Skip to main content
Top
Published in: International Journal of Computer Assisted Radiology and Surgery 7/2019

01-07-2019 | Original Article

Learning soft tissue behavior of organs for surgical navigation with convolutional neural networks

Authors: Micha Pfeiffer, Carina Riediger, Jürgen Weitz, Stefanie Speidel

Published in: International Journal of Computer Assisted Radiology and Surgery | Issue 7/2019

Login to get access

Abstract

Purpose

In surgical navigation, pre-operative organ models are presented to surgeons during the intervention to help them in efficiently finding their target. In the case of soft tissue, these models need to be deformed and adapted to the current situation by using intra-operative sensor data. A promising method to realize this are real-time capable biomechanical models.

Methods

We train a fully convolutional neural network to estimate a displacement field of all points inside an organ when given only the displacement of a part of the organ’s surface. The network trains on entirely synthetic data of random organ-like meshes, which allows us to use much more data than is otherwise available. The input and output data are discretized into a regular grid, allowing us to fully utilize the capabilities of convolutional operators and to train and infer in a highly parallelized manner.

Results

The system is evaluated on in-silico liver models, phantom liver data and human in-vivo breathing data. We test the performance with varying material parameters, organ shapes and amount of visible surface. Even though the network is only trained on synthetic data, it adapts well to the various cases and gives a good estimation of the internal organ displacement. The inference runs at over 50 frames per second.

