Skip to main content
Top
Published in: Graefe's Archive for Clinical and Experimental Ophthalmology 9/2020

01-09-2020 | Angiography | Retinal Disorders

Association of retinal vessel density with retinal sensitivity in surgery for idiopathic epiretinal membrane

Authors: Urara Osada, Hiroshi Kunikata, Masayuki Yasuda, Kazuki Hashimoto, Koji M. Nishiguchi, Toru Nakazawa

Published in: Graefe's Archive for Clinical and Experimental Ophthalmology | Issue 9/2020

Login to get access

Abstract

Purpose

The success of surgical treatment for idiopathic epiretinal membrane (ERM) is measured by postoperative best-corrected visual acuity (BCVA), metamorphopsia, and foveal retinal sensitivity (RS).This study searched for predictive biomarkers of surgical success by determining the association between foveal RS and various aspects of vessel density (VD) in the fovea of patients with ERM.

Methods

The study examined 25 eyes of 25 patients with ERM who underwent 27-gauge microincision vitrectomy surgery (MIVS). RS was measured with microperimetry (MP-3; NIDEK) at four central points in the fovea with an interpoint distance of 2°. VD was measured with SD-OCT (RS 3000; NIDEK) within the 1-mm2 square defined by the 4 RS points at various depths, including the superficial and deep retinal capillary plexus (SCP and DCP, respectively).

Results

Though VD did not change throughout the follow-up period, BCVA and RS significantly improved 1 and 3 months after surgery, respectively (both P < 0.0017). Postoperative RS at 6 months was positively correlated with postoperative DCP VD at 1, 3, and 6 months (r = 0.62, P = 0.001; r = 0.40, P = 0.049; r = 0.53, P = 0.007, respectively), but not with SCP VD at any time point. Multiple regression analysis confirmed that postoperative RS at 6 months was associated with postoperative DCP VD at 1 month (P = 0.03).

