Skip to main content
Top
Published in: International Ophthalmology 4/2023

07-10-2022 | Original Paper

Screening of idiopathic epiretinal membrane using fundus images combined with blood oxygen saturation and vascular morphological features

Authors: Kun Chen, Jianbo Mao, Hui Liu, Xiaona Wang, Peng Dou, Yu Lu, Mingzhai Sun, Lijun Shen, Lei Liu

Published in: International Ophthalmology | Issue 4/2023

Login to get access

Abstract

Purpose

To achieve an accurate diagnosis of idiopathic epiretinal membrane (iERM) through analyzing retinal blood vessel oxygen saturation (SO2) and vascular morphological features in fundus images.

Methods

Dual-modal fundus camera was used to obtain color fundus image, 570-nm, and 610-nm images. As iERM affects the macular area, a macular-centered semicircle area as region of interest (MROI) was selected and analyzed SO2 and vascular morphologies in it. Eventually, random forest (RF) and support vector machine (SVM) were as classifiers to diagnose iERM patients.

Results

The arterial and venous SO2 levels of the iERM group were significantly higher than that of the control group. There were significant differences in the vessel density and fractal dimension on the artery for vascular morphology, while the tortuosity had a significant difference in the vein. By feeding the SO2 and the vascular morphological features into classifiers, an accuracy of over 82% was obtained, which is significantly better than the two separate inputs for classification.

