Skip to main content
Top
Published in: Journal of Clinical Monitoring and Computing 5/2015

01-10-2015 | Original Research

Monitoring CO2 in shock states

Authors: Pierre-Eric Danin, Nils Siegenthaler, Jacques Levraut, Gilles Bernardin, Jean Dellamonica, Karim Bendjelid

Published in: Journal of Clinical Monitoring and Computing | Issue 5/2015

Login to get access

Abstract

The primary end point when treating acute shock is to restore blood circulation, mainly by reaching macrocirculatory parameters. However, even if global haemodynamic goals can be achieved, microcirculatory perfusion may remain impaired, leading to cellular hypoxia and organ damage. Interestingly, few methods are currently available to measure the adequacy of organ blood flow and tissue oxygenation. The rise in tissue partial pressure of carbon dioxide (CO2) has been observed when tissue perfusion is decreased. In this regard, tissue partial pressure of CO2 has been proposed as an early and reliable marker of tissue hypoxia even if the mechanisms of tissue partial pressure in CO2 rise during hypoperfusion remain unclear. Several technologies allow the estimation of CO2 content from different body sites: vascular, tissular (in hollow organs, mucosal or cutaneous), and airway. These tools remain poorly evaluated, and some are used but are not widely used in clinical practice. The present review clarifies the physiology of increasing tissue CO2 during hypoperfusion and underlines the specificities of the different technologies that allow bedside estimation of tissue CO2 content.
Literature
1.
go back to reference Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, Sevransky JE, Sprung CL, Douglas IS, Jaeschke R, Osborn TM, Nunnally ME, Townsend SR, Reinhart K, Kleinpell RM, Angus DC, Deutschman CS, Machado FR, Rubenfeld GD, Webb S, Beale RJ, Vincent JL, Moreno R. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med. 2013;39(2):165–228. doi:10.1007/s00134-012-2769-8.CrossRefPubMed Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, Sevransky JE, Sprung CL, Douglas IS, Jaeschke R, Osborn TM, Nunnally ME, Townsend SR, Reinhart K, Kleinpell RM, Angus DC, Deutschman CS, Machado FR, Rubenfeld GD, Webb S, Beale RJ, Vincent JL, Moreno R. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med. 2013;39(2):165–228. doi:10.​1007/​s00134-012-2769-8.CrossRefPubMed
4.
go back to reference Ait-Oufella H, Lemoinne S, Boelle PY, Galbois A, Baudel JL, Lemant J, Joffre J, Margetis D, Guidet B, Maury E, Offenstadt G. Mottling score predicts survival in septic shock. Intensive Care Med. 2011;37(5):801–7. doi:10.1007/s00134-011-2163-y. Ait-Oufella H, Lemoinne S, Boelle PY, Galbois A, Baudel JL, Lemant J, Joffre J, Margetis D, Guidet B, Maury E, Offenstadt G. Mottling score predicts survival in septic shock. Intensive Care Med. 2011;37(5):801–7. doi:10.​1007/​s00134-011-2163-y.
5.
go back to reference Neviere R, Mathieu D, Chagnon JL, Lebleu N, Millien JP, Wattel F. Skeletal muscle microvascular blood flow and oxygen transport in patients with severe sepsis. Am J Respir Crit Care Med. 1996;153(1):191–5.CrossRefPubMed Neviere R, Mathieu D, Chagnon JL, Lebleu N, Millien JP, Wattel F. Skeletal muscle microvascular blood flow and oxygen transport in patients with severe sepsis. Am J Respir Crit Care Med. 1996;153(1):191–5.CrossRefPubMed
8.
go back to reference De Backer D, Creteur J. Regional hypoxia and partial pressure of carbon dioxide gradients: what is the link? Intensive Care Med. 2003;29(12):2116–8.CrossRefPubMed De Backer D, Creteur J. Regional hypoxia and partial pressure of carbon dioxide gradients: what is the link? Intensive Care Med. 2003;29(12):2116–8.CrossRefPubMed
9.
go back to reference Marik PE. Regional carbon dioxide monitoring to assess the adequacy of tissue perfusion. Curr Opin Crit Care. 2005;11(3):245–51.CrossRefPubMed Marik PE. Regional carbon dioxide monitoring to assess the adequacy of tissue perfusion. Curr Opin Crit Care. 2005;11(3):245–51.CrossRefPubMed
11.
go back to reference Viale JP, Annat G, Bertrand O, Delafosse B, Percival C, Bui-Xuan B, Motin J. Continuous measurement of gas exchange during artificial ventilation. Ann Fr Anesth Reanim. 1986;5(4):424–9.CrossRefPubMed Viale JP, Annat G, Bertrand O, Delafosse B, Percival C, Bui-Xuan B, Motin J. Continuous measurement of gas exchange during artificial ventilation. Ann Fr Anesth Reanim. 1986;5(4):424–9.CrossRefPubMed
14.