Conclusion

We present a novel method for training a data-driven, real-time capable deformation model. The accuracy is comparable to other registration methods, it adapts very well to previously unseen organs and does not need to be re-trained for every patient. The high inferring speed makes this method useful for many applications such as surgical navigation and real-time simulation.
Literature
1.
go back to reference Adagolodjo Y, Trivisonne R, Haouchine N, Cotin S, Courtecuisse H (2017) Silhouette-based pose estimation for deformable organs application to surgical augmented reality. In: IROS 2017—IEEE/RSJ international conference on intelligent robots and systems, Vancouver, Canada Adagolodjo Y, Trivisonne R, Haouchine N, Cotin S, Courtecuisse H (2017) Silhouette-based pose estimation for deformable organs application to surgical augmented reality. In: IROS 2017—IEEE/RSJ international conference on intelligent robots and systems, Vancouver, Canada
2.
go back to reference Allard J, Courtecuisse H, Faure F (2011) Implicit FEM solver on GPU for interactive deformation simulation. In: Hwu WW (ed) GPU computing gems jade. Elsevier, New York Allard J, Courtecuisse H, Faure F (2011) Implicit FEM solver on GPU for interactive deformation simulation. In: Hwu WW (ed) GPU computing gems jade. Elsevier, New York
3.
go back to reference Bui HP, Tomar S, Chouly F, Lozinski A, Bordas S (2018) Real-time patient specific surgical simulation using corotational cut finite element method: application to needle insertion simulation. In: 13th world congress in computational mechanics, New York, United States Bui HP, Tomar S, Chouly F, Lozinski A, Bordas S (2018) Real-time patient specific surgical simulation using corotational cut finite element method: application to needle insertion simulation. In: 13th world congress in computational mechanics, New York, United States
4.
go back to reference Chen Y, Medioni G (1992) Object modelling by registration of multiple range images. Image Vis Comput 10(3):144–155CrossRef Chen Y, Medioni G (1992) Object modelling by registration of multiple range images. Image Vis Comput 10(3):144–155CrossRef
5.
go back to reference Geuzaine C, Remacle JF (2009) Gmsh: a 3-D finite element mesh generator with built-in pre- and post-processing facilities. Int J Numer Methods Eng 79(11):1309–1331CrossRef Geuzaine C, Remacle JF (2009) Gmsh: a 3-D finite element mesh generator with built-in pre- and post-processing facilities. Int J Numer Methods Eng 79(11):1309–1331CrossRef
6.
go back to reference Giannarou S, Visentini-Scarzanella M, Yang G (2013) Probabilistic tracking of affine-invariant anisotropic regions. IEEE Trans Pattern Anal Mach Intell 35(1):130–143CrossRefPubMed Giannarou S, Visentini-Scarzanella M, Yang G (2013) Probabilistic tracking of affine-invariant anisotropic regions. IEEE Trans Pattern Anal Mach Intell 35(1):130–143CrossRefPubMed
7.
go back to reference Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press, Cambridge Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press, Cambridge
8.
go back to reference Guo X, Li W, Iorio F (2016) Convolutional neural networks for steady flow approximation. In: Proceedings of the 22Nd ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’16. ACM Guo X, Li W, Iorio F (2016) Convolutional neural networks for steady flow approximation. In: Proceedings of the 22Nd ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’16. ACM
9.
go back to reference Hambli R, Chamekh A, Salah HBH (2006) Real-time deformation of structure using finite element and Neural networks in virtual reality applications. Finite Elem Anal Des 42:985–991CrossRef Hambli R, Chamekh A, Salah HBH (2006) Real-time deformation of structure using finite element and Neural networks in virtual reality applications. Finite Elem Anal Des 42:985–991CrossRef
10.
go back to reference Kingma DP, Ba JL (2015) Adam: a method for stochastic optimization. In: International conference on learning representations (ICLR), San Diego, Ithaca Kingma DP, Ba JL (2015) Adam: a method for stochastic optimization. In: International conference on learning representations (ICLR), San Diego, Ithaca
11.
go back to reference Kenngott HG, Wünscher JJ, Wagner M, Preukschas A, Wekerle AL, Neher P, Suwelack S, Speidel S, Nickel F, Oladokun D, Maier-Hein L, Dillmann R, Meinzer HP, Müller-Stich BP (2015) OpenHELP (Heidelberg laparoscopy phantom): development of an open-source surgical evaluation and training tool. Surg Endosc 29:3338–3347CrossRefPubMedPubMedCentral Kenngott HG, Wünscher JJ, Wagner M, Preukschas A, Wekerle AL, Neher P, Suwelack S, Speidel S, Nickel F, Oladokun D, Maier-Hein L, Dillmann R, Meinzer HP, Müller-Stich BP (2015) OpenHELP (Heidelberg laparoscopy phantom): development of an open-source surgical evaluation and training tool. Surg Endosc 29:3338–3347CrossRefPubMedPubMedCentral
12.
