Skip to main content
Top
Published in: Journal of Clinical Monitoring and Computing 5/2012

01-10-2012 | INVITED REVIEW

Hemodynamic management of cardiovascular failure by using PCO2 venous-arterial difference

Authors: Martin Dres, Xavier Monnet, Jean-Louis Teboul

Published in: Journal of Clinical Monitoring and Computing | Issue 5/2012

Login to get access

Abstract

The difference between mixed venous blood carbon dioxide tension (PvCO2) and arterial carbon dioxide tension (PaCO2), called ∆PCO2 has been proposed to better characterize the hemodynamic status. It depends on the global carbon dioxide (CO2) production, on cardiac output and on the complex relation between CO2 tension and CO2 content. The aim of this review is to detail the physiological background allowing adequate interpretation of ∆PCO2 at the bedside. Clinical and experimental data support the use of ∆PCO2 as a valuable help in the decision-making process in patients with hemodynamic instability. The difference between central venous CO2 tension and arterial CO2 tension, which is easy to obtain can substitute for ∆PCO2 to assess the adequacy of cardiac output. Differences between local tissue CO2 tension and arterial CO2 tension can also be obtained and provide data on the adequacy of local blood flow to the local metabolic conditions.
Literature
1.
go back to reference Vincent JL, Rhodes A, Perel A, Martin GS, Della Rocca G, Vallet B, et al. Clinical review: update on hemodynamic monitoring-a consensus of 16. Crit Care. 2011;15:229.PubMedCrossRef Vincent JL, Rhodes A, Perel A, Martin GS, Della Rocca G, Vallet B, et al. Clinical review: update on hemodynamic monitoring-a consensus of 16. Crit Care. 2011;15:229.PubMedCrossRef
2.
go back to reference Mecher CE, Rackow EC, Astiz ME, Weil MH. Venous hypercarbia associated with severe sepsis and systemic hypoperfusion. Crit Care Med. 1990;18:585–9.PubMedCrossRef Mecher CE, Rackow EC, Astiz ME, Weil MH. Venous hypercarbia associated with severe sepsis and systemic hypoperfusion. Crit Care Med. 1990;18:585–9.PubMedCrossRef
3.
go back to reference Bakker J, Vincent JL, Gris P, Leon M, Coffernils M, Kahn RJ. Veno-arterial carbon dioxide gradient in human septic shock. Chest. 1992;101:509–15.PubMedCrossRef Bakker J, Vincent JL, Gris P, Leon M, Coffernils M, Kahn RJ. Veno-arterial carbon dioxide gradient in human septic shock. Chest. 1992;101:509–15.PubMedCrossRef
4.
go back to reference Teboul JL, Mercat A, Lenique F, Berton C, Richard C. Value of the venous-arterial PCO2 gradient to reflect the oxygen supply to demand in humans: effects of dobutamine. Crit Care Med. 1998;26:1007–10.PubMedCrossRef Teboul JL, Mercat A, Lenique F, Berton C, Richard C. Value of the venous-arterial PCO2 gradient to reflect the oxygen supply to demand in humans: effects of dobutamine. Crit Care Med. 1998;26:1007–10.PubMedCrossRef
5.
go back to reference Lamia B, Monnet X, Teboul JL. Meaning of arterio-venous PCO2 difference in circulatory shock. Minerva Anestesiol. 2006;72:597–604.PubMed Lamia B, Monnet X, Teboul JL. Meaning of arterio-venous PCO2 difference in circulatory shock. Minerva Anestesiol. 2006;72:597–604.PubMed
6.
go back to reference Herve P, Simonneau G, Girard P, Cerrina J, Mathieu M, Duroux P. Hypercapnic acidosis induced by nutrition in mechanically ventilated patients: glucose versus fat. Crit Care Med. 1985;13:537–40.PubMedCrossRef Herve P, Simonneau G, Girard P, Cerrina J, Mathieu M, Duroux P. Hypercapnic acidosis induced by nutrition in mechanically ventilated patients: glucose versus fat. Crit Care Med. 1985;13:537–40.PubMedCrossRef
7.