Conclusion

Higher postoperative DCP VD at 1 month contributed to better postoperative foveal RS at 6 months. Early postoperative VD in the fovea might be a useful predictive biomarker of late postoperative RS in the fovea in ERM patients.
Literature
1.
go back to reference Kwok A, Lai TY, Yuen KS (2005) Epiretinal membrane surgery with or without internal limiting membrane peeling. Clin Exp Ophthalmol 33:379–385PubMed Kwok A, Lai TY, Yuen KS (2005) Epiretinal membrane surgery with or without internal limiting membrane peeling. Clin Exp Ophthalmol 33:379–385PubMed
2.
go back to reference Kwok AK, Lai TY, Li WW, Woo DC, Chan NR (2004) Indocyanine green-assisted internal limiting membrane removal in epiretinal membrane surgery: a clinical and histologic study. Am J Ophthalmol 138:194–199PubMed Kwok AK, Lai TY, Li WW, Woo DC, Chan NR (2004) Indocyanine green-assisted internal limiting membrane removal in epiretinal membrane surgery: a clinical and histologic study. Am J Ophthalmol 138:194–199PubMed
3.
go back to reference Shimada H, Nakashizuka H, Hattori T, Mori R, Mizutani Y, Yuzawa M (2009) Double staining with brilliant blue G and double peeling for epiretinal membranes. Ophthalmology 116:1370–1376PubMed Shimada H, Nakashizuka H, Hattori T, Mori R, Mizutani Y, Yuzawa M (2009) Double staining with brilliant blue G and double peeling for epiretinal membranes. Ophthalmology 116:1370–1376PubMed
4.
go back to reference Park DW, Dugel PU, Garda J, Sipperley JO, Thach A, Sneed SR, Blaisdell J (2003) Macular pucker removal with and without internal limiting membrane peeling: pilot study. Ophthalmology 110:62–64PubMed Park DW, Dugel PU, Garda J, Sipperley JO, Thach A, Sneed SR, Blaisdell J (2003) Macular pucker removal with and without internal limiting membrane peeling: pilot study. Ophthalmology 110:62–64PubMed
5.
go back to reference Kadonosono K, Yamakawa T, Uchio E, Yanagi Y, Tamaki Y, Araie M (2006) Comparison of visual function after epiretinal membrane removal by 20-gauge and 25-gauge vitrectomy. Am J Ophthalmol 142:513–515PubMed Kadonosono K, Yamakawa T, Uchio E, Yanagi Y, Tamaki Y, Araie M (2006) Comparison of visual function after epiretinal membrane removal by 20-gauge and 25-gauge vitrectomy. Am J Ophthalmol 142:513–515PubMed
6.
go back to reference Lubinski W, Goslawski W, Podboraczynska-Jodko K, Mularczyk M, Post M (2020) Comparison of 27-gauge versus 25-gauge vitrectomy results in patients with epiretinal membrane: 6-month follow-up. Int Ophthalmol 40:867–875PubMed Lubinski W, Goslawski W, Podboraczynska-Jodko K, Mularczyk M, Post M (2020) Comparison of 27-gauge versus 25-gauge vitrectomy results in patients with epiretinal membrane: 6-month follow-up. Int Ophthalmol 40:867–875PubMed
7.
go back to reference Mori R, Naruse S, Shimada H (2018) Comparative study of 27-gauge and 25-gauge vitrectomy performed as day surgery. Int Ophthalmol 38:1575–1582PubMed Mori R, Naruse S, Shimada H (2018) Comparative study of 27-gauge and 25-gauge vitrectomy performed as day surgery. Int Ophthalmol 38:1575–1582PubMed
8.
go back to reference Naruse S, Shimada H, Mori R (2017) 27-Gauge and 25-gauge vitrectomy day surgery for idiopathic epiretinal membrane. BMC Ophthalmol 17:188PubMedPubMedCentral Naruse S, Shimada H, Mori R (2017) 27-Gauge and 25-gauge vitrectomy day surgery for idiopathic epiretinal membrane. BMC Ophthalmol 17:188PubMedPubMedCentral
9.
go back to reference Kadonosono K, Itoh N, Nomura E, Ohno S (1999) Perifoveal microcirculation in eyes with epiretinal membranes. Br J Ophthalmol 83:1329–1331PubMedPubMedCentral Kadonosono K, Itoh N, Nomura E, Ohno S (1999) Perifoveal microcirculation in eyes with epiretinal membranes. Br J Ophthalmol 83:1329–1331PubMedPubMedCentral
10.