16.
go back to reference Almac E, Siegemund M, Demirci C, Ince C. Microcirculatory recruitment maneuvers correct tissue CO2 abnormalities in sepsis. Minerva Anestesiol. 2006;72(6):507–19.PubMed Almac E, Siegemund M, Demirci C, Ince C. Microcirculatory recruitment maneuvers correct tissue CO2 abnormalities in sepsis. Minerva Anestesiol. 2006;72(6):507–19.PubMed
17.
go back to reference Whipp BJ, Ward SA, Lamarra N, Davis JA, Wasserman K. Parameters of ventilatory and gas exchange dynamics during exercise. J Appl Physiol. 1982;52(6):1506–13.PubMed Whipp BJ, Ward SA, Lamarra N, Davis JA, Wasserman K. Parameters of ventilatory and gas exchange dynamics during exercise. J Appl Physiol. 1982;52(6):1506–13.PubMed
18.
go back to reference Silva JM Jr, Oliveira AM, Segura JL, Ribeiro MH, Sposito CN, Toledo DO, Rezende E, Malbouisson LM. A large venous-arterial PCO(2) is associated with poor outcomes in surgical patients. Anesthesiol Res Pract. 2011;2011:759792. doi:10.1155/2011/759792.PubMedCentralPubMed Silva JM Jr, Oliveira AM, Segura JL, Ribeiro MH, Sposito CN, Toledo DO, Rezende E, Malbouisson LM. A large venous-arterial PCO(2) is associated with poor outcomes in surgical patients. Anesthesiol Res Pract. 2011;2011:759792. doi:10.​1155/​2011/​759792.PubMedCentralPubMed
19.
go back to reference Schlichtig R, Bowles SA. Distinguishing between aerobic and anaerobic appearance of dissolved CO2 in intestine during low flow. J Appl Physiol. 1994;76(6):2443–51.PubMed Schlichtig R, Bowles SA. Distinguishing between aerobic and anaerobic appearance of dissolved CO2 in intestine during low flow. J Appl Physiol. 1994;76(6):2443–51.PubMed
20.
go back to reference Futier E, Robin E, Jabaudon M, Guerin R, Petit A, Bazin JE, Constantin JM, Vallet B. Central venous O(2) saturation and venous-to-arterial CO(2) difference as complementary tools for goal-directed therapy during high-risk surgery. Crit Care. 2010;14(5):R193. doi:10.1186/cc9310. Futier E, Robin E, Jabaudon M, Guerin R, Petit A, Bazin JE, Constantin JM, Vallet B. Central venous O(2) saturation and venous-to-arterial CO(2) difference as complementary tools for goal-directed therapy during high-risk surgery. Crit Care. 2010;14(5):R193. doi:10.​1186/​cc9310.
21.
go back to reference Randall HM Jr, Cohen JJ. Anaerobic CO2 production by dog kidney in vitro. Am J Physiol. 1966;211(2):493–505.PubMed Randall HM Jr, Cohen JJ. Anaerobic CO2 production by dog kidney in vitro. Am J Physiol. 1966;211(2):493–505.PubMed
22.
go back to reference Cohen IL, Sheikh FM, Perkins RJ, Feustel PJ, Foster ED. Effect of hemorrhagic shock and reperfusion on the respiratory quotient in swine. Crit Care Med. 1995;23(3):545–52.CrossRefPubMed Cohen IL, Sheikh FM, Perkins RJ, Feustel PJ, Foster ED. Effect of hemorrhagic shock and reperfusion on the respiratory quotient in swine. Crit Care Med. 1995;23(3):545–52.CrossRefPubMed
23.
