncol. 2009;48(1):9–17.PubMedCrossRef
57.
go back to reference Liu B, Ding F, Yang Liu Y, et al. Incidence and risk of hypertension associated with vascular endothelial growth factor receptor tyrosine kinase inhibitors in cancer patients: a comprehensive network meta-analysis of 72 randomized controlled trials involving 30013 patients. Oncotarget. 2016;7(41):67661–73.PubMedPubMedCentralCrossRef Liu B, Ding F, Yang Liu Y, et al. Incidence and risk of hypertension associated with vascular endothelial growth factor receptor tyrosine kinase inhibitors in cancer patients: a comprehensive network meta-analysis of 72 randomized controlled trials involving 30013 patients. Oncotarget. 2016;7(41):67661–73.PubMedPubMedCentralCrossRef
58.
go back to reference Rini BI, Escudier B, Tomczak P, et al. Comparative effectiveness of axitinib versus sorafenib in advanced renal cell carcinoma (AXIS): a randomised phase 3 trial. Lancet. 2011;378(9807):1931–9.PubMedCrossRef Rini BI, Escudier B, Tomczak P, et al. Comparative effectiveness of axitinib versus sorafenib in advanced renal cell carcinoma (AXIS): a randomised phase 3 trial. Lancet. 2011;378(9807):1931–9.PubMedCrossRef
59.
go back to reference Qi WX, Lin F, Sun YJ, et al. Incidence and risk of hypertension with pazopanib in patients with cancer: a meta-analysis. Cancer Chemother Pharmacol. 2013;71(2):431–9.PubMedCrossRef Qi WX, Lin F, Sun YJ, et al. Incidence and risk of hypertension with pazopanib in patients with cancer: a meta-analysis. Cancer Chemother Pharmacol. 2013;71(2):431–9.PubMedCrossRef
60.
go back to reference Zachary I, Gliki G. Signaling transduction mechanisms mediating biological actions of the vascular endothelial growth factor family. Cardiovasc Res. 2001;49(3):568–81.PubMedCrossRef Zachary I, Gliki G. Signaling transduction mechanisms mediating biological actions of the vascular endothelial growth factor family. Cardiovasc Res. 2001;49(3):568–81.PubMedCrossRef
61.
go back to reference González-Pacheco FR, Deudero JJP, Castellanos MC, et al. Mechanisms of endothelial response to oxidative aggression: protective role of autologous VEGF and induction of VEGFR2 by H2O2. Am J Physiol Heart Circ Physiol. 2006;291(3):H1395–401.PubMedCrossRef González-Pacheco FR, Deudero JJP, Castellanos MC, et al. Mechanisms of endothelial response to oxidative aggression: protective role of autologous VEGF and induction of VEGFR2 by H2O2. Am J Physiol Heart Circ Physiol. 2006;291(3):H1395–401.PubMedCrossRef
62.
go back to reference Choueiri TK, Schutz F, Je Y, et al. Risk of arterial thromboembolic events with sunitinib and sorafenib: a systematic review and meta-analysis of clinical trials. J Clin Oncol. 2010;28(13):2280–5.PubMedCrossRef Choueiri TK, Schutz F, Je Y, et al. Risk of arterial thromboembolic events with sunitinib and sorafenib: a systematic review and meta-analysis of clinical trials. J Clin Oncol. 2010;28(13):2280–5.PubMedCrossRef
63.
go back to reference Sonpavde G, Ye J, Schutz F, et al. Venous thromboembolic events with vascular endothelial growth factor receptor tyrosine kinase inhibitors: a systematic review and meta-analysis of randomized clinical trials. Crit Rev Oncol Hematol. 2013;87(1):80–9.PubMedCrossRef Sonpavde G, Ye J, Schutz F, et al. Venous thromboembolic events with vascular endothelial growth factor receptor tyrosine kinase inhibitors: a systematic review and meta-analysis of randomized clinical trials. Crit Rev Oncol Hematol. 2013;87(1):80–9.PubMedCrossRef
64.
go back to reference Tran H, Anand SS. Oral antiplatelet therapy in cerebrovascular disease, coronary artery disease, and peripheral arterial disease. JAMA. 2004;292(15):1867–74.PubMedCrossRef Tran H, Anand SS. Oral antiplatelet therapy in cerebrovascular disease, coronary artery disease, and peripheral arterial disease. JAMA. 2004;292(15):1867–74.PubMedCrossRef
65.