go back to reference Kadonosono K, Itoh N, Nomura E, Ohno S (1999) Capillary blood flow velocity in patients with idiopathic epiretinal membranes. Retina 19:536–539PubMed Kadonosono K, Itoh N, Nomura E, Ohno S (1999) Capillary blood flow velocity in patients with idiopathic epiretinal membranes. Retina 19:536–539PubMed
11.
go back to reference Machado LM, Furlani BA, Navarro RM, Farah ME, Maia A, Magalhaes O Jr, Rodrigues EB, Moraes N, Maia M (2015) Preoperative and intraoperative prognostic factors of epiretinal membranes using chromovitrectomy and internal limiting membrane peeling. Ophthalmic Surg Lasers Imaging Retina 46:457–462PubMed Machado LM, Furlani BA, Navarro RM, Farah ME, Maia A, Magalhaes O Jr, Rodrigues EB, Moraes N, Maia M (2015) Preoperative and intraoperative prognostic factors of epiretinal membranes using chromovitrectomy and internal limiting membrane peeling. Ophthalmic Surg Lasers Imaging Retina 46:457–462PubMed
12.
go back to reference Xiao W, Chen X, Yan W, Zhu Z, He M (2017) Prevalence and risk factors of epiretinal membranes: a systematic review and meta-analysis of population-based studies. BMJ Open 7:e014644PubMedPubMedCentral Xiao W, Chen X, Yan W, Zhu Z, He M (2017) Prevalence and risk factors of epiretinal membranes: a systematic review and meta-analysis of population-based studies. BMJ Open 7:e014644PubMedPubMedCentral
13.
go back to reference Ye H, Zhang Q, Liu X, Cai X, Yu W, Yu S, Wang T, Lu W, Li X, Hu Y, Yang B, Zhao P (2015) Prevalence and associations of epiretinal membrane in an elderly urban Chinese population in China: the Jiangning Eye Study. Br J Ophthalmol 99:1594–1597PubMed Ye H, Zhang Q, Liu X, Cai X, Yu W, Yu S, Wang T, Lu W, Li X, Hu Y, Yang B, Zhao P (2015) Prevalence and associations of epiretinal membrane in an elderly urban Chinese population in China: the Jiangning Eye Study. Br J Ophthalmol 99:1594–1597PubMed
14.
go back to reference Koh V, Cheung CY, Wong WL, Cheung CM, Wang JJ, Mitchell P, Younan C, Saw SM, Wong TY (2012) Prevalence and risk factors of epiretinal membrane in Asian Indians. Invest Ophthalmol Vis Sci 53:1018–1022PubMed Koh V, Cheung CY, Wong WL, Cheung CM, Wang JJ, Mitchell P, Younan C, Saw SM, Wong TY (2012) Prevalence and risk factors of epiretinal membrane in Asian Indians. Invest Ophthalmol Vis Sci 53:1018–1022PubMed
15.
go back to reference Kawasaki R, Wang JJ, Mitchell P, Aung T, Saw SM, Wong TY (2008) Racial difference in the prevalence of epiretinal membrane between Caucasians and Asians. Br J Ophthalmol 92:1320–1324PubMed Kawasaki R, Wang JJ, Mitchell P, Aung T, Saw SM, Wong TY (2008) Racial difference in the prevalence of epiretinal membrane between Caucasians and Asians. Br J Ophthalmol 92:1320–1324PubMed
16.
go back to reference Jia Y, Wei E, Wang X, Zhang X, Morrison JC, Parikh M, Lombardi LH, Gattey DM, Armour RL, Edmunds B, Kraus MF, Fujimoto JG, Huang D (2014) Optical coherence tomography angiography of optic disc perfusion in glaucoma. Ophthalmology 121:1322–1332PubMed Jia Y, Wei E, Wang X, Zhang X, Morrison JC, Parikh M, Lombardi LH, Gattey DM, Armour RL, Edmunds B, Kraus MF, Fujimoto JG, Huang D (2014) Optical coherence tomography angiography of optic disc perfusion in glaucoma. Ophthalmology 121:1322–1332PubMed
17.
go back to reference Jia Y, Bailey ST, Wilson DJ, Tan O, Klein ML, Flaxel CJ, Potsaid B, Liu JJ, Lu CD, Kraus MF, Fujimoto JG, Huang D (2014) Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration. Ophthalmology 121:1435–1444PubMed Jia Y, Bailey ST, Wilson DJ, Tan O, Klein ML, Flaxel CJ, Potsaid B, Liu JJ, Lu CD, Kraus MF, Fujimoto JG, Huang D (2014) Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration. Ophthalmology 121:1435–1444PubMed
18.