go back to reference Dubin A, Murias G, Estenssoro E, Canales H, Badie J, Pozo M, Sottile JP, Baran M, Palizas F, Laporte M. Intramucosal-arterial PCO2 gap fails to reflect intestinal dysoxia in hypoxic hypoxia. Crit Care. 2002;6(6):514–20.CrossRefPubMedCentralPubMed Dubin A, Murias G, Estenssoro E, Canales H, Badie J, Pozo M, Sottile JP, Baran M, Palizas F, Laporte M. Intramucosal-arterial PCO2 gap fails to reflect intestinal dysoxia in hypoxic hypoxia. Crit Care. 2002;6(6):514–20.CrossRefPubMedCentralPubMed
24.
go back to reference Grum CM, Fiddian-Green RG, Pittenger GL, Grant BJ, Rothman ED, Dantzker DR. Adequacy of tissue oxygenation in intact dog intestine. J Appl Physiol. 1984;56(4):1065–9.PubMed Grum CM, Fiddian-Green RG, Pittenger GL, Grant BJ, Rothman ED, Dantzker DR. Adequacy of tissue oxygenation in intact dog intestine. J Appl Physiol. 1984;56(4):1065–9.PubMed
25.
go back to reference Guzman JA, Kruse JA. Development and validation of a technique for continuous monitoring of gastric intramucosal pH. Am J Respir Crit Care Med. 1996;153(2):694–700.CrossRefPubMed Guzman JA, Kruse JA. Development and validation of a technique for continuous monitoring of gastric intramucosal pH. Am J Respir Crit Care Med. 1996;153(2):694–700.CrossRefPubMed
28.
go back to reference Fink MP. Tissue capnometry as a monitoring strategy for critically ill patients: just about ready for prime time. Chest. 1998;114(3):667–70.CrossRefPubMed Fink MP. Tissue capnometry as a monitoring strategy for critically ill patients: just about ready for prime time. Chest. 1998;114(3):667–70.CrossRefPubMed
29.
31.
go back to reference Weil MH, Nakagawa Y, Tang W, Sato Y, Ercoli F, Finegan R, Grayman G, Bisera J. Sublingual capnometry: a new noninvasive measurement for diagnosis and quantitation of severity of circulatory shock. Crit Care Med. 1999;27(7):1225–9.CrossRefPubMed Weil MH, Nakagawa Y, Tang W, Sato Y, Ercoli F, Finegan R, Grayman G, Bisera J. Sublingual capnometry: a new noninvasive measurement for diagnosis and quantitation of severity of circulatory shock. Crit Care Med. 1999;27(7):1225–9.CrossRefPubMed
34.
go back to reference Groeneveld AB. Interpreting the venous-arterial PCO2 difference. Crit Care Med. 1998;26(6):979–80.CrossRefPubMed Groeneveld AB. Interpreting the venous-arterial PCO2 difference. Crit Care Med. 1998;26(6):979–80.CrossRefPubMed
36.
go back to reference Van der Linden P, Rausin I, Deltell A, Bekrar Y, Gilbart E, Bakker J, Vincent JL. Detection of tissue hypoxia by arteriovenous gradient for PCO2 and pH in anesthetized dogs during progressive hemorrhage. Anesth Analg. 1995;80(2):269–75.PubMed Van der Linden P, Rausin I, Deltell A, Bekrar Y, Gilbart E, Bakker J, Vincent JL. Detection of tissue hypoxia by arteriovenous gradient for PCO2 and pH in anesthetized dogs during progressive hemorrhage. Anesth Analg. 1995;80(2):269–75.PubMed
37.
go back to reference Zhang H, Vincent JL. Arteriovenous differences in PCO2 and pH are good indicators of critical hypoperfusion. Am Rev Respir Dis. 1993;148(4 Pt 1):867–71.CrossRefPubMed Zhang H, Vincent JL. Arteriovenous differences in PCO2 and pH are good indicators of critical hypoperfusion. Am Rev Respir Dis. 1993;148(4 Pt 1):867–71.CrossRefPubMed
38.
go back to reference Vallet B, Teboul JL, Cain S, Curtis S. Venoarterial CO(2) difference during regional ischemic or hypoxic hypoxia. J Appl Physiol. 2000;89(4):1317–21.PubMed Vallet B, Teboul JL, Cain S, Curtis S. Venoarterial CO(2) difference during regional ischemic or hypoxic hypoxia. J Appl Physiol. 2000;89(4):1317–21.PubMed
39.