go back to reference Randall HM Jr, Cohen JJ. Anaerobic CO2 production by dog kidney in vitro. Am J Physiol. 1966;211:493–505.PubMed Randall HM Jr, Cohen JJ. Anaerobic CO2 production by dog kidney in vitro. Am J Physiol. 1966;211:493–505.PubMed
8.
go back to reference Jensen FB. Red blood cell ph, the Bohr effect, and other oxygenation-linked phenomena in blood o2 and co2 transport. Acta Physiol Scand. 2004;182:215–27.PubMedCrossRef Jensen FB. Red blood cell ph, the Bohr effect, and other oxygenation-linked phenomena in blood o2 and co2 transport. Acta Physiol Scand. 2004;182:215–27.PubMedCrossRef
9.
go back to reference West J. Gas transport to the periphery: how gases are moved to the peripheral tissues? In: West JB, editor. Respiratory physiology. The essentials. 4th ed. Baltimore: Williams & Wilkins; 1990. p. 69–85. West J. Gas transport to the periphery: how gases are moved to the peripheral tissues? In: West JB, editor. Respiratory physiology. The essentials. 4th ed. Baltimore: Williams & Wilkins; 1990. p. 69–85.
10.
go back to reference Cavaliere F, Giovannini I, Chiarla C, Conti G, Pennisi MA, Montini L, et al. Comparison of two methods to assess blood CO2 equilibration curve in mechanically ventilated patients. Respir Physiol Neurobiol. 2005;146:77–83.PubMedCrossRef Cavaliere F, Giovannini I, Chiarla C, Conti G, Pennisi MA, Montini L, et al. Comparison of two methods to assess blood CO2 equilibration curve in mechanically ventilated patients. Respir Physiol Neurobiol. 2005;146:77–83.PubMedCrossRef
11.
go back to reference Jensen FB. Comparative analysis of autoxidation of haemoglobin. J Exp Biol. 2001;204:2029–33.PubMed Jensen FB. Comparative analysis of autoxidation of haemoglobin. J Exp Biol. 2001;204:2029–33.PubMed
12.
go back to reference Mchardy GJ. The relationship between the differences in pressure and content of carbon dioxide in arterial and venous blood. Clin Sci. 1967;32:299–309.PubMed Mchardy GJ. The relationship between the differences in pressure and content of carbon dioxide in arterial and venous blood. Clin Sci. 1967;32:299–309.PubMed
13.
go back to reference Zhang H, Vincent JL. Arteriovenous differences in PCO2 and pH are good indicators of critical hypoperfusion. Am Rev Respir Dis. 1993;148:867–71.PubMedCrossRef Zhang H, Vincent JL. Arteriovenous differences in PCO2 and pH are good indicators of critical hypoperfusion. Am Rev Respir Dis. 1993;148:867–71.PubMedCrossRef
14.
go back to reference Groeneveld AB, Vermeij CG, Thijs LG. Arterial and mixed venous blood acid-base balance during hypoperfusion with incremental positive end-expiratory pressure in the pig. Anesth Analg. 1991;73:576–82.PubMed Groeneveld AB, Vermeij CG, Thijs LG. Arterial and mixed venous blood acid-base balance during hypoperfusion with incremental positive end-expiratory pressure in the pig. Anesth Analg. 1991;73:576–82.PubMed
15.