go back to reference Jia Y, Tan O, Tokayer J, Potsaid B, Wang Y, Liu JJ, Kraus MF, Subhash H, Fujimoto JG, Hornegger J, Huang D (2012) Split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Opt Express 20:4710–4725PubMedPubMedCentral Jia Y, Tan O, Tokayer J, Potsaid B, Wang Y, Liu JJ, Kraus MF, Subhash H, Fujimoto JG, Hornegger J, Huang D (2012) Split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Opt Express 20:4710–4725PubMedPubMedCentral
19.
go back to reference Scarinci F, Nesper PL, Fawzi AA (2016) Deep retinal capillary nonperfusion is associated with photoreceptor disruption in diabetic macular ischemia. Am J Ophthalmol 168:129–138PubMedPubMedCentral Scarinci F, Nesper PL, Fawzi AA (2016) Deep retinal capillary nonperfusion is associated with photoreceptor disruption in diabetic macular ischemia. Am J Ophthalmol 168:129–138PubMedPubMedCentral
20.
go back to reference Roisman L, Rosenfeld PJ (2016) Optical coherence tomography angiography of macular telangiectasia type 2. Dev Ophthalmol 56:146–158PubMed Roisman L, Rosenfeld PJ (2016) Optical coherence tomography angiography of macular telangiectasia type 2. Dev Ophthalmol 56:146–158PubMed
21.
go back to reference Matet A, Daruich A, Dirani A, Ambresin A, Behar-Cohen F (2016) Macular telangiectasia type 1: capillary density and microvascular abnormalities assessed by optical coherence tomography angiography. Am J Ophthalmol 167:18–30PubMed Matet A, Daruich A, Dirani A, Ambresin A, Behar-Cohen F (2016) Macular telangiectasia type 1: capillary density and microvascular abnormalities assessed by optical coherence tomography angiography. Am J Ophthalmol 167:18–30PubMed
22.
go back to reference Lin TC, Chung YC, Lin CY, Lee FL, Chen SJ (2016) Focal nonperfusion of deep retinal capillary plexus in eyes with epiretinal membranes revealed by optical coherence tomography angiography. Ophthalmic Surg Lasers Imaging Retina 47:404–409PubMed Lin TC, Chung YC, Lin CY, Lee FL, Chen SJ (2016) Focal nonperfusion of deep retinal capillary plexus in eyes with epiretinal membranes revealed by optical coherence tomography angiography. Ophthalmic Surg Lasers Imaging Retina 47:404–409PubMed
23.
go back to reference Zhang Q, Wang RK, Chen CL, Legarreta AD, Durbin MK, An L, Sharma U, Stetson PF, Legarreta JE, Roisman L, Gregori G, Rosenfeld PJ (2015) Swept source optical coherence tomography angiography of neovascular macular telangiectasia type 2. Retina 35:2285–2299PubMedPubMedCentral Zhang Q, Wang RK, Chen CL, Legarreta AD, Durbin MK, An L, Sharma U, Stetson PF, Legarreta JE, Roisman L, Gregori G, Rosenfeld PJ (2015) Swept source optical coherence tomography angiography of neovascular macular telangiectasia type 2. Retina 35:2285–2299PubMedPubMedCentral
24.
go back to reference Spaide RF, Curcio CA (2017) Evaluation of segmentation of the superficial and deep vascular layers of the retina by optical coherence tomography angiography instruments in normal eyes. JAMA Ophthalmol 135:259–262PubMed Spaide RF, Curcio CA (2017) Evaluation of segmentation of the superficial and deep vascular layers of the retina by optical coherence tomography angiography instruments in normal eyes. JAMA Ophthalmol 135:259–262PubMed
25.
27.
go back to reference Weinberger D, Stiebel-Kalish H, Priel E, Barash D, Axer-Siegel R, Yassur Y (1999) Digital red-free photography for the evaluation of retinal blood vessel displacement in epiretinal membrane. Ophthalmology 106:1380–1383PubMed Weinberger D, Stiebel-Kalish H, Priel E, Barash D, Axer-Siegel R, Yassur Y (1999) Digital red-free photography for the evaluation of retinal blood vessel displacement in epiretinal membrane. Ophthalmology 106:1380–1383PubMed
28.
go back to reference Nitta E, Shiraga F, Shiragami C, Fukuda K, Yamashita A, Fujiwara A (2013) Displacement of the retina and its recovery after vitrectomy in idiopathic epiretinal membrane. Am J Ophthalmol 155:1014–1020 e1011PubMed Nitta E, Shiraga F, Shiragami C, Fukuda K, Yamashita A, Fujiwara A (2013) Displacement of the retina and its recovery after vitrectomy in idiopathic epiretinal membrane. Am J Ophthalmol 155:1014–1020 e1011PubMed