go back to reference Durkin R, Gergits MA, Reed JF 3rd, Fitzgibbons J. The relationship between the arteriovenous carbon dioxide gradient and cardiac index. J Crit Care. 1993;8(4):217–21.CrossRefPubMed Durkin R, Gergits MA, Reed JF 3rd, Fitzgibbons J. The relationship between the arteriovenous carbon dioxide gradient and cardiac index. J Crit Care. 1993;8(4):217–21.CrossRefPubMed
40.
go back to reference Groeneveld AB, Vermeij CG, Thijs LG. Arterial and mixed venous blood acid-base balance during hypoperfusion with incremental positive end-expiratory pressure in the pig. Anesth Analg. 1991;73(5):576–82.PubMed Groeneveld AB, Vermeij CG, Thijs LG. Arterial and mixed venous blood acid-base balance during hypoperfusion with incremental positive end-expiratory pressure in the pig. Anesth Analg. 1991;73(5):576–82.PubMed
41.
go back to reference Mecher CE, Rackow EC, Astiz ME, Weil MH. Venous hypercarbia associated with severe sepsis and systemic hypoperfusion. Crit Care Med. 1990;18(6):585–9.CrossRefPubMed Mecher CE, Rackow EC, Astiz ME, Weil MH. Venous hypercarbia associated with severe sepsis and systemic hypoperfusion. Crit Care Med. 1990;18(6):585–9.CrossRefPubMed
42.
go back to reference Rackow EC, Astiz ME, Mecher CE, Weil MH. Increased venous-arterial carbon dioxide tension difference during severe sepsis in rats. Crit Care Med. 1994;22(1):121–5.PubMed Rackow EC, Astiz ME, Mecher CE, Weil MH. Increased venous-arterial carbon dioxide tension difference during severe sepsis in rats. Crit Care Med. 1994;22(1):121–5.PubMed
43.
go back to reference Bakker J, Vincent JL, Gris P, Leon M, Coffernils M, Kahn RJ. Veno-arterial carbon dioxide gradient in human septic shock. Chest. 1992;101(2):509–15.CrossRefPubMed Bakker J, Vincent JL, Gris P, Leon M, Coffernils M, Kahn RJ. Veno-arterial carbon dioxide gradient in human septic shock. Chest. 1992;101(2):509–15.CrossRefPubMed
44.
go back to reference Lamia B, Monnet X, Teboul JL. Meaning of arterio-venous PCO2 difference in circulatory shock. Minerva Anestesiol. 2006;72(6):597–604.PubMed Lamia B, Monnet X, Teboul JL. Meaning of arterio-venous PCO2 difference in circulatory shock. Minerva Anestesiol. 2006;72(6):597–604.PubMed
45.
go back to reference Cuschieri J, Rivers EP, Donnino MW, Katilius M, Jacobsen G, Nguyen HB, Pamukov N, Horst HM. Central venous-arterial carbon dioxide difference as an indicator of cardiac index. Intensive Care Med. 2005;31(6):818–22. doi:10.1007/s00134-005-2602-8.CrossRefPubMed Cuschieri J, Rivers EP, Donnino MW, Katilius M, Jacobsen G, Nguyen HB, Pamukov N, Horst HM. Central venous-arterial carbon dioxide difference as an indicator of cardiac index. Intensive Care Med. 2005;31(6):818–22. doi:10.​1007/​s00134-005-2602-8.CrossRefPubMed
46.
go back to reference Vallee F, Vallet B, Mathe O, Parraguette J, Mari A, Silva S, Samii K, Fourcade O, Genestal M. Central venous-to-arterial carbon dioxide difference: an additional target for goal-directed therapy in septic shock? Intensive Care Med. 2008;34(12):2218–25. doi:10.1007/s00134-008-1199-0.CrossRefPubMed Vallee F, Vallet B, Mathe O, Parraguette J, Mari A, Silva S, Samii K, Fourcade O, Genestal M. Central venous-to-arterial carbon dioxide difference: an additional target for goal-directed therapy in septic shock? Intensive Care Med. 2008;34(12):2218–25. doi:10.​1007/​s00134-008-1199-0.CrossRefPubMed
47.
go back to reference Teboul JL, Mercat A, Lenique F, Berton C, Richard C. Value of the venous-arterial PCO2 gradient to reflect the oxygen supply to demand in humans: effects of dobutamine. Crit Care Med. 1998;26(6):1007–10.CrossRefPubMed Teboul JL, Mercat A, Lenique F, Berton C, Richard C. Value of the venous-arterial PCO2 gradient to reflect the oxygen supply to demand in humans: effects of dobutamine. Crit Care Med. 1998;26(6):1007–10.CrossRefPubMed
48.
