Skip to main content
Top
Published in: International Ophthalmology 8/2019

01-08-2019 | Original Paper

Comparison between support vector machine and deep learning, machine-learning technologies for detecting epiretinal membrane using 3D-OCT

Authors: Tomoaki Sonobe, Hitoshi Tabuchi, Hideharu Ohsugi, Hiroki Masumoto, Naohumi Ishitobi, Shoji Morita, Hiroki Enno, Daisuke Nagasato

Published in: International Ophthalmology | Issue 8/2019

Login to get access

Abstract

Purpose

In this study, we compared deep learning (DL) with support vector machine (SVM), both of which use three-dimensional optical coherence tomography (3D-OCT) images for detecting epiretinal membrane (ERM).

Methods

In total, 529 3D-OCT images from the Tsukazaki hospital ophthalmology database (184 non-ERM subjects and 205 ERM patients) were assessed; 80% of the images were divided for training, and 20% for test as follows: 423 training (non-ERM 245, ERM 178) and 106 test (non-ERM 59, ERM 47) images. Using the 423 training images, a model was created with deep convolutional neural network and SVM, and the test data were evaluated.

Results

The DL model’s sensitivity was 97.6% [95% confidence interval (CI), 87.7–99.9%] and specificity was 98.0% (95% CI, 89.7–99.9%), and the area under the curve (AUC) was 0.993 (95% CI, 0.993–0.994). In contrast, the SVM model’s sensitivity was 97.6% (95% CI, 87.7–99.9%), specificity was 94.2% (95% CI, 84.0–98.7%), and AUC was 0.988 (95% CI, 0.987–0.988).