29.
go back to reference Kim YJ, Kim S, Lee JY, Kim JG, Yoon YH (2018) Macular capillary plexuses after epiretinal membrane surgery: an optical coherence tomography angiography study. Br J Ophthalmol 102:1086–1091PubMed Kim YJ, Kim S, Lee JY, Kim JG, Yoon YH (2018) Macular capillary plexuses after epiretinal membrane surgery: an optical coherence tomography angiography study. Br J Ophthalmol 102:1086–1091PubMed
30.
go back to reference Mastropasqua R, D’Aloisio R, Viggiano P, Borrelli E, Iafigliola C, Di Nicola M, Aharrh-Gnama A, Di Marzio G, Toto L, Mariotti C, Carpineto P (2019) Early retinal flow changes after vitreoretinal surgery in idiopathic epiretinal membrane using swept source optical coherence tomography angiography. J Clin Med 8 Mastropasqua R, D’Aloisio R, Viggiano P, Borrelli E, Iafigliola C, Di Nicola M, Aharrh-Gnama A, Di Marzio G, Toto L, Mariotti C, Carpineto P (2019) Early retinal flow changes after vitreoretinal surgery in idiopathic epiretinal membrane using swept source optical coherence tomography angiography. J Clin Med 8
31.
go back to reference Pierro L, Iuliano L, Marchese A, Arrigo A, Rabiolo A, Bandello F (2019) Reduced vascular perfusion density in idiopathic epiretinal membrane compared to macular pseudohole. Int Ophthalmol 39:2749–2755PubMed Pierro L, Iuliano L, Marchese A, Arrigo A, Rabiolo A, Bandello F (2019) Reduced vascular perfusion density in idiopathic epiretinal membrane compared to macular pseudohole. Int Ophthalmol 39:2749–2755PubMed
32.
go back to reference Nelis P, Alten F, Clemens CR, Heiduschka P, Eter N (2017) Quantification of changes in foveal capillary architecture caused by idiopathic epiretinal membrane using OCT angiography. Graefes Arch Clin Exp Ophthalmol 255:1319–1324PubMed Nelis P, Alten F, Clemens CR, Heiduschka P, Eter N (2017) Quantification of changes in foveal capillary architecture caused by idiopathic epiretinal membrane using OCT angiography. Graefes Arch Clin Exp Ophthalmol 255:1319–1324PubMed
33.
go back to reference Yu Y, Teng Y, Gao M, Liu X, Chen J, Liu W (2017) Quantitative choriocapillaris perfusion before and after vitrectomy in idiopathic epiretinal membrane by optical coherence tomography angiography. Ophthalmic Surg Lasers Imaging Retina 48:906–915PubMed Yu Y, Teng Y, Gao M, Liu X, Chen J, Liu W (2017) Quantitative choriocapillaris perfusion before and after vitrectomy in idiopathic epiretinal membrane by optical coherence tomography angiography. Ophthalmic Surg Lasers Imaging Retina 48:906–915PubMed
34.
go back to reference Romano MR, Cennamo G, Schiemer S, Rossi C, Sparnelli F (2017) Deep and superficial OCT angiography changes after macular peeling: idiopathic vs diabetic epiretinal membranes. Graefes Arch Clin Exp Ophthalmol 255:681–689PubMed Romano MR, Cennamo G, Schiemer S, Rossi C, Sparnelli F (2017) Deep and superficial OCT angiography changes after macular peeling: idiopathic vs diabetic epiretinal membranes. Graefes Arch Clin Exp Ophthalmol 255:681–689PubMed
35.
go back to reference Mastropasqua L, Borrelli E, Carpineto P, Toto L, Di Antonio L, Mattei PA, Mastropasqua R (2018) Microvascular changes after vitrectomy with internal limiting membrane peeling: an optical coherence tomography angiography study. Int Ophthalmol 38:1465–1472PubMed Mastropasqua L, Borrelli E, Carpineto P, Toto L, Di Antonio L, Mattei PA, Mastropasqua R (2018) Microvascular changes after vitrectomy with internal limiting membrane peeling: an optical coherence tomography angiography study. Int Ophthalmol 38:1465–1472PubMed
36.