go back to reference Levraut J, Ciebiera JP, Chave S, Rabary O, Jambou P, Carles M, Grimaud D. Mild hyperlactatemia in stable septic patients is due to impaired lactate clearance rather than overproduction. Am J Respir Crit Care Med. 1998;157(4 Pt 1):1021–6.CrossRefPubMed Levraut J, Ciebiera JP, Chave S, Rabary O, Jambou P, Carles M, Grimaud D. Mild hyperlactatemia in stable septic patients is due to impaired lactate clearance rather than overproduction. Am J Respir Crit Care Med. 1998;157(4 Pt 1):1021–6.CrossRefPubMed
49.
go back to reference Mekontso-Dessap A, Castelain V, Anguel N, Bahloul M, Schauvliege F, Richard C, Teboul JL. Combination of venoarterial PCO2 difference with arteriovenous O2 content difference to detect anaerobic metabolism in patients. Intensive Care Med. 2002;28(3):272–7. doi:10.1007/s00134-002-1215-8.CrossRefPubMed Mekontso-Dessap A, Castelain V, Anguel N, Bahloul M, Schauvliege F, Richard C, Teboul JL. Combination of venoarterial PCO2 difference with arteriovenous O2 content difference to detect anaerobic metabolism in patients. Intensive Care Med. 2002;28(3):272–7. doi:10.​1007/​s00134-002-1215-8.CrossRefPubMed
50.
go back to reference Monnet X, Julien F, Ait-Hamou N, Lequoy M, Gosset C, Jozwiak M, Persichini R, Anguel N, Richard C, Teboul JL. Lactate and venoarterial carbon dioxide difference/arterial-venous oxygen difference ratio, but not central venous oxygen saturation, predict increase in oxygen consumption in fluid responders. Crit Care Med. 2013;41(6):1412–20. doi:10.1097/CCM.0b013e318275cece.CrossRefPubMed Monnet X, Julien F, Ait-Hamou N, Lequoy M, Gosset C, Jozwiak M, Persichini R, Anguel N, Richard C, Teboul JL. Lactate and venoarterial carbon dioxide difference/arterial-venous oxygen difference ratio, but not central venous oxygen saturation, predict increase in oxygen consumption in fluid responders. Crit Care Med. 2013;41(6):1412–20. doi:10.​1097/​CCM.​0b013e318275cece​.CrossRefPubMed
51.
go back to reference Chapman MV, Mythen MG, Webb AR, Vincent JL. Report from the meeting: gastrointestinal tonometry: state of the art. 22nd–23rd May 1998, London, UK. Intensive Care Med. 2000;26(5):613–22. Chapman MV, Mythen MG, Webb AR, Vincent JL. Report from the meeting: gastrointestinal tonometry: state of the art. 22nd–23rd May 1998, London, UK. Intensive Care Med. 2000;26(5):613–22.
52.
go back to reference Friedman G, Berlot G, Kahn RJ, Vincent JL. Combined measurements of blood lactate concentrations and gastric intramucosal pH in patients with severe sepsis. Crit Care Med. 1995;23(7):1184–93.CrossRefPubMed Friedman G, Berlot G, Kahn RJ, Vincent JL. Combined measurements of blood lactate concentrations and gastric intramucosal pH in patients with severe sepsis. Crit Care Med. 1995;23(7):1184–93.CrossRefPubMed
53.
go back to reference Oud L, Haupt MT. Persistent gastric intramucosal ischemia in patients with sepsis following resuscitation from shock. Chest. 1999;115(5):1390–6.CrossRefPubMed Oud L, Haupt MT. Persistent gastric intramucosal ischemia in patients with sepsis following resuscitation from shock. Chest. 1999;115(5):1390–6.CrossRefPubMed
54.
go back to reference Schlichtig R, Mehta N, Gayowski TJ. Tissue-arterial PCO2 difference is a better marker of ischemia than intramural pH (pHi) or arterial pH–pHi difference. J Crit Care. 1996;11(2):51–6.CrossRefPubMed Schlichtig R, Mehta N, Gayowski TJ. Tissue-arterial PCO2 difference is a better marker of ischemia than intramural pH (pHi) or arterial pH–pHi difference. J Crit Care. 1996;11(2):51–6.CrossRefPubMed
56.
go back to reference Russell C. Comment on Vieillard-Baron et al.: “Bedside echocardiographic evaluation of hemodynamics in sepsis: is qualitative evaluation sufficient?”. Intensive Care Med. 2007; 33(6):1106; author reply 1107. doi:10.1007/s00134-007-0611-5. Russell C. Comment on Vieillard-Baron et al.: “Bedside echocardiographic evaluation of hemodynamics in sepsis: is qualitative evaluation sufficient?”. Intensive Care Med. 2007; 33(6):1106; author reply 1107. doi:10.​1007/​s00134-007-0611-5.