Conclusion

Significant differences in SO2 and vascular morphologies between control and iERM groups confirmed that the occurrence of iERM may affect blood supply and vascular structures. Benefiting from the dual-modal fundus camera and machine learning models, accurate judgments can be made on fundus images. Extensive experiments proved the importance of blood vessel SO2 and vascular morphologies for diagnosis, which is of great significance for clinical screening.
Literature
1.
go back to reference Epiretinal Membrane (2022) Handb. Retin. OCT Opt. Coherence Tomogr. Epiretinal Membrane (2022) Handb. Retin. OCT Opt. Coherence Tomogr.
2.
3.
go back to reference Xiao W, Chen X, Yan W, Zhu Z, He M (2017) Prevalence and risk factors of epiretinal membranes: a systematic review and meta-analysis of population-based studies. BMJ Open 7(9):e014644CrossRefPubMedPubMedCentral Xiao W, Chen X, Yan W, Zhu Z, He M (2017) Prevalence and risk factors of epiretinal membranes: a systematic review and meta-analysis of population-based studies. BMJ Open 7(9):e014644CrossRefPubMedPubMedCentral
4.
go back to reference Lee JE, Byon IS, Park SW (2020) Epiretinal Membrane. Intern Limiting Membr Surg Lee JE, Byon IS, Park SW (2020) Epiretinal Membrane. Intern Limiting Membr Surg
5.
go back to reference Bu SC, Kuijer R, Li XR, Hooymans J, Los LI (2014) Idiopathic epiretinal membrane. Retina 34(12):2317–2335CrossRefPubMed Bu SC, Kuijer R, Li XR, Hooymans J, Los LI (2014) Idiopathic epiretinal membrane. Retina 34(12):2317–2335CrossRefPubMed
6.
go back to reference Kinoshita T, Kovacs KD, Wagley S, Arroyo JG (2011) Morphologic differences in epiretinal membranes on ocular coherence tomography as a predictive factor for surgical outcome. Retina 31:1692–1698CrossRefPubMed Kinoshita T, Kovacs KD, Wagley S, Arroyo JG (2011) Morphologic differences in epiretinal membranes on ocular coherence tomography as a predictive factor for surgical outcome. Retina 31:1692–1698CrossRefPubMed
7.
go back to reference Iuliano L, Fogliato G, Gorgoni F, Corbelli E, Bandello F, Codenotti M (2019) Idiopathic epiretinal membrane surgery: safety, efficacy and patient related outcomes. Clin Ophthalmol Auckl NZ 13:1253CrossRef Iuliano L, Fogliato G, Gorgoni F, Corbelli E, Bandello F, Codenotti M (2019) Idiopathic epiretinal membrane surgery: safety, efficacy and patient related outcomes. Clin Ophthalmol Auckl NZ 13:1253CrossRef
8.
go back to reference Klein R, Klein BE, Wang Q, Moss SE (1994) The epidemiology of epiretinal membranes. Trans Am Ophthalmol Soc 92:403–425PubMedPubMedCentral Klein R, Klein BE, Wang Q, Moss SE (1994) The epidemiology of epiretinal membranes. Trans Am Ophthalmol Soc 92:403–425PubMedPubMedCentral
10.
go back to reference Duker JS, Kaiser PK, Binder S, Smet M, Stalmans P (2013) The international vitreomacular traction study group classification of vitreomacular adhesion, traction, and macular hole. Ophthalmology 120:12CrossRef Duker JS, Kaiser PK, Binder S, Smet M, Stalmans P (2013) The international vitreomacular traction study group classification of vitreomacular adhesion, traction, and macular hole. Ophthalmology 120:12CrossRef
11.
go back to reference Mitchell P, Smith W, Chey T, Wang JJ, Chang A (1997) Prevalence and associations of epiretinal membranes. Ophthalmology 104(6):1033–1040CrossRefPubMed Mitchell P, Smith W, Chey T, Wang JJ, Chang A (1997) Prevalence and associations of epiretinal membranes. Ophthalmology 104(6):1033–1040CrossRefPubMed
12.
go back to reference Dell’Omo R et al (2013) Influence of retinal vessel printings on metamorphopsia and retinal architectural abnormalities in eyes with idiopathic macular epiretinal membrane. Invest Ophthalmol Vis Sci 54(12):7803–7811CrossRefPubMed Dell’Omo R et al (2013) Influence of retinal vessel printings on metamorphopsia and retinal architectural abnormalities in eyes with idiopathic macular epiretinal membrane. Invest Ophthalmol Vis Sci 54(12):7803–7811CrossRefPubMed
21.
go back to reference Prajna Y, Nath MK (2022) Efficient blood vessel segmentation from color fundus image using deep neural network. J Intell Fuzzy Syst, no. Preprint, pp. 1–13 Prajna Y, Nath MK (2022) Efficient blood vessel segmentation from color fundus image using deep neural network. J Intell Fuzzy Syst, no. Preprint, pp. 1–13
22.
go back to reference Xu Y, Fan Y (2022) Dual-channel asymmetric convolutional neural network for an efficient retinal blood vessel segmentation in eye fundus images. Biocybern. Biomed. Eng Xu Y, Fan Y (2022) Dual-channel asymmetric convolutional neural network for an efficient retinal blood vessel segmentation in eye fundus images. Biocybern. Biomed. Eng