go back to reference Totzeck M, Mincu RI, Mrotzek S, et al. Cardiovascular diseases in patients receiving small molecules with anti-vascular endothelial growth factor activity: a meta-analysis of approximately 29,000 cancer patients. Eur J Prev Cardiol. 2018;25(5):482–94.PubMedCrossRef Totzeck M, Mincu RI, Mrotzek S, et al. Cardiovascular diseases in patients receiving small molecules with anti-vascular endothelial growth factor activity: a meta-analysis of approximately 29,000 cancer patients. Eur J Prev Cardiol. 2018;25(5):482–94.PubMedCrossRef
66.
go back to reference Qi WX, Shen Z, Tang LN, Yao Y. Congestive heart failure risk in cancer patients treated with vascular endothelial growth factor tyrosine kinase inhibitors: a systematic review and meta-analysis of 36 clinical trials. Br J Clin Pharmacol. 2014;78(4):748–62.PubMedPubMedCentralCrossRef Qi WX, Shen Z, Tang LN, Yao Y. Congestive heart failure risk in cancer patients treated with vascular endothelial growth factor tyrosine kinase inhibitors: a systematic review and meta-analysis of 36 clinical trials. Br J Clin Pharmacol. 2014;78(4):748–62.PubMedPubMedCentralCrossRef
67.
go back to reference Zang J, Wu S, Tang L, et al. Incidence and risk of QTc interval prolongation among cancer patients treated with vandetanib: a systematic review and meta-analysis. PLoS ONE. 2012;7(2): e30353.PubMedPubMedCentralCrossRef Zang J, Wu S, Tang L, et al. Incidence and risk of QTc interval prolongation among cancer patients treated with vandetanib: a systematic review and meta-analysis. PLoS ONE. 2012;7(2): e30353.PubMedPubMedCentralCrossRef
68.
go back to reference Shah RR, Morganroth J, Shah DR. Cardiovascular safety of tyrosine kinase inhibitors: with a special focus on cardiac repolarisation (QT interval). Drug Saf. 2013;36(5):295–316.PubMedCrossRef Shah RR, Morganroth J, Shah DR. Cardiovascular safety of tyrosine kinase inhibitors: with a special focus on cardiac repolarisation (QT interval). Drug Saf. 2013;36(5):295–316.PubMedCrossRef
69.
go back to reference Sagie A, Larson MG, Goldberg RJ, et al. An improved method for adjusting the QT interval for heart rate (the Framingham Heart Study). Am J Cardiol. 1992;70(7):797–801.PubMedCrossRef Sagie A, Larson MG, Goldberg RJ, et al. An improved method for adjusting the QT interval for heart rate (the Framingham Heart Study). Am J Cardiol. 1992;70(7):797–801.PubMedCrossRef
70.
go back to reference Chitturi KR, Burns EA, Muhsen IN, et al. Cardiovascular risks with epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors and monoclonal antibody therapy. Curr Oncol Rep. 2022;24(4):475–91.PubMedCrossRef Chitturi KR, Burns EA, Muhsen IN, et al. Cardiovascular risks with epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors and monoclonal antibody therapy. Curr Oncol Rep. 2022;24(4):475–91.PubMedCrossRef
72.
go back to reference Metibemu DS, Akinloye OA, Akamo AJ, et al. Exploring receptor tyrosine kinases-inhibitors in cancer treatments. Egypt J Med Hum Genet. 2019;20(1):35.CrossRef Metibemu DS, Akinloye OA, Akamo AJ, et al. Exploring receptor tyrosine kinases-inhibitors in cancer treatments. Egypt J Med Hum Genet. 2019;20(1):35.CrossRef
73.
go back to reference Fukuoka M, Yano S, Giaccone G, et al. J Clin Oncol Official J Am Soc Clin Oncol. 2019;21(12):2237–46.CrossRef Fukuoka M, Yano S, Giaccone G, et al. J Clin Oncol Official J Am Soc Clin Oncol. 2019;21(12):2237–46.CrossRef
74.
go back to reference Orphanos GS, Ioannidis GN, Ardavanis AG. Cardiotoxicity induced by tyrosine kinase inhibitors. Acta Oncol. 2009;48(7):964–70.PubMedCrossRef Orphanos GS, Ioannidis GN, Ardavanis AG. Cardiotoxicity induced by tyrosine kinase inhibitors. Acta Oncol. 2009;48(7):964–70.PubMedCrossRef
75.