57.
go back to reference Sato Y, Weil MH, Tang W, Sun S, Xie J, Bisera J, Hosaka H. Esophageal PCO2 as a monitor of perfusion failure during hemorrhagic shock. J Appl Physiol. 1997;82(2):558–62.PubMed Sato Y, Weil MH, Tang W, Sun S, Xie J, Bisera J, Hosaka H. Esophageal PCO2 as a monitor of perfusion failure during hemorrhagic shock. J Appl Physiol. 1997;82(2):558–62.PubMed
58.
go back to reference Totapally BR, Fakioglu H, Torbati D, Wolfsdorf J. Esophageal capnometry during hemorrhagic shock and after resuscitation in rats. Crit Care. 2003;7(1):79–84.CrossRefPubMedCentralPubMed Totapally BR, Fakioglu H, Torbati D, Wolfsdorf J. Esophageal capnometry during hemorrhagic shock and after resuscitation in rats. Crit Care. 2003;7(1):79–84.CrossRefPubMedCentralPubMed
59.
go back to reference Walley KR, Friesen BP, Humer MF, Phang PT. Small bowel tonometry is more accurate than gastric tonometry in detecting gut ischemia. J Appl Physiol. 1998;85(5):1770–7.PubMed Walley KR, Friesen BP, Humer MF, Phang PT. Small bowel tonometry is more accurate than gastric tonometry in detecting gut ischemia. J Appl Physiol. 1998;85(5):1770–7.PubMed
60.
go back to reference Jin X, Weil MH, Sun S, Tang W, Bisera J, Mason EJ. Decreases in organ blood flows associated with increases in sublingual PCO2 during hemorrhagic shock. J Appl Physiol. 1998;85(6):2360–4.PubMed Jin X, Weil MH, Sun S, Tang W, Bisera J, Mason EJ. Decreases in organ blood flows associated with increases in sublingual PCO2 during hemorrhagic shock. J Appl Physiol. 1998;85(6):2360–4.PubMed
61.
go back to reference Nakagawa Y, Weil MH, Tang W, Sun S, Yamaguchi H, Jin X, Bisera J. Sublingual capnometry for diagnosis and quantitation of circulatory shock. Am J Respir Crit Care Med. 1998;157(6 Pt 1):1838–43.CrossRefPubMed Nakagawa Y, Weil MH, Tang W, Sun S, Yamaguchi H, Jin X, Bisera J. Sublingual capnometry for diagnosis and quantitation of circulatory shock. Am J Respir Crit Care Med. 1998;157(6 Pt 1):1838–43.CrossRefPubMed
62.
go back to reference Severinghaus J. Carbon dioxide tension and perfusion in the tissue. Anaesthesist. 1960;9:50–5.PubMed Severinghaus J. Carbon dioxide tension and perfusion in the tissue. Anaesthesist. 1960;9:50–5.PubMed
64.
go back to reference Severinghaus JW, Bradley AF. Electrodes for blood pO2 and pCO2 determination. J Appl Physiol. 1958;13(3):515–20.PubMed Severinghaus JW, Bradley AF. Electrodes for blood pO2 and pCO2 determination. J Appl Physiol. 1958;13(3):515–20.PubMed
65.
go back to reference Bendjelid K, Schutz N, Stotz M, Gerard I, Suter PM, Romand JA. Transcutaneous PCO2 monitoring in critically ill adults: clinical evaluation of a new sensor. Crit Care Med. 2005;33(10):2203–6.CrossRefPubMed Bendjelid K, Schutz N, Stotz M, Gerard I, Suter PM, Romand JA. Transcutaneous PCO2 monitoring in critically ill adults: clinical evaluation of a new sensor. Crit Care Med. 2005;33(10):2203–6.CrossRefPubMed
67.
go back to reference Vallee F, Mateo J, Dubreuil G, Poussant T, Tachon G, Ouanounou I, Payen D. Cutaneous ear lobe Pco(2) at 37 degrees C to evaluate microperfusion in patients with septic shock. Chest. 2010;138(5):1062–1070. doi:10.1378/chest.09-2690. Vallee F, Mateo J, Dubreuil G, Poussant T, Tachon G, Ouanounou I, Payen D. Cutaneous ear lobe Pco(2) at 37 degrees C to evaluate microperfusion in patients with septic shock. Chest. 2010;138(5):1062–1070. doi:10.​1378/​chest.​09-2690.