23.
go back to reference Zhang S, Zheng R, Luo Y, Wang X, Sun M (2019) Simultaneous arteriole and venule segmentation of dual-modal fundus images using a multi-task cascade network. IEEE Access, 99, pp. 1–1 Zhang S, Zheng R, Luo Y, Wang X, Sun M (2019) Simultaneous arteriole and venule segmentation of dual-modal fundus images using a multi-task cascade network. IEEE Access, 99, pp. 1–1
24.
go back to reference Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention, 2015, pp. 234–241. Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical image computing and computer-assisted intervention, 2015, pp. 234–241.
26.
go back to reference Luo Y, Chen K, Liu L, Liu J, Sun M (2020) Dehaze of cataractous retinal images using an unpaired generative adversarial network. IEEE J Biomed Health Inform 99:1–1 Luo Y, Chen K, Liu L, Liu J, Sun M (2020) Dehaze of cataractous retinal images using an unpaired generative adversarial network. IEEE J Biomed Health Inform 99:1–1
27.
go back to reference Hammer M, Vilser W, Riemer T, Schweitzer D (2008) Retinal vessel oximetry-calibration, compensation for vessel diameter and fundus pigmentation, and reproducibility. J Biomed Opt 13(5):7CrossRef Hammer M, Vilser W, Riemer T, Schweitzer D (2008) Retinal vessel oximetry-calibration, compensation for vessel diameter and fundus pigmentation, and reproducibility. J Biomed Opt 13(5):7CrossRef
28.
go back to reference Harris A, Dinn RB, Kagemann L, Rechtman E (2003) A review of methods for human retinal oximetry. Ophthalmic Surg Lasers Imaging 34(2):152CrossRefPubMed Harris A, Dinn RB, Kagemann L, Rechtman E (2003) A review of methods for human retinal oximetry. Ophthalmic Surg Lasers Imaging 34(2):152CrossRefPubMed
29.
go back to reference Chen H et al (2019) Fundus-simulating phantom for calibration of retinal vessel oximetry devices. Appl Opt 58(14):3877–3885CrossRefPubMed Chen H et al (2019) Fundus-simulating phantom for calibration of retinal vessel oximetry devices. Appl Opt 58(14):3877–3885CrossRefPubMed
30.
go back to reference Liew G, Wang JJ, Ning C, Zhang YP, Wong TY (2008) The Retinal vasculature as a fractal: methodology, reliability, and relationship to blood pressure. Ophthalmology 115(11):1951–1956CrossRefPubMed Liew G, Wang JJ, Ning C, Zhang YP, Wong TY (2008) The Retinal vasculature as a fractal: methodology, reliability, and relationship to blood pressure. Ophthalmology 115(11):1951–1956CrossRefPubMed
31.
go back to reference Mainster, Martin A (1990) The fractal properties of retinal vessels: Embryological and clinical implications”. Eye 4:235CrossRefPubMed Mainster, Martin A (1990) The fractal properties of retinal vessels: Embryological and clinical implications”. Eye 4:235CrossRefPubMed
32.
go back to reference Stosic T, Stosic BD (2006) Multifractal analysis of human retinal vessels. IEEE Trans Med Imag 25(8):1101–1107CrossRef Stosic T, Stosic BD (2006) Multifractal analysis of human retinal vessels. IEEE Trans Med Imag 25(8):1101–1107CrossRef
33.
go back to reference Hart WE, Goldbaum M, Cté B, Kube P, Nelson MR (1999) Measurement and classification of retinal vascular tortuosity. Int J Med Inf 53(2–3):239–252CrossRef Hart WE, Goldbaum M, Cté B, Kube P, Nelson MR (1999) Measurement and classification of retinal vascular tortuosity. Int J Med Inf 53(2–3):239–252CrossRef
34.
go back to reference Smedby et al (1993) Two-dimensional tortuosity of the superficial femoral artery in early atherosclerosis. J. Vasc. Res. 30:181–191CrossRefPubMed Smedby et al (1993) Two-dimensional tortuosity of the superficial femoral artery in early atherosclerosis. J. Vasc. Res. 30:181–191CrossRefPubMed
35.
go back to reference Turior R, Onkaew D, Uyyanonvara B, Chutinantvarodom P (2013) Quantification and classification of retinal vessel tortuosity. Sci Asia 39:265–277CrossRef Turior R, Onkaew D, Uyyanonvara B, Chutinantvarodom P (2013) Quantification and classification of retinal vessel tortuosity. Sci Asia 39:265–277CrossRef
36.
go back to reference Knudtson MD, Lee KE, Hubbard LD, Wong TY, Klein R, Klein B (2003) Revised formulas for summarizing retinal vessel diameters. Curr Eye Res 27(3):143–149CrossRefPubMed Knudtson MD, Lee KE, Hubbard LD, Wong TY, Klein R, Klein B (2003) Revised formulas for summarizing retinal vessel diameters. Curr Eye Res 27(3):143–149CrossRefPubMed
37.
38.