16.
go back to reference Weil MH, Rackow EC, Trevino R, Grundler W, Falk JL, Griffel MI. Difference in acid-base state between venous and arterial blood during cardiopulmonary resuscitation. N Engl J Med. 1986;315:153–6.PubMedCrossRef Weil MH, Rackow EC, Trevino R, Grundler W, Falk JL, Griffel MI. Difference in acid-base state between venous and arterial blood during cardiopulmonary resuscitation. N Engl J Med. 1986;315:153–6.PubMedCrossRef
17.
go back to reference Grundler W, Weil MH, Rackow EC. Arterio-venous carbon dioxide and pH gradients during cardiac arrest. Circulation. 1986;74:1071–4.PubMedCrossRef Grundler W, Weil MH, Rackow EC. Arterio-venous carbon dioxide and pH gradients during cardiac arrest. Circulation. 1986;74:1071–4.PubMedCrossRef
18.
go back to reference Adrogué HJ, Rashad MN, Gorin AB, Yacoub J, Madias NE. Assessing acid-base status in circulatory failure. Differences between arterial and central venous blood. N Engl J Med. 1989;320:1312–6.PubMedCrossRef Adrogué HJ, Rashad MN, Gorin AB, Yacoub J, Madias NE. Assessing acid-base status in circulatory failure. Differences between arterial and central venous blood. N Engl J Med. 1989;320:1312–6.PubMedCrossRef
19.
go back to reference Van der Linden P, Rausin I, Deltell A, Bekrar Y, Gilbart E, Bakker J, et al. Detection of tissue hypoxia by arteriovenous gradient for PCO2 and pH in anesthetized dogs during progressive hemorrhage. Anesth Analg. 1995;80:269–75.PubMed Van der Linden P, Rausin I, Deltell A, Bekrar Y, Gilbart E, Bakker J, et al. Detection of tissue hypoxia by arteriovenous gradient for PCO2 and pH in anesthetized dogs during progressive hemorrhage. Anesth Analg. 1995;80:269–75.PubMed
20.
go back to reference De Backer D, Creteur J, Preiser JC, Dubois MJ, Vincent JL. Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med. 2002;166:98–104.PubMedCrossRef De Backer D, Creteur J, Preiser JC, Dubois MJ, Vincent JL. Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med. 2002;166:98–104.PubMedCrossRef
21.
go back to reference Fink MP. Cytopathic hypoxia. Mitochondrial dysfunction as mechanism contributing to organ dysfunction in sepsis. Crit Care Clin. 2001;17:219–37.PubMedCrossRef Fink MP. Cytopathic hypoxia. Mitochondrial dysfunction as mechanism contributing to organ dysfunction in sepsis. Crit Care Clin. 2001;17:219–37.PubMedCrossRef
22.
go back to reference Wendon JA, Harrison PM, Keays R, Gimson AE, Alexander G, Williams R. Arterial-venous pH differences and tissue hypoxia in patients with fulminant hepatic failure. Crit Care Med. 1991;19:1362–4.PubMedCrossRef Wendon JA, Harrison PM, Keays R, Gimson AE, Alexander G, Williams R. Arterial-venous pH differences and tissue hypoxia in patients with fulminant hepatic failure. Crit Care Med. 1991;19:1362–4.PubMedCrossRef
23.
go back to reference Neviere R, Chagnon JL, Teboul JL, Vallet B, Wattel F. Small intestine intramucosal PCO2 and microvascular blood flow during hypoxic and ischemic hypoxia. Crit Care Med. 2002;30:379–84.PubMedCrossRef Neviere R, Chagnon JL, Teboul JL, Vallet B, Wattel F. Small intestine intramucosal PCO2 and microvascular blood flow during hypoxic and ischemic hypoxia. Crit Care Med. 2002;30:379–84.PubMedCrossRef
24.
go back to reference Dubin A, Murias G, Estenssoro E, Canales H, Badie J, Pozo M, et al. Intramucosal-arterial PCO2 gap fails to reflect intestinal dysoxia in hypoxic hypoxia. Crit Care. 2002;6:514–20.PubMedCrossRef Dubin A, Murias G, Estenssoro E, Canales H, Badie J, Pozo M, et al. Intramucosal-arterial PCO2 gap fails to reflect intestinal dysoxia in hypoxic hypoxia. Crit Care. 2002;6:514–20.PubMedCrossRef
25.