go back to reference Koo B, Özgür E, Le Roy B, Buc E, Bartoli A (2017) Deformable registration of a preoperative 3D liver volume to a laparoscopy image using contour and shading cues. In: Medical image computing and computer assisted intervention—MICCAI 2017. Springer International Publishing, Berlin Koo B, Özgür E, Le Roy B, Buc E, Bartoli A (2017) Deformable registration of a preoperative 3D liver volume to a laparoscopy image using contour and shading cues. In: Medical image computing and computer assisted intervention—MICCAI 2017. Springer International Publishing, Berlin
13.
go back to reference Lorente D, Martínez-Martínez F, Rupérez MJ, Lago MA, Martínez-Sober M, Escandell-Montero P, Martínez-Martínez JM, Martínez-Sanchis S, Serrano-López AJ, Monserrat C, Martín-Guerrero JD (2017) A framework for modelling the biomechanical behaviour of the human liver during breathing in real time using machine learning. Expert Syst Appl 71:342–357CrossRef Lorente D, Martínez-Martínez F, Rupérez MJ, Lago MA, Martínez-Sober M, Escandell-Montero P, Martínez-Martínez JM, Martínez-Sanchis S, Serrano-López AJ, Monserrat C, Martín-Guerrero JD (2017) A framework for modelling the biomechanical behaviour of the human liver during breathing in real time using machine learning. Expert Syst Appl 71:342–357CrossRef
14.
go back to reference Malinen M, Råback P (2013) Elmer finite element solver for multiphysics and multiscale problems. Multiscale modelling methods for applications in materials science. Forschungszentrum Jülich, Jülich, pp 101–113 Malinen M, Råback P (2013) Elmer finite element solver for multiphysics and multiscale problems. Multiscale modelling methods for applications in materials science. Forschungszentrum Jülich, Jülich, pp 101–113
15.
go back to reference Martínez-Martínez F, Rupérez-Moreno MJ, Martínez-Sober M, Solves-Llorens JA, Lorente D, Serrano-López AJ, Martínez-Sanchis S, Monserrat C, Martín-Guerrero JD (2017) A finite element-based machine learning approach for modeling the mechanical behavior of the breast tissues under compression in real-time. Comput Biol Med 90:116–124CrossRefPubMed Martínez-Martínez F, Rupérez-Moreno MJ, Martínez-Sober M, Solves-Llorens JA, Lorente D, Serrano-López AJ, Martínez-Sanchis S, Monserrat C, Martín-Guerrero JD (2017) A finite element-based machine learning approach for modeling the mechanical behavior of the breast tissues under compression in real-time. Comput Biol Med 90:116–124CrossRefPubMed
16.
go back to reference Mendizabal A, Duparc RB, Bui HP, Paulus CJ, Peterlik I, Cotin S (2017) Face-based smoothed finite element method for real-time simulation of soft tissue. In: Proceedings of SPIE, vol 10135 Mendizabal A, Duparc RB, Bui HP, Paulus CJ, Peterlik I, Cotin S (2017) Face-based smoothed finite element method for real-time simulation of soft tissue. In: Proceedings of SPIE, vol 10135
17.
go back to reference Misra S, Macura KJ, Ramesh KT, Okamura AM (2009) The importance of organ geometry and boundary constraints for planning of medical interventions. Med Eng Phys 31(2):195–206CrossRefPubMed Misra S, Macura KJ, Ramesh KT, Okamura AM (2009) The importance of organ geometry and boundary constraints for planning of medical interventions. Med Eng Phys 31(2):195–206CrossRefPubMed
18.
go back to reference Morooka K, Chen X, Kurazume R, Uchida S, Hara K, Iwashita Y, Hashizume M (2008) Real-time nonlinear fem with neural network for simulating soft organ model deformation. In: Medical image computing and computer-assisted intervention—MICCAI 2008. Springer, Berlin Morooka K, Chen X, Kurazume R, Uchida S, Hara K, Iwashita Y, Hashizume M (2008) Real-time nonlinear fem with neural network for simulating soft organ model deformation. In: Medical image computing and computer-assisted intervention—MICCAI 2008. Springer, Berlin
19.
go back to reference Myronenko, A., Song, X., Á. Carreira-Perpiñán, M.: Non-rigid point set registration: coherent point drift. In: Advances in neural information processing systems, vol 19 (2006) Myronenko, A., Song, X., Á. Carreira-Perpiñán, M.: Non-rigid point set registration: coherent point drift. In: Advances in neural information processing systems, vol 19 (2006)
20.
go back to reference Peterlik I, Courtecuisse H, Rohling R, Abolmaesumi P, Nguan C, Cotin S, Salcudean S (2017) Fast elastic registration of soft tissues under large deformations. Med Image Anal 45:24–40CrossRefPubMed Peterlik I, Courtecuisse H, Rohling R, Abolmaesumi P, Nguan C, Cotin S, Salcudean S (2017) Fast elastic registration of soft tissues under large deformations. Med Image Anal 45:24–40CrossRefPubMed
21.
go back to reference Peterlik I, Haouchine N, Ručka L, Cotin S (2017) Image-driven stochastic identification of boundary conditions for predictive simulation. In: 20th international conference on medical image computing and computer assisted intervention, Québec, Canada Peterlik I, Haouchine N, Ručka L, Cotin S (2017) Image-driven stochastic identification of boundary conditions for predictive simulation. In: 20th international conference on medical image computing and computer assisted intervention, Québec, Canada