go back to reference Yamaguchi K, Kanazawa S, Kinoshita Y, et al. Acute myocardial infarction with lung cancer during treatment with gefitinib: the possibility of gefitinib-induced thrombosis. Pathophysiol Haemost Thromb. 2003;34(1):48–50.CrossRef Yamaguchi K, Kanazawa S, Kinoshita Y, et al. Acute myocardial infarction with lung cancer during treatment with gefitinib: the possibility of gefitinib-induced thrombosis. Pathophysiol Haemost Thromb. 2003;34(1):48–50.CrossRef
76.
go back to reference Lynch DR, Kickler TS, Rade JJ. Recurrent myocardial infarction associated with gefitinib therapy. J Thromb Thrombolysis. 2011;32(1):120–4.PubMedCrossRef Lynch DR, Kickler TS, Rade JJ. Recurrent myocardial infarction associated with gefitinib therapy. J Thromb Thrombolysis. 2011;32(1):120–4.PubMedCrossRef
77.
go back to reference Omori S, Oyakawa T, Naito T, Takahashi T. Gefitinib-induced cardiomyopathy in epidermal growth receptor-mutated NSCLC. J Thorac Oncol. 2018;13(10):e207–8.PubMedCrossRef Omori S, Oyakawa T, Naito T, Takahashi T. Gefitinib-induced cardiomyopathy in epidermal growth receptor-mutated NSCLC. J Thorac Oncol. 2018;13(10):e207–8.PubMedCrossRef
78.
go back to reference Truell JS, Fishbein MC, Figlin R. Myocarditis temporally related to the use of gefitinib (Iressa). Arch Pathol Lab Med. 2005;129(8):1044–6.PubMedCrossRef Truell JS, Fishbein MC, Figlin R. Myocarditis temporally related to the use of gefitinib (Iressa). Arch Pathol Lab Med. 2005;129(8):1044–6.PubMedCrossRef
79.
go back to reference Korashy HM, Attafi IM, Ansari MA, et al. Molecular mechanisms of cardiotoxicity of gefitinib in vivo and in vitro rat cardiomyocyte: role of apoptosis and oxidative stress. Toxicol Lett. 2016;252:50–61.PubMedCrossRef Korashy HM, Attafi IM, Ansari MA, et al. Molecular mechanisms of cardiotoxicity of gefitinib in vivo and in vitro rat cardiomyocyte: role of apoptosis and oxidative stress. Toxicol Lett. 2016;252:50–61.PubMedCrossRef
80.
81.
go back to reference Moore MJ, Goldstein D, Hamm J, et al. Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol. 2007;25(15):1960–6.PubMedCrossRef Moore MJ, Goldstein D, Hamm J, et al. Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol. 2007;25(15):1960–6.PubMedCrossRef
82.
go back to reference Walker AJ, Card TR, West J, et al. Incidence of venous thromboembolism in patients with cancer - a cohort study using linked United Kingdom databases. Eur J Cancer. 2013;49(6):1404–13.PubMedCrossRef Walker AJ, Card TR, West J, et al. Incidence of venous thromboembolism in patients with cancer - a cohort study using linked United Kingdom databases. Eur J Cancer. 2013;49(6):1404–13.PubMedCrossRef
83.
go back to reference Zaborowska-Szmit M, Krzakowski M, Kowalski DM, Szmit S. Cardiovascular complications of systemic therapy in non-small-cell lung cancer. J Clin Med. 2020;9(5):1268.PubMedPubMedCentralCrossRef Zaborowska-Szmit M, Krzakowski M, Kowalski DM, Szmit S. Cardiovascular complications of systemic therapy in non-small-cell lung cancer. J Clin Med. 2020;9(5):1268.PubMedPubMedCentralCrossRef
84.
go back to reference Pinquié F, Chabot G, Urban T, Hureaux J. Maintenance treatment by erlotinib and toxic cardiomyopathy: a case report. Oncology. 2016;90(3):176–7.PubMedCrossRef Pinquié F, Chabot G, Urban T, Hureaux J. Maintenance treatment by erlotinib and toxic cardiomyopathy: a case report. Oncology. 2016;90(3):176–7.PubMedCrossRef
85.