go back to reference Vallet B, Teboul JL, Cain S, Curtis S. Venoarterial CO2 difference during regional ischemic or hypoxic hypoxia. J Appl Physiol. 2000;89:1317–21.PubMed Vallet B, Teboul JL, Cain S, Curtis S. Venoarterial CO2 difference during regional ischemic or hypoxic hypoxia. J Appl Physiol. 2000;89:1317–21.PubMed
26.
go back to reference Gutierrez G. A mathematical model of tissue-blood carbon dioxide exchange during hypoxia. Am J Respir Crit Care Med. 2004;169:525–33.PubMedCrossRef Gutierrez G. A mathematical model of tissue-blood carbon dioxide exchange during hypoxia. Am J Respir Crit Care Med. 2004;169:525–33.PubMedCrossRef
27.
go back to reference Teboul JL, Graini L, Boujdaria R, Berton C, Richard C. Cardiac index vs oxygen-derived parameters for rational use of dobutamine in patients with congestive heart failure. Chest. 1993;103:81–5.PubMedCrossRef Teboul JL, Graini L, Boujdaria R, Berton C, Richard C. Cardiac index vs oxygen-derived parameters for rational use of dobutamine in patients with congestive heart failure. Chest. 1993;103:81–5.PubMedCrossRef
28.
go back to reference Hayes MA, Timmins AC, Yau EH, Palazzo M, Hinds CJ, Watson D. Elevation of systemic oxygen delivery in the treatment of critically ill patients. N Engl J Med. 1994;330:1717–22.PubMedCrossRef Hayes MA, Timmins AC, Yau EH, Palazzo M, Hinds CJ, Watson D. Elevation of systemic oxygen delivery in the treatment of critically ill patients. N Engl J Med. 1994;330:1717–22.PubMedCrossRef
29.
go back to reference Gattinoni L, Brazzi L, Pelosi P, Latini R, Tognoni G, Pesenti A, et al. A trial of goal-oriented hemodynamic therapy in critically ill patients. Svo2 collaborative group. N Engl J Med. 1995;333:1025–32.PubMedCrossRef Gattinoni L, Brazzi L, Pelosi P, Latini R, Tognoni G, Pesenti A, et al. A trial of goal-oriented hemodynamic therapy in critically ill patients. Svo2 collaborative group. N Engl J Med. 1995;333:1025–32.PubMedCrossRef
30.
go back to reference Cohen IL, Sheikh FM, Perkins RJ, Feustel PJ, Foster ED. Effect of hemorrhagic shock and reperfusion on the respiratory quotient in swine. Crit Care Med. 1995;23:545–52.PubMedCrossRef Cohen IL, Sheikh FM, Perkins RJ, Feustel PJ, Foster ED. Effect of hemorrhagic shock and reperfusion on the respiratory quotient in swine. Crit Care Med. 1995;23:545–52.PubMedCrossRef
31.
go back to reference Mekontso-Dessap A, Castelain V, Anguel N, Bahloul M, Schauvliege F, Richard C, et al. Combination of venoarterial PCO2 difference with arteriovenous O2 content difference to detect anaerobic metabolism in patients. Intensive Care Med. 2002;28:272–7.PubMedCrossRef Mekontso-Dessap A, Castelain V, Anguel N, Bahloul M, Schauvliege F, Richard C, et al. Combination of venoarterial PCO2 difference with arteriovenous O2 content difference to detect anaerobic metabolism in patients. Intensive Care Med. 2002;28:272–7.PubMedCrossRef
32.
go back to reference Crapo RO. Arterial blood gases: quality assessment. In: Tobin MJ, editor. Principle and practice of intensive care monitoring. New York: Mc Graw-Hill; 1998. p. 107–22. Crapo RO. Arterial blood gases: quality assessment. In: Tobin MJ, editor. Principle and practice of intensive care monitoring. New York: Mc Graw-Hill; 1998. p. 107–22.