go back to reference Patton N et al (2006) Retinal image analysis: concepts, applications and potential. Prog Retin Eye Res 141(3):603–603 Patton N et al (2006) Retinal image analysis: concepts, applications and potential. Prog Retin Eye Res 141(3):603–603
39.
go back to reference Yap BW, Sim CH (2011) Comparisons of various types of normality tests. J Stat Comput Simul 81(11–12):2141–2155CrossRef Yap BW, Sim CH (2011) Comparisons of various types of normality tests. J Stat Comput Simul 81(11–12):2141–2155CrossRef
41.
go back to reference Cortes C et al. (1995) Support-vector networks[J] Cortes C et al. (1995) Support-vector networks[J]
42.
go back to reference Tjandrasa H, Putra RE, Wijaya AY, Arieshanti I (2014) Classification of non-proliferative diabetic retinopathy based on hard exudates using soft margin SVM. IEEE, 2014. Tjandrasa H, Putra RE, Wijaya AY, Arieshanti I (2014) Classification of non-proliferative diabetic retinopathy based on hard exudates using soft margin SVM. IEEE, 2014.
43.
go back to reference Gunn SR (1998) Support vector machines for classification and regression. Tech. Rep. Image Speech Intell. Syst. Res. Group Gunn SR (1998) Support vector machines for classification and regression. Tech. Rep. Image Speech Intell. Syst. Res. Group
44.
go back to reference Murray DC (1926) The physiological principle of minimum work i. the vascular system and the cost of blood volume. Proc. Natl. Acad. Sci. U. S. A. 12:207–214CrossRefPubMedPubMedCentral Murray DC (1926) The physiological principle of minimum work i. the vascular system and the cost of blood volume. Proc. Natl. Acad. Sci. U. S. A. 12:207–214CrossRefPubMedPubMedCentral
45.
go back to reference Tomoaki et al (2019) Comparison between support vector machine and deep learning, machine-learning technologies for detecting epiretinal membrane using 3D-OCT. Int Ophthalmol 39(8):1871–1877CrossRef Tomoaki et al (2019) Comparison between support vector machine and deep learning, machine-learning technologies for detecting epiretinal membrane using 3D-OCT. Int Ophthalmol 39(8):1871–1877CrossRef
46.
go back to reference Lo YC, Lin KH, Bair H, Sheu HH, Hung CL (202) Epiretinal membrane detection at the ophthalmologist level using deep learning of optical coherence tomography. Sci Rep, vol. 10. Lo YC, Lin KH, Bair H, Sheu HH, Hung CL (202) Epiretinal membrane detection at the ophthalmologist level using deep learning of optical coherence tomography. Sci Rep, vol. 10.
47.
go back to reference Tavakkoli A, Kamran SA, Hossain KF, Zuckerbrod SL (2020) A novel deep learning conditional generative adversarial network for producing angiography images from retinal fundus photographs. Sci Rep 10(1):1–15CrossRef Tavakkoli A, Kamran SA, Hossain KF, Zuckerbrod SL (2020) A novel deep learning conditional generative adversarial network for producing angiography images from retinal fundus photographs. Sci Rep 10(1):1–15CrossRef
48.
go back to reference Nair AG, Gandhi RA, Natarajan S (2020) Effect of COVID-19 related lockdown on ophthalmic practice and patient care in India: results of a survey. Indian J Ophthalmol 68(5):725CrossRefPubMedPubMedCentral Nair AG, Gandhi RA, Natarajan S (2020) Effect of COVID-19 related lockdown on ophthalmic practice and patient care in India: results of a survey. Indian J Ophthalmol 68(5):725CrossRefPubMedPubMedCentral
49.
50.
go back to reference Parisi V, Restuccia R, Fattapposta F, Mina C, Bucci MG, Pierelli F (2001) Morphological and functional retinal impairment in Alzheimer’s disease patients. Clin. Neurophysiol. Parisi V, Restuccia R, Fattapposta F, Mina C, Bucci MG, Pierelli F (2001) Morphological and functional retinal impairment in Alzheimer’s disease patients. Clin. Neurophysiol.
51.
go back to reference Assembly WG (2013) World medical asssociation declaration of helsinki - ethical principles for medical research involving human subjects. Assembly WG (2013) World medical asssociation declaration of helsinki - ethical principles for medical research involving human subjects.
Metadata
Title
Screening of idiopathic epiretinal membrane using fundus images combined with blood oxygen saturation and vascular morphological features
Authors
Kun Chen
Jianbo Mao
Hui Liu
Xiaona Wang
Peng Dou
Yu Lu
Mingzhai Sun
Lijun Shen
Lei Liu
Publication date
07-10-2022
Publisher
Springer Netherlands
Published in
International Ophthalmology / Issue 4/2023
Print ISSN: 0165-5701
Electronic ISSN: 1573-2630
DOI
https://doi.org/10.1007/s10792-022-02520-1

Other articles of this Issue 4/2023

International Ophthalmology 4/2023 Go to the issue