22.
go back to reference Plantefève R, Peterlik I, Haouchine N, Cotin S (2016) Patient-specific biomechanical modeling for guidance during minimally-invasive hepatic surgery. Ann Biomed Eng 44(1):139–153CrossRefPubMed Plantefève R, Peterlik I, Haouchine N, Cotin S (2016) Patient-specific biomechanical modeling for guidance during minimally-invasive hepatic surgery. Ann Biomed Eng 44(1):139–153CrossRefPubMed
23.
go back to reference Rechowicz KJ, McKenzie FD (2013) Development and validation methodology of the Nuss procedure surgical planner. Simulation 89(12):1474–1488CrossRef Rechowicz KJ, McKenzie FD (2013) Development and validation methodology of the Nuss procedure surgical planner. Simulation 89(12):1474–1488CrossRef
24.
go back to reference Reichard D, Häntsch D, Bodenstedt S, Suwelack S, Wagner M, Kenngott H, Müller-Stich B, Maier-Hein L, Dillmann R, Speidel S (2017) Projective biomechanical depth matching for soft-tissue registration in laparoscopic surgery. Int J Comput Assist Radiology and Surgery (IJCARS) 12(7):1101–1110CrossRef Reichard D, Häntsch D, Bodenstedt S, Suwelack S, Wagner M, Kenngott H, Müller-Stich B, Maier-Hein L, Dillmann R, Speidel S (2017) Projective biomechanical depth matching for soft-tissue registration in laparoscopic surgery. Int J Comput Assist Radiology and Surgery (IJCARS) 12(7):1101–1110CrossRef
25.
go back to reference Ronneberger O, Fischer P, Brox T (2015) U-Net: convolutional networks for biomedical image segmentation. In: Medical image computing and computer-assisted intervention (MICCAI), LNCS, vol 9351. Springer Ronneberger O, Fischer P, Brox T (2015) U-Net: convolutional networks for biomedical image segmentation. In: Medical image computing and computer-assisted intervention (MICCAI), LNCS, vol 9351. Springer
26.
go back to reference Simpson AL, Dumpuri P, Jarnagin WR, Miga MI (2012) Model-assisted image-guided liver surgery using sparse intraoperative data. Springer, BerlinCrossRef Simpson AL, Dumpuri P, Jarnagin WR, Miga MI (2012) Model-assisted image-guided liver surgery using sparse intraoperative data. Springer, BerlinCrossRef
27.
go back to reference Suwelack S, Röhl S, Bodenstedt S, Reichard D, Dillmann R, dos Santos T, Maier-Hein L, Wagner M, Wünscher J, Kenngott H, Müller BP, Speidel S (2014) Physics based shape matching for intraoperative image guidance. Med Phys 41:111901CrossRefPubMed Suwelack S, Röhl S, Bodenstedt S, Reichard D, Dillmann R, dos Santos T, Maier-Hein L, Wagner M, Wünscher J, Kenngott H, Müller BP, Speidel S (2014) Physics based shape matching for intraoperative image guidance. Med Phys 41:111901CrossRefPubMed
28.
go back to reference Suwelack S, Talbot H, Röhl S, Dillmann R, Speidel S (2011) A biomechanical liver model for intraoperative soft tissue registration. In: Progress in biomedical optics and imaging—proceedings of SPIE, vol 7964 Suwelack S, Talbot H, Röhl S, Dillmann R, Speidel S (2011) A biomechanical liver model for intraoperative soft tissue registration. In: Progress in biomedical optics and imaging—proceedings of SPIE, vol 7964
29.
go back to reference Tonutti M, Gras G, Yang GZ (2017) A machine learning approach for real-time modelling of tissue deformation in image-guided neurosurgery. Artif Intell Med 80:39–47CrossRefPubMed Tonutti M, Gras G, Yang GZ (2017) A machine learning approach for real-time modelling of tissue deformation in image-guided neurosurgery. Artif Intell Med 80:39–47CrossRefPubMed
30.
go back to reference Wu J, Westermann R, Dick C (2014) Real-time haptic cutting of high-resolution soft tissues. Stud Health Technol Inform 196:469–475PubMed Wu J, Westermann R, Dick C (2014) Real-time haptic cutting of high-resolution soft tissues. Stud Health Technol Inform 196:469–475PubMed
31.
go back to reference Yamamoto U, Nakao M, Ohzeki M, Matsuda T (2017) Deformation estimation of an elastic object by partial observation using a neural network. CoRR arXiv:abs/1711.10157 Yamamoto U, Nakao M, Ohzeki M, Matsuda T (2017) Deformation estimation of an elastic object by partial observation using a neural network. CoRR arXiv:​abs/​1711.​10157
Metadata
Title
Learning soft tissue behavior of organs for surgical navigation with convolutional neural networks
Authors
Micha Pfeiffer
Carina Riediger
Jürgen Weitz
Stefanie Speidel
Publication date
01-07-2019
Publisher
Springer International Publishing
Published in
International Journal of Computer Assisted Radiology and Surgery / Issue 7/2019
Print ISSN: 1861-6410
Electronic ISSN: 1861-6429
DOI
https://doi.org/10.1007/s11548-019-01965-7

Other articles of this Issue 7/2019

International Journal of Computer Assisted Radiology and Surgery 7/2019 Go to the issue