go back to reference Kus T, Aktas G, Sevinc A, et al. Could erlotinib treatment lead to acute cardiovascular events in patients with lung adenocarcinoma after chemotherapy failure? Onco Targets Ther. 2015;8:1341–3.PubMedPubMedCentralCrossRef Kus T, Aktas G, Sevinc A, et al. Could erlotinib treatment lead to acute cardiovascular events in patients with lung adenocarcinoma after chemotherapy failure? Onco Targets Ther. 2015;8:1341–3.PubMedPubMedCentralCrossRef
86.
go back to reference Herbst RS, Ansari R, Bustin F, et al. Efficacy of bevacizumab plus erlotinib versus erlotinib alone in advanced non-small-cell lung cancer after failure of standard first-line chemotherapy (BeTa): A double-blind, placebo-controlled, phase 3 trial. The Lancet. 2011;377(9780):1846–54.CrossRef Herbst RS, Ansari R, Bustin F, et al. Efficacy of bevacizumab plus erlotinib versus erlotinib alone in advanced non-small-cell lung cancer after failure of standard first-line chemotherapy (BeTa): A double-blind, placebo-controlled, phase 3 trial. The Lancet. 2011;377(9780):1846–54.CrossRef
87.
go back to reference Cicènas S, Geater SL, Petrov P, et al. Maintenance erlotinib versus erlotinib at disease progression in patients with advanced non-small-cell lung cancer who have not progressed following platinum-based chemotherapy (IUNO study). Lung Cancer. 2016;102:30–7.PubMedCrossRef Cicènas S, Geater SL, Petrov P, et al. Maintenance erlotinib versus erlotinib at disease progression in patients with advanced non-small-cell lung cancer who have not progressed following platinum-based chemotherapy (IUNO study). Lung Cancer. 2016;102:30–7.PubMedCrossRef
88.
89.
go back to reference Nuvola G, Dall’Olio FG, Melotti B, et al. Cardiac toxicity from afatinib in EGFR-mutated NSCLC: a rare but possible side effect. J Thorac Oncol. 2019;14(7):e145–e146.PubMedCrossRef Nuvola G, Dall’Olio FG, Melotti B, et al. Cardiac toxicity from afatinib in EGFR-mutated NSCLC: a rare but possible side effect. J Thorac Oncol. 2019;14(7):e145–e146.PubMedCrossRef
90.
go back to reference Tang Z, Ji X, Zhou G, et al. Hypotension from afatinib in epidermal growth factor receptor-mutated non-small cell lung cancer: a case report and literature review. Anticancer Drugs. 2022;33(1):e840–1.PubMedCrossRef Tang Z, Ji X, Zhou G, et al. Hypotension from afatinib in epidermal growth factor receptor-mutated non-small cell lung cancer: a case report and literature review. Anticancer Drugs. 2022;33(1):e840–1.PubMedCrossRef
91.
go back to reference Cross DAE, Ashton SE, Ghiorghiu S, et al. AZD9291, an irreversible EGFR TKI, overcomes T790M-mediated resistance to EGFR inhibitors in lung cancer. Cancer Discov. 2014;4(9):1046–61.PubMedPubMedCentralCrossRef Cross DAE, Ashton SE, Ghiorghiu S, et al. AZD9291, an irreversible EGFR TKI, overcomes T790M-mediated resistance to EGFR inhibitors in lung cancer. Cancer Discov. 2014;4(9):1046–61.PubMedPubMedCentralCrossRef
92.
go back to reference Kunimasa K, Kamada R, Oka T, et al. Cardiac adverse events in EGFR-mutated non-small cell lung cancer treated with osimertinib. JACC Cardio-Oncology. 2020;2(1):1–10.CrossRef Kunimasa K, Kamada R, Oka T, et al. Cardiac adverse events in EGFR-mutated non-small cell lung cancer treated with osimertinib. JACC Cardio-Oncology. 2020;2(1):1–10.CrossRef
93.
go back to reference Thein KZ, Swarup S, Ball S, et al. Incidence of cardiac toxicities in patients with advanced non-small cell lung cancer treated with osimertinib: a combined analysis of two phase III randomized controlled trials. Ann Oncol. 2018;29(supp_8):VIII500.CrossRef Thein KZ, Swarup S, Ball S, et al. Incidence of cardiac toxicities in patients with advanced non-small cell lung cancer treated with osimertinib: a combined analysis of two phase III randomized controlled trials. Ann Oncol. 2018;29(supp_8):VIII500.CrossRef
94.