go back to reference Clark A, Balducci N, Pichi F, Veronese C, Morara M, Torrazza C, Ciardella AP (2012) Swelling of the arcuate nerve fiber layer after internal limiting membrane peeling. Retina 32:1608–1613PubMed Clark A, Balducci N, Pichi F, Veronese C, Morara M, Torrazza C, Ciardella AP (2012) Swelling of the arcuate nerve fiber layer after internal limiting membrane peeling. Retina 32:1608–1613PubMed
37.
go back to reference Scupola A, Grimaldi G, Abed E, Sammarco MG, Giudiceandrea A, Greco A, Sasso P, Blasi MA (2018) Arcuate nerve fiber layer changes after internal limiting membrane peeling in idiopathic epiretinal membrane. Retina 38:1777–1785PubMed Scupola A, Grimaldi G, Abed E, Sammarco MG, Giudiceandrea A, Greco A, Sasso P, Blasi MA (2018) Arcuate nerve fiber layer changes after internal limiting membrane peeling in idiopathic epiretinal membrane. Retina 38:1777–1785PubMed
38.
go back to reference Winegarner A, Wakabayashi T, Fukushima Y, Sato T, Hara-Ueno C, Busch C, Nishiyama I, Shiraki N, Sayanagi K, Nishida K, Sakaguchi H (2018) Changes in retinal microvasculature and visual acuity after antivascular endothelial growth factor therapy in retinal vein occlusion. Invest Ophthalmol Vis Sci 59:2708–2716PubMed Winegarner A, Wakabayashi T, Fukushima Y, Sato T, Hara-Ueno C, Busch C, Nishiyama I, Shiraki N, Sayanagi K, Nishida K, Sakaguchi H (2018) Changes in retinal microvasculature and visual acuity after antivascular endothelial growth factor therapy in retinal vein occlusion. Invest Ophthalmol Vis Sci 59:2708–2716PubMed
39.
go back to reference Wakabayashi T, Sato T, Hara-Ueno C, Fukushima Y, Sayanagi K, Shiraki N, Sawa M, Ikuno Y, Sakaguchi H, Nishida K (2017) Retinal microvasculature and visual acuity in eyes with branch retinal vein occlusion: imaging analysis by optical coherence tomography angiography. Invest Ophthalmol Vis Sci 58:2087–2094PubMed Wakabayashi T, Sato T, Hara-Ueno C, Fukushima Y, Sayanagi K, Shiraki N, Sawa M, Ikuno Y, Sakaguchi H, Nishida K (2017) Retinal microvasculature and visual acuity in eyes with branch retinal vein occlusion: imaging analysis by optical coherence tomography angiography. Invest Ophthalmol Vis Sci 58:2087–2094PubMed
40.
go back to reference Kang JW, Yoo R, Jo YH, Kim HC (2017) Correlation of microvascular structures on optical coherence tomography angiography with visual acuity in retinal vein occlusion. Retina 37:1700–1709PubMed Kang JW, Yoo R, Jo YH, Kim HC (2017) Correlation of microvascular structures on optical coherence tomography angiography with visual acuity in retinal vein occlusion. Retina 37:1700–1709PubMed
41.
go back to reference Lee J, Moon BG, Cho AR, Yoon YH (2016) Optical coherence tomography angiography of DME and its association with anti-VEGF treatment response. Ophthalmology 123:2368–2375PubMed Lee J, Moon BG, Cho AR, Yoon YH (2016) Optical coherence tomography angiography of DME and its association with anti-VEGF treatment response. Ophthalmology 123:2368–2375PubMed
42.
go back to reference Moon BG, Um T, Lee J, Yoon YH (2018) Correlation between deep capillary plexus perfusion and long-term photoreceptor recovery after diabetic macular edema treatment. Ophthalmol Retina 2:235–243PubMed Moon BG, Um T, Lee J, Yoon YH (2018) Correlation between deep capillary plexus perfusion and long-term photoreceptor recovery after diabetic macular edema treatment. Ophthalmol Retina 2:235–243PubMed
43.
go back to reference Rice TA, De Bustros S, Michels RG, Thompson JT, Debanne SM, Rowland DY (1986) Prognostic factors in vitrectomy for epiretinal membranes of the macula. Ophthalmology 93:602–610PubMed Rice TA, De Bustros S, Michels RG, Thompson JT, Debanne SM, Rowland DY (1986) Prognostic factors in vitrectomy for epiretinal membranes of the macula. Ophthalmology 93:602–610PubMed
44.