33.
go back to reference d’Ortho MP, Delclaux C, Zerah F, Herigault R, Adnot S, Harf A. Use of glass capillaries avoids the time changes in high blood PCO2 observed with plastic syringes. Chest. 2001;120:1651–4.PubMedCrossRef d’Ortho MP, Delclaux C, Zerah F, Herigault R, Adnot S, Harf A. Use of glass capillaries avoids the time changes in high blood PCO2 observed with plastic syringes. Chest. 2001;120:1651–4.PubMedCrossRef
34.
go back to reference Richard C, Monnet X, Teboul JL. Pulmonary artery catheter monitoring in 2011. Curr Opin Crit Care. 2011;17:296–302.PubMedCrossRef Richard C, Monnet X, Teboul JL. Pulmonary artery catheter monitoring in 2011. Curr Opin Crit Care. 2011;17:296–302.PubMedCrossRef
35.
go back to reference Dellinger RP, Levy MM, Carlet JM, Bion J, Parker MM, Jaeschke R, et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2008. Crit Care Med. 2008;36:296–327.PubMedCrossRef Dellinger RP, Levy MM, Carlet JM, Bion J, Parker MM, Jaeschke R, et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2008. Crit Care Med. 2008;36:296–327.PubMedCrossRef
36.
go back to reference Cuschieri J, Rivers EP, Donnino MW, Katilius M, Jacobsen G, Nguyen HB, et al. Central venous-arterial carbon dioxide difference as an indicator of cardiac index. Intensive Care Med. 2005;31:818–22.PubMedCrossRef Cuschieri J, Rivers EP, Donnino MW, Katilius M, Jacobsen G, Nguyen HB, et al. Central venous-arterial carbon dioxide difference as an indicator of cardiac index. Intensive Care Med. 2005;31:818–22.PubMedCrossRef
37.
go back to reference Vallee F, Vallet B, Mathe O, Parraguette J, Mari A, Silva S, et al. Central venous-to-arterial carbon dioxide difference: an additional target for goal-directed therapy in septic shock? Intensive Care Med. 2008;34:2218–25.PubMedCrossRef Vallee F, Vallet B, Mathe O, Parraguette J, Mari A, Silva S, et al. Central venous-to-arterial carbon dioxide difference: an additional target for goal-directed therapy in septic shock? Intensive Care Med. 2008;34:2218–25.PubMedCrossRef
38.
go back to reference Futier E, Robin E, Jabaudon M, Guerin R, Petit A, Bazin JE, et al. Central venous 02 saturation and venous-to-arterial CO2 difference as complementary tools for goal-directed therapy during high-risk surgery. Crit Care. 2010;14:R193.PubMedCrossRef Futier E, Robin E, Jabaudon M, Guerin R, Petit A, Bazin JE, et al. Central venous 02 saturation and venous-to-arterial CO2 difference as complementary tools for goal-directed therapy during high-risk surgery. Crit Care. 2010;14:R193.PubMedCrossRef
39.
go back to reference Monnet X, Julien F, Ait-Hamou N, Lequoy M, Gosset C, Jozwiak M, et al. Lactate and veno-arterial carbon dioxide difference/arterial-venous oxygen difference ratio, but not central venous oxygen saturation, predict increase in oxygen consumption in fluid responders. In revision. Monnet X, Julien F, Ait-Hamou N, Lequoy M, Gosset C, Jozwiak M, et al. Lactate and veno-arterial carbon dioxide difference/arterial-venous oxygen difference ratio, but not central venous oxygen saturation, predict increase in oxygen consumption in fluid responders. In revision.