go back to reference Soria JC, Ohe Y, Vansteenkiste J, et al. Osimertinib in untreated EGFR-mutated advanced non–small-cell lung cancer. N Engl J Med. 2018;378(2):113–25.PubMedCrossRef Soria JC, Ohe Y, Vansteenkiste J, et al. Osimertinib in untreated EGFR-mutated advanced non–small-cell lung cancer. N Engl J Med. 2018;378(2):113–25.PubMedCrossRef
96.
go back to reference Mok TS, Wu Y-L, Ahn M-J, et al. Osimertinib or platinum-pemetrexed in EGFR T790M-positive lung cancer. N Engl J Med. 2017;376(7):629–40.PubMedCrossRef Mok TS, Wu Y-L, Ahn M-J, et al. Osimertinib or platinum-pemetrexed in EGFR T790M-positive lung cancer. N Engl J Med. 2017;376(7):629–40.PubMedCrossRef
97.
go back to reference Anand K, Ensor J, Trachtenberg B, Bernicker EH. Osimertinib-induced cardiotoxicity: a retrospective review of the FDA adverse events reporting system (FAERS). JACC Cardio-Oncology. 2019;1(2):172–8.CrossRef Anand K, Ensor J, Trachtenberg B, Bernicker EH. Osimertinib-induced cardiotoxicity: a retrospective review of the FDA adverse events reporting system (FAERS). JACC Cardio-Oncology. 2019;1(2):172–8.CrossRef
98.
go back to reference Kunimasa K, Oka T, Hara S, et al. Osimertinib is associated with reversible and dose-independent cancer therapy-related cardiac dysfunction. Lung Cancer (Amsterdam, Netherlands). 2021;153:186–92.PubMedCrossRef Kunimasa K, Oka T, Hara S, et al. Osimertinib is associated with reversible and dose-independent cancer therapy-related cardiac dysfunction. Lung Cancer (Amsterdam, Netherlands). 2021;153:186–92.PubMedCrossRef
99.
go back to reference Lyon AR, Dent S, Stanway S, et al. Baseline cardiovascular risk assessment in cancer patients scheduled to receive cardiotoxic cancer therapies: a position statement and new risk assessment tools from the Cardio-Oncology Study Group of the Heart Failure Association of the European Society of Cardiology in collaboration with the International Cardio-Oncology Society. Eur J Heart Fail. 2020;22(11):1945–60.PubMedCrossRef Lyon AR, Dent S, Stanway S, et al. Baseline cardiovascular risk assessment in cancer patients scheduled to receive cardiotoxic cancer therapies: a position statement and new risk assessment tools from the Cardio-Oncology Study Group of the Heart Failure Association of the European Society of Cardiology in collaboration with the International Cardio-Oncology Society. Eur J Heart Fail. 2020;22(11):1945–60.PubMedCrossRef
100.
go back to reference Alexandre J, Cautela J, Ederhy S, et al. Cardiovascular toxicity related to cancer treatment: a pragmatic approach to the American and European cardio-oncology guidelines. J Am Heart Assoc. 2020;9(18): e018403.PubMedPubMedCentralCrossRef Alexandre J, Cautela J, Ederhy S, et al. Cardiovascular toxicity related to cancer treatment: a pragmatic approach to the American and European cardio-oncology guidelines. J Am Heart Assoc. 2020;9(18): e018403.PubMedPubMedCentralCrossRef
Metadata
Title
Cardiovascular Toxicities Associated with Tyrosine Kinase Inhibitors
Authors
Nicolas Sayegh
Juliet Yirerong
Neeraj Agarwal
Daniel Addison
Michael Fradley
Jorge Cortes
Neal L. Weintraub
Nazish Sayed
Girindra Raval
Avirup Guha
Publication date
16-02-2023
Publisher
Springer US
Published in
Current Cardiology Reports / Issue 4/2023
Print ISSN: 1523-3782
Electronic ISSN: 1534-3170
DOI
https://doi.org/10.1007/s11886-023-01845-2

Other articles of this Issue 4/2023

Current Cardiology Reports 4/2023 Go to the issue

Echocardiography (JM Gardin and AH Waller, Section Editors)

Echo Doppler Parameters of Diastolic Function

Myocardial Disease (A Abbate and M Merlo, Section Editors)

Towards a New Classification of Cardiomyopathies

Psychological Aspects of Cardiovascular Diseases (IM Kronish, Section Editor)

Establishing a Care Continuum for Cardiometabolic Conditions for Patients with Serious Mental Illness