go back to reference Kauffmann Y, Ramel JC, Lefebvre A, Isaico R, De Lazzer A, Bonnabel A, Bron AM, Creuzot-Garcher C (2015) Preoperative prognostic factors and predictive score in patients operated on for combined cataract and idiopathic epiretinal membrane. Am J Ophthalmol 160:185–192 e185PubMed Kauffmann Y, Ramel JC, Lefebvre A, Isaico R, De Lazzer A, Bonnabel A, Bron AM, Creuzot-Garcher C (2015) Preoperative prognostic factors and predictive score in patients operated on for combined cataract and idiopathic epiretinal membrane. Am J Ophthalmol 160:185–192 e185PubMed
45.
go back to reference Oh HN, Lee JE, Kim HW, Yun IH (2013) Clinical outcomes of double staining and additional ILM peeling during ERM surgery. Korean J Ophthalmol 27:256–260PubMedPubMedCentral Oh HN, Lee JE, Kim HW, Yun IH (2013) Clinical outcomes of double staining and additional ILM peeling during ERM surgery. Korean J Ophthalmol 27:256–260PubMedPubMedCentral
46.
go back to reference Pournaras CJ, Emarah A, Petropoulos IK (2011) Idiopathic macular epiretinal membrane surgery and ILM peeling: anatomical and functional outcomes. Semin Ophthalmol 26:42–46PubMed Pournaras CJ, Emarah A, Petropoulos IK (2011) Idiopathic macular epiretinal membrane surgery and ILM peeling: anatomical and functional outcomes. Semin Ophthalmol 26:42–46PubMed
47.
go back to reference Ripandelli G, Scarinci F, Piaggi P, Guidi G, Pileri M, Cupo G, Sartini MS, Parisi V, Baldanzellu S, Giusti C, Nardi M, Stirpe M, Lazzeri S (2015) Macular pucker: to peel or not to peel the internal limiting membrane? A microperimetric response. Retina 35:498–507PubMed Ripandelli G, Scarinci F, Piaggi P, Guidi G, Pileri M, Cupo G, Sartini MS, Parisi V, Baldanzellu S, Giusti C, Nardi M, Stirpe M, Lazzeri S (2015) Macular pucker: to peel or not to peel the internal limiting membrane? A microperimetric response. Retina 35:498–507PubMed
48.
go back to reference Tari SR, Vidne-Hay O, Greenstein VC, Barile GR, Hood DC, Chang S (2007) Functional and structural measurements for the assessment of internal limiting membrane peeling in idiopathic macular pucker. Retina 27:567–572PubMed Tari SR, Vidne-Hay O, Greenstein VC, Barile GR, Hood DC, Chang S (2007) Functional and structural measurements for the assessment of internal limiting membrane peeling in idiopathic macular pucker. Retina 27:567–572PubMed
49.
go back to reference Ueno S, Kondo M, Piao CH, Ikenoya K, Miyake Y, Terasaki H (2006) Selective amplitude reduction of the PhNR after macular hole surgery: ganglion cell damage related to ICG-assisted ILM peeling and gas tamponade. Invest Ophthalmol Vis Sci 47:3545–3549PubMed Ueno S, Kondo M, Piao CH, Ikenoya K, Miyake Y, Terasaki H (2006) Selective amplitude reduction of the PhNR after macular hole surgery: ganglion cell damage related to ICG-assisted ILM peeling and gas tamponade. Invest Ophthalmol Vis Sci 47:3545–3549PubMed
50.
go back to reference Russo A, Morescalchi F, Gambicorti E, Cancarini A, Costagliola C, Semeraro F (2019) Epiretinal membrane removal with foveal-sparing internal limiting membrane peeling: a pilot study. Retina 39:2116–2124PubMed Russo A, Morescalchi F, Gambicorti E, Cancarini A, Costagliola C, Semeraro F (2019) Epiretinal membrane removal with foveal-sparing internal limiting membrane peeling: a pilot study. Retina 39:2116–2124PubMed
Metadata
Title
Association of retinal vessel density with retinal sensitivity in surgery for idiopathic epiretinal membrane
Authors
Urara Osada
Hiroshi Kunikata
Masayuki Yasuda
Kazuki Hashimoto
Koji M. Nishiguchi
Toru Nakazawa
Publication date
01-09-2020
Publisher
Springer Berlin Heidelberg
Published in
Graefe's Archive for Clinical and Experimental Ophthalmology / Issue 9/2020
Print ISSN: 0721-832X
Electronic ISSN: 1435-702X
DOI
https://doi.org/10.1007/s00417-020-04754-0

Other articles of this Issue 9/2020

Graefe's Archive for Clinical and Experimental Ophthalmology 9/2020 Go to the issue