40.
go back to reference Levy B, Gawalkiewicz P, Vallet B, Briancon S, Nace L, Bollaert PE. Gastric capnometry with air-automated tonometry predicts outcome in critically ill patients. Crit Care Med. 2003;31:474–80.PubMedCrossRef Levy B, Gawalkiewicz P, Vallet B, Briancon S, Nace L, Bollaert PE. Gastric capnometry with air-automated tonometry predicts outcome in critically ill patients. Crit Care Med. 2003;31:474–80.PubMedCrossRef
41.
go back to reference Gutierrez G, Palizas F, Doglio G, Wainsztein N, Gallesio A, Pacin J, et al. Gastric intramucosal ph as a therapeutic index of tissue oxygenation in critically ill patients. Lancet. 1992;339:195–9.PubMedCrossRef Gutierrez G, Palizas F, Doglio G, Wainsztein N, Gallesio A, Pacin J, et al. Gastric intramucosal ph as a therapeutic index of tissue oxygenation in critically ill patients. Lancet. 1992;339:195–9.PubMedCrossRef
42.
go back to reference Gomersall CD, Joynt GM, Freebairn RC, Hung V, Buckley TA, Oh TE. Resuscitation of critically ill patients based on the results of gastric tonometry: a prospective, randomized, controlled trial. Crit Care Med. 2000;28:607–14.PubMedCrossRef Gomersall CD, Joynt GM, Freebairn RC, Hung V, Buckley TA, Oh TE. Resuscitation of critically ill patients based on the results of gastric tonometry: a prospective, randomized, controlled trial. Crit Care Med. 2000;28:607–14.PubMedCrossRef
43.
go back to reference Pargger H, Hampl KF, Christen P, Staender S, Scheidegger D. Gastric intramucosal pH-guided therapy in patients after elective repair of infrarenal abdominal aneurysms: is it beneficial? Intensive Care Med. 1998;24:769–76.PubMedCrossRef Pargger H, Hampl KF, Christen P, Staender S, Scheidegger D. Gastric intramucosal pH-guided therapy in patients after elective repair of infrarenal abdominal aneurysms: is it beneficial? Intensive Care Med. 1998;24:769–76.PubMedCrossRef
44.
go back to reference Levy B, Bollaert PE, Charpentier C, Nace L, Audibert G, Bauer P, et al. Comparison of norepinephrine and dobutamine to epinephrine for hemodynamics, lactate metabolism, and gastric tonometric variables in septic shock: a prospective, randomized study. Intensive Care Med. 1997;23:282–7.PubMedCrossRef Levy B, Bollaert PE, Charpentier C, Nace L, Audibert G, Bauer P, et al. Comparison of norepinephrine and dobutamine to epinephrine for hemodynamics, lactate metabolism, and gastric tonometric variables in septic shock: a prospective, randomized study. Intensive Care Med. 1997;23:282–7.PubMedCrossRef
45.
go back to reference Duranteau J, Sitbon P, Teboul JL, Vicaut E, Anguel N, Richard C, et al. Effects of epinephrine, norepinephrine, or the combination of norepinephrine and dobutamine on gastric mucosa in septic shock. Crit Care Med. 1999;27:893–900.PubMedCrossRef Duranteau J, Sitbon P, Teboul JL, Vicaut E, Anguel N, Richard C, et al. Effects of epinephrine, norepinephrine, or the combination of norepinephrine and dobutamine on gastric mucosa in septic shock. Crit Care Med. 1999;27:893–900.PubMedCrossRef
46.
go back to reference Levy B, Perez P, Perny J, Thivilier C, Gerard A. Comparison of norepinephrine-dobutamine to epinephrine for hemodynamics, lactate metabolism, and organ function variables in cardiogenic shock. A prospective, randomized pilot study. Crit Care Med. 2011;39:450–5.PubMedCrossRef Levy B, Perez P, Perny J, Thivilier C, Gerard A. Comparison of norepinephrine-dobutamine to epinephrine for hemodynamics, lactate metabolism, and organ function variables in cardiogenic shock. A prospective, randomized pilot study. Crit Care Med. 2011;39:450–5.PubMedCrossRef
47.