Conclusion

DL model is better than SVM model in detecting ERM by using 3D-OCT images.
Literature
1.
go back to reference Okamoto F, Sugiura Y, Okamoto Y, Hiraoka T, Oshika T (2015) Inner nuclear layer thickness as a prognostic factor for metamorphopsia after epiretinal membrane surgery. Retina 35(10):1–8CrossRef Okamoto F, Sugiura Y, Okamoto Y, Hiraoka T, Oshika T (2015) Inner nuclear layer thickness as a prognostic factor for metamorphopsia after epiretinal membrane surgery. Retina 35(10):1–8CrossRef
2.
go back to reference Okamoto F, Okamoto Y, Hiraoka T, Oshika T (2009) Effect of vitrectomy for epiretinal membrane on visual function and vision-related quality of life. Am J Ophthalmol 147(5):869–874CrossRefPubMed Okamoto F, Okamoto Y, Hiraoka T, Oshika T (2009) Effect of vitrectomy for epiretinal membrane on visual function and vision-related quality of life. Am J Ophthalmol 147(5):869–874CrossRefPubMed
3.
go back to reference Gomes LN, Corcostegui I, Fine HF, Chang S (2009) Subfoveal pigment changes in patients with longstanding epiretinal membranes. Am J Ophthalmol 147(5):865–868CrossRefPubMed Gomes LN, Corcostegui I, Fine HF, Chang S (2009) Subfoveal pigment changes in patients with longstanding epiretinal membranes. Am J Ophthalmol 147(5):865–868CrossRefPubMed
4.
go back to reference Smiddy WE, Maguire AM, Green WR, Michels RG, de la Cruz Z, Enger C, Jaeger M, Rice TA (1989) Idiopathic epiretinal membranes. Ultra-structural characteristics and clinicopathologic correlation. Ophthalmology 96(6):811–821CrossRefPubMed Smiddy WE, Maguire AM, Green WR, Michels RG, de la Cruz Z, Enger C, Jaeger M, Rice TA (1989) Idiopathic epiretinal membranes. Ultra-structural characteristics and clinicopathologic correlation. Ophthalmology 96(6):811–821CrossRefPubMed
5.
6.
go back to reference Mitchell P, Smith W, Chey T, Wang JJ, Chang A (1997) Prevalence and association of epiretinal membranes. The Blue Mountains eye study, Australia. Ophthalmology 104(6):1033–1040CrossRefPubMed Mitchell P, Smith W, Chey T, Wang JJ, Chang A (1997) Prevalence and association of epiretinal membranes. The Blue Mountains eye study, Australia. Ophthalmology 104(6):1033–1040CrossRefPubMed
7.
go back to reference Bouwens MD, Meurs JC (2003) Sine Amsler Charts: a new method for the follow-up of metamorphopsia in patients undergoing macular pucker surgery. Grafes Arch Clin Exp Ophthalmol 241(2):89–93CrossRef Bouwens MD, Meurs JC (2003) Sine Amsler Charts: a new method for the follow-up of metamorphopsia in patients undergoing macular pucker surgery. Grafes Arch Clin Exp Ophthalmol 241(2):89–93CrossRef
8.
go back to reference Kinoshita T, Imaizumi H, Okushiba U, Miyamoto H, Ogino T, Mitamura Y (2012) Time course of changes in metamorphopsia, visual acuity, and OCT parameters after successful epiretinal membrane surgery. Invest Ophthalmol Vis Sci 53(7):3592–3597CrossRefPubMed Kinoshita T, Imaizumi H, Okushiba U, Miyamoto H, Ogino T, Mitamura Y (2012) Time course of changes in metamorphopsia, visual acuity, and OCT parameters after successful epiretinal membrane surgery. Invest Ophthalmol Vis Sci 53(7):3592–3597CrossRefPubMed
9.
go back to reference Kim JH, Kang SW, Kong MG, Ha HS (2013) Assessment of retinal layers and visual rehabilitation after epiretinal membrane removal. Graefes Arch Clin Exp Ophthalmol 251(4):1055–1064CrossRefPubMed Kim JH, Kang SW, Kong MG, Ha HS (2013) Assessment of retinal layers and visual rehabilitation after epiretinal membrane removal. Graefes Arch Clin Exp Ophthalmol 251(4):1055–1064CrossRefPubMed
10.
go back to reference Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA, Fujimoto JG (1991) Optical coherence tomography. Science 254(5035):1178–1181CrossRefPubMedPubMedCentral Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA, Fujimoto JG (1991) Optical coherence tomography. Science 254(5035):1178–1181CrossRefPubMedPubMedCentral
11.
go back to reference Drexler W, Liu M, Kumar A, Kamali T, Unterhuber A, Leitgeb RA (2014) Optical coherence tomography today: speed, contrast, and multimodality. J Biomed Opt 19(7):071412CrossRefPubMed Drexler W, Liu M, Kumar A, Kamali T, Unterhuber A, Leitgeb RA (2014) Optical coherence tomography today: speed, contrast, and multimodality. J Biomed Opt 19(7):071412CrossRefPubMed
12.
go back to reference Legarreta JE, Gregori G, Knighton RW, Punjabi OS, Lalwani GA, Puliafito CA (2008) Three-dimensional spectral-domain optical coherence tomography images of the retina in the presence of epiretinal membranes. Am J Ophthamol 145(6):1023–1030CrossRef Legarreta JE, Gregori G, Knighton RW, Punjabi OS, Lalwani GA, Puliafito CA (2008) Three-dimensional spectral-domain optical coherence tomography images of the retina in the presence of epiretinal membranes. Am J Ophthamol 145(6):1023–1030CrossRef
13.
go back to reference Lingyun G, Mingquan Y, Changrong W (2017) Cancer classification based on support vector machine optimized by particle swarm optimization and artificial bee colony. Molecules 22(12):pii: E2086CrossRef Lingyun G, Mingquan Y, Changrong W (2017) Cancer classification based on support vector machine optimized by particle swarm optimization and artificial bee colony. Molecules 22(12):pii: E2086CrossRef
15.
go back to reference Liu S, Liu S, Cai W, Che H, Pujol S, Kikinis R, Feng D, Fulham MJ (2015) Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer’s disease. IEEE Trans Biomed Eng 62:1132–1140CrossRefPubMed Liu S, Liu S, Cai W, Che H, Pujol S, Kikinis R, Feng D, Fulham MJ (2015) Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer’s disease. IEEE Trans Biomed Eng 62:1132–1140CrossRefPubMed
16.