71.
go back to reference West JB. Respiratory physiology: the essentials. 4th ed. Baltimore: Williams & Wilkins; 1990. West JB. Respiratory physiology: the essentials. 4th ed. Baltimore: Williams & Wilkins; 1990.
72.
go back to reference Nunn JF, Hill DW. Respiratory dead space and arterial to end-tidal carbon dioxide tension difference in anesthetized man. J Appl Physiol. 1960;15:383–9.PubMed Nunn JF, Hill DW. Respiratory dead space and arterial to end-tidal carbon dioxide tension difference in anesthetized man. J Appl Physiol. 1960;15:383–9.PubMed
73.
go back to reference Dubin A, Murias G, Estenssoro E, Canales H, Sottile P, Badie J, Baran M, Rossi S, Laporte M, Palizas F, Giampieri J, Mediavilla D, Vacca E, Botta D. End-tidal CO2 pressure determinants during hemorrhagic shock. Intensive Care Med. 2000;26(11):1619–23.CrossRefPubMed Dubin A, Murias G, Estenssoro E, Canales H, Sottile P, Badie J, Baran M, Rossi S, Laporte M, Palizas F, Giampieri J, Mediavilla D, Vacca E, Botta D. End-tidal CO2 pressure determinants during hemorrhagic shock. Intensive Care Med. 2000;26(11):1619–23.CrossRefPubMed
74.
go back to reference Ornato JP, Garnett AR, Glauser FL. Relationship between cardiac output and the end-tidal carbon dioxide tension. Ann Emerg Med. 1990;19(10):1104–6.CrossRefPubMed Ornato JP, Garnett AR, Glauser FL. Relationship between cardiac output and the end-tidal carbon dioxide tension. Ann Emerg Med. 1990;19(10):1104–6.CrossRefPubMed
75.
go back to reference Jin X, Weil MH, Tang W, Povoas H, Pernat A, Xie J, Bisera J. End-tidal carbon dioxide as a noninvasive indicator of cardiac index during circulatory shock. Crit Care Med. 2000;28(7):2415–9.CrossRefPubMed Jin X, Weil MH, Tang W, Povoas H, Pernat A, Xie J, Bisera J. End-tidal carbon dioxide as a noninvasive indicator of cardiac index during circulatory shock. Crit Care Med. 2000;28(7):2415–9.CrossRefPubMed
76.
go back to reference Adrogue HJ, Rashad MN, Gorin AB, Yacoub J, Madias NE. Arteriovenous acid-base disparity in circulatory failure: studies on mechanism. Am J Physiol. 1989;257(6 Pt 2):F1087–93.PubMed Adrogue HJ, Rashad MN, Gorin AB, Yacoub J, Madias NE. Arteriovenous acid-base disparity in circulatory failure: studies on mechanism. Am J Physiol. 1989;257(6 Pt 2):F1087–93.PubMed
77.
go back to reference Monge Garcia MI, Gil Cano A, Gracia Romero M, Monterroso Pintado R, Perez Madueno V, Diaz Monrove JC. Non-invasive assessment of fluid responsiveness by changes in partial end-tidal CO2 pressure during a passive leg-raising maneuver. Ann Intensive Care. 2012;2:9. doi:10.1186/2110-5820-2-9. Monge Garcia MI, Gil Cano A, Gracia Romero M, Monterroso Pintado R, Perez Madueno V, Diaz Monrove JC. Non-invasive assessment of fluid responsiveness by changes in partial end-tidal CO2 pressure during a passive leg-raising maneuver. Ann Intensive Care. 2012;2:9. doi:10.​1186/​2110-5820-2-9.