go back to reference Weil MH, Nakagawa Y, Tang W, Sato Y, Ercoli F, Finegan R, et al. Sublingual capnometry: a new noninvasive measurement for diagnosis and quantitation of severity of circulatory shock. Crit Care Med. 1999;27:1225–9.PubMedCrossRef Weil MH, Nakagawa Y, Tang W, Sato Y, Ercoli F, Finegan R, et al. Sublingual capnometry: a new noninvasive measurement for diagnosis and quantitation of severity of circulatory shock. Crit Care Med. 1999;27:1225–9.PubMedCrossRef
48.
go back to reference Creteur J, De Backer D, Sakr Y, Koch M, Vincent JL. Sublingual capnometry tracks microcirculatory changes in septic patients. Intensive Care Med. 2006;32:516–23.PubMedCrossRef Creteur J, De Backer D, Sakr Y, Koch M, Vincent JL. Sublingual capnometry tracks microcirculatory changes in septic patients. Intensive Care Med. 2006;32:516–23.PubMedCrossRef
49.
go back to reference Marik PE, Bankov A. Sublingual capnometry versus traditional markers of tissue oxygenation in critically ill patients. Crit Care Med. 2003;31:818–22.PubMedCrossRef Marik PE, Bankov A. Sublingual capnometry versus traditional markers of tissue oxygenation in critically ill patients. Crit Care Med. 2003;31:818–22.PubMedCrossRef
50.
go back to reference Eberhard P. The design, use, and results of transcutaneous carbon dioxide analysis: current and future directions. Anesth Analg. 2007;105:S48–52.PubMedCrossRef Eberhard P. The design, use, and results of transcutaneous carbon dioxide analysis: current and future directions. Anesth Analg. 2007;105:S48–52.PubMedCrossRef
51.
go back to reference Eberhard P, Gisiger PA, Gardaz JP, Spahn DR. Combining transcutaneous blood gas measurement and pulse oximetry. Anesth Analg. 2002;94:S76–80.PubMed Eberhard P, Gisiger PA, Gardaz JP, Spahn DR. Combining transcutaneous blood gas measurement and pulse oximetry. Anesth Analg. 2002;94:S76–80.PubMed
52.
go back to reference Rooth G, Ewald U, Caligara F. Transcutaneous PO2 and PCO2 monitoring at 37 degrees c. Cutaneous PO2 and PCO2. Adv Exp Med Biol. 1987;220:23–32.PubMed Rooth G, Ewald U, Caligara F. Transcutaneous PO2 and PCO2 monitoring at 37 degrees c. Cutaneous PO2 and PCO2. Adv Exp Med Biol. 1987;220:23–32.PubMed
53.
go back to reference Vallee F, Mateo J, Dubreuil G, Poussant T, Tachon G, Ouanounou I, et al. Cutaneous ear lobe PCO2 at 37 degrees c to evaluate microperfusion in patients with septic shock. Chest. 2010;138:1062–70.PubMedCrossRef Vallee F, Mateo J, Dubreuil G, Poussant T, Tachon G, Ouanounou I, et al. Cutaneous ear lobe PCO2 at 37 degrees c to evaluate microperfusion in patients with septic shock. Chest. 2010;138:1062–70.PubMedCrossRef
Metadata
Title
Hemodynamic management of cardiovascular failure by using PCO2 venous-arterial difference
Authors
Martin Dres
Xavier Monnet
Jean-Louis Teboul
Publication date
01-10-2012
Publisher
Springer Netherlands
Published in
Journal of Clinical Monitoring and Computing / Issue 5/2012
Print ISSN: 1387-1307
Electronic ISSN: 1573-2614
DOI
https://doi.org/10.1007/s10877-012-9381-x

Other articles of this Issue 5/2012

Journal of Clinical Monitoring and Computing 5/2012 Go to the issue