go back to reference Litjens G, Sánchez CI, Timofeeva N, Hermsen M, Nagtegaal I, Kovacs I, de Hulsbergen-van KC, Bult P, van Ginneken B, van der Laak J (2016) Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis. Sci Rep 6:26286CrossRefPubMedPubMedCentral Litjens G, Sánchez CI, Timofeeva N, Hermsen M, Nagtegaal I, Kovacs I, de Hulsbergen-van KC, Bult P, van Ginneken B, van der Laak J (2016) Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis. Sci Rep 6:26286CrossRefPubMedPubMedCentral
17.
go back to reference Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, Venugopalan S, Widner K, Madams T, Cuadros J, Kim R, Raman R, Nelson PC, Mega JL, Webster DR (2016) Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316:2402–2410CrossRefPubMed Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, Venugopalan S, Widner K, Madams T, Cuadros J, Kim R, Raman R, Nelson PC, Mega JL, Webster DR (2016) Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316:2402–2410CrossRefPubMed
18.
go back to reference Pinaya WH, Gadelha A, Doyle OM, Noto C, Zugman A, Cordeiro Q, Jackowski AP, Bressan RA, Sato JR (2016) Using deep belief network modelling to characterize differences in brain morphometry in schizophrenia. Sci Rep 6:38897CrossRefPubMedPubMedCentral Pinaya WH, Gadelha A, Doyle OM, Noto C, Zugman A, Cordeiro Q, Jackowski AP, Bressan RA, Sato JR (2016) Using deep belief network modelling to characterize differences in brain morphometry in schizophrenia. Sci Rep 6:38897CrossRefPubMedPubMedCentral
19.
go back to reference Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks. In: Proceedings of NIPS, pp 1097–1105 Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks. In: Proceedings of NIPS, pp 1097–1105
20.
go back to reference Gargeya R, Leng T (2017) Automated identification of diabetic retinopathy using deep learning. Ophthalmology 124(7):962–969CrossRefPubMed Gargeya R, Leng T (2017) Automated identification of diabetic retinopathy using deep learning. Ophthalmology 124(7):962–969CrossRefPubMed
21.
go back to reference Glorot X, Bordes A, Bengio Y (2011) Deep sparse rectifier neural networks. In: Proceedings of the fourteenth international conference on artificial intelligence and statistics, pp 315–323 Glorot X, Bordes A, Bengio Y (2011) Deep sparse rectifier neural networks. In: Proceedings of the fourteenth international conference on artificial intelligence and statistics, pp 315–323
22.
go back to reference Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple way to prevent neural networks from overfitting. JMLR 15(1):1929–1958 Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple way to prevent neural networks from overfitting. JMLR 15(1):1929–1958
23.
go back to reference Qian N (1999) On the momentum term in gradient descent learning algorithms. Neural Netw 12(1):145–151CrossRefPubMed Qian N (1999) On the momentum term in gradient descent learning algorithms. Neural Netw 12(1):145–151CrossRefPubMed
24.
go back to reference Nesterov Y (1983) A method for unconstrained convex minimization problem with the rate of convergence O (1/k^ 2). Doklady AN USSR 269:543–547 Nesterov Y (1983) A method for unconstrained convex minimization problem with the rate of convergence O (1/k^ 2). Doklady AN USSR 269:543–547
25.
go back to reference Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830 Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830
26.
27.
go back to reference Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L (2009) ImageNet: a large-scale hierarchical image database. In: IEEE conference on computer vision and pattern recognition, CVPR 2009 Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L (2009) ImageNet: a large-scale hierarchical image database. In: IEEE conference on computer vision and pattern recognition, CVPR 2009
28.
go back to reference Alsaih K, Lemaitre G, Rastgoo M (2017) Machine learning techniques for diabetic macular edema (DME) classification on SD-OCT image. BioMed Eng Online 16:68CrossRefPubMedPubMedCentral Alsaih K, Lemaitre G, Rastgoo M (2017) Machine learning techniques for diabetic macular edema (DME) classification on SD-OCT image. BioMed Eng Online 16:68CrossRefPubMedPubMedCentral
31.
go back to reference Asaoka R, Murata H, Iwase A, Araie M (2016) Detecting preperimetric glaucoma with standard automated perimetry using a deep learning classifier. Ophthalmology 123(9):1974–1980CrossRefPubMed Asaoka R, Murata H, Iwase A, Araie M (2016) Detecting preperimetric glaucoma with standard automated perimetry using a deep learning classifier. Ophthalmology 123(9):1974–1980CrossRefPubMed
32.
go back to reference Kim JS, Chhablani J, Chan K, Cheng L, Kozak I, Hartmann K, Freeman WR (2012) Retinal adherence and fibrillary surface changes correlate with surgical difficulty of epiretinal membrane removal. Am J Ophthalmol 153(4):692–697CrossRefPubMed Kim JS, Chhablani J, Chan K, Cheng L, Kozak I, Hartmann K, Freeman WR (2012) Retinal adherence and fibrillary surface changes correlate with surgical difficulty of epiretinal membrane removal. Am J Ophthalmol 153(4):692–697CrossRefPubMed
Metadata
Title
Comparison between support vector machine and deep learning, machine-learning technologies for detecting epiretinal membrane using 3D-OCT
Authors
Tomoaki Sonobe
Hitoshi Tabuchi
Hideharu Ohsugi
Hiroki Masumoto
Naohumi Ishitobi
Shoji Morita
Hiroki Enno
Daisuke Nagasato
Publication date
01-08-2019
Publisher
Springer Netherlands
Published in
International Ophthalmology / Issue 8/2019
Print ISSN: 0165-5701
Electronic ISSN: 1573-2630
DOI
https://doi.org/10.1007/s10792-018-1016-x

Other articles of this Issue 8/2019

International Ophthalmology 8/2019 Go to the issue