78.
go back to reference Monnet X, Bataille A, Magalhaes E, Barrois J, Le Corre M, Gosset C, Guerin L, Richard C, Teboul JL. End-tidal carbon dioxide is better than arterial pressure for predicting volume responsiveness by the passive leg raising test. Intensive Care Med. 2013;. doi:10.1007/s00134-012-2693-y. Monnet X, Bataille A, Magalhaes E, Barrois J, Le Corre M, Gosset C, Guerin L, Richard C, Teboul JL. End-tidal carbon dioxide is better than arterial pressure for predicting volume responsiveness by the passive leg raising test. Intensive Care Med. 2013;. doi:10.​1007/​s00134-012-2693-y.
79.
go back to reference Levine RL. End-tidal CO2: physiology in pursuit of clinical applications. Intensive Care Med. 2000;26(11):1595–7.CrossRefPubMed Levine RL. End-tidal CO2: physiology in pursuit of clinical applications. Intensive Care Med. 2000;26(11):1595–7.CrossRefPubMed
80.
go back to reference Miwa K, Mitsuoka M, Takamori S, Hayashi A, Shirouzu K. Continuous monitoring of oxygen consumption in patients undergoing weaning from mechanical ventilation. Respiration. 2003;70(6):623–30.CrossRefPubMed Miwa K, Mitsuoka M, Takamori S, Hayashi A, Shirouzu K. Continuous monitoring of oxygen consumption in patients undergoing weaning from mechanical ventilation. Respiration. 2003;70(6):623–30.CrossRefPubMed
81.
go back to reference McDonald NJ, Lavelle P, Gallacher WN, Harpin RP. Use of the oxygen cost of breathing as an index of weaning ability from mechanical ventilation. Intensive Care Med. 1988;14(1):50–4.CrossRefPubMed McDonald NJ, Lavelle P, Gallacher WN, Harpin RP. Use of the oxygen cost of breathing as an index of weaning ability from mechanical ventilation. Intensive Care Med. 1988;14(1):50–4.CrossRefPubMed
82.
go back to reference Shikora SA, Bistrian BR, Borlase BC, Blackburn GL, Stone MD, Benotti PN. Work of breathing: reliable predictor of weaning and extubation. Crit Care Med. 1990;18(2):157–62.CrossRefPubMed Shikora SA, Bistrian BR, Borlase BC, Blackburn GL, Stone MD, Benotti PN. Work of breathing: reliable predictor of weaning and extubation. Crit Care Med. 1990;18(2):157–62.CrossRefPubMed
83.
go back to reference Danek SJ, Lynch JP, Weg JG, Dantzker DR. The dependence of oxygen uptake on oxygen delivery in the adult respiratory distress syndrome. Am Rev Respir Dis. 1980;122(3):387–95.PubMed Danek SJ, Lynch JP, Weg JG, Dantzker DR. The dependence of oxygen uptake on oxygen delivery in the adult respiratory distress syndrome. Am Rev Respir Dis. 1980;122(3):387–95.PubMed
84.
go back to reference Kaufman BS, Rackow EC, Falk JL. The relationship between oxygen delivery and consumption during fluid resuscitation of hypovolemic and septic shock. Chest. 1984;85(3):336–40.CrossRefPubMed Kaufman BS, Rackow EC, Falk JL. The relationship between oxygen delivery and consumption during fluid resuscitation of hypovolemic and septic shock. Chest. 1984;85(3):336–40.CrossRefPubMed
85.
87.
go back to reference Davis JA, Whipp BJ, Lamarra N, Huntsman DJ, Frank MH, Wasserman K. Effect of ramp slope on determination of aerobic parameters from the ramp exercise test. Med Sci Sports Exerc. 1982;14(5):339–43.CrossRefPubMed Davis JA, Whipp BJ, Lamarra N, Huntsman DJ, Frank MH, Wasserman K. Effect of ramp slope on determination of aerobic parameters from the ramp exercise test. Med Sci Sports Exerc. 1982;14(5):339–43.CrossRefPubMed
Metadata
Title
Monitoring CO2 in shock states
Authors
Pierre-Eric Danin
Nils Siegenthaler
Jacques Levraut
Gilles Bernardin
Jean Dellamonica
Karim Bendjelid
Publication date
01-10-2015
Publisher
Springer Netherlands
Published in
Journal of Clinical Monitoring and Computing / Issue 5/2015
Print ISSN: 1387-1307
Electronic ISSN: 1573-2614
DOI
https://doi.org/10.1007/s10877-014-9638-7

Other articles of this Issue 5/2015

Journal of Clinical Monitoring and Computing 5/2015 Go to the issue