Skip to main content
Top
Published in: Inflammation 1/2024

Open Access 21-10-2023 | Acute Respiratory Distress-Syndrome | RESEARCH

Fibroblast Growth Factor 21 Relieves Lipopolysaccharide-Induced Acute Lung Injury by Suppressing JAK2/STAT3 Signaling Pathway

Authors: Mengsi Cai, Huihui Ye, Xiayan Zhu, Xiuchun Li, Luqiong Cai, Jiajia Jin, Qiwen Chen, Yuzhe Shi, Lehe Yang, Liangxing Wang, Xiaoying Huang

Published in: Inflammation | Issue 1/2024

Login to get access

Abstract

Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is a life‐threatening disease without an effective drug at present. Fibroblast growth factor 21 (FGF21) was reported to be protective against inflammation in metabolic disease in recent studies. However, the role of FGF21 in ALI has been rarely investigated. In this study, it was found that the expression of FGF21 was markedly increased in lung tissue under lipopolysaccharide (LPS) stimulation in vivo, whereas it was decreased in lung epithelial cells under LPS stimulation in vitro. Therefore, our research aimed to elucidate the potential role of FGF21 in LPS-induced ALI and to detect possible underlying mechanisms. The results revealed that the deficiency of FGF21 aggravated pathological damage, inflammatory infiltration, and pulmonary function in LPS-induced ALI, while exogenous administration of FGF21 improved these manifestations. Moreover, through RNA sequencing and enrichment analysis, it was unveiled that FGF21 might play a protective role in LPS-induced ALI via JAK2/STAT3 signaling pathway. The therapeutic effect of FGF21 was weakened after additional usage of JAK2 activator in vivo. Further investigation revealed that FGF21 significantly inhibited STAT3 phosphorylation and impaired the nuclear translocation of STAT3 in vitro. In addition, the aggravation of inflammation caused by silencing FGF21 can be alleviated by JAK2 inhibitor in vitro. Collectively, these findings unveil a potent protective effect of FGF21 against LPS-induced ALI by inhibiting the JAK2/STAT3 pathway, implying that FGF21 might be a novel and effective therapy for ALI.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bellani, G., J.G. Laffey, T. Pham, E. Fan, L. Brochard, A. Esteban, L. Gattinoni, F. van Haren, A. Larsson, D.F. McAuley, and M. Ranieri. 2016. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA 315: 788–800.CrossRefPubMed Bellani, G., J.G. Laffey, T. Pham, E. Fan, L. Brochard, A. Esteban, L. Gattinoni, F. van Haren, A. Larsson, D.F. McAuley, and M. Ranieri. 2016. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA 315: 788–800.CrossRefPubMed
2.
go back to reference Muralidar, S., S.V. Ambi, S. Sekaran, and U.M. Krishnan. 2020. The emergence of COVID-19 as a global pandemic: Understanding the epidemiology, immune response and potential therapeutic targets of SARS-CoV-2. Biochimie 179: 85–100.CrossRefPubMedPubMedCentral Muralidar, S., S.V. Ambi, S. Sekaran, and U.M. Krishnan. 2020. The emergence of COVID-19 as a global pandemic: Understanding the epidemiology, immune response and potential therapeutic targets of SARS-CoV-2. Biochimie 179: 85–100.CrossRefPubMedPubMedCentral
3.
go back to reference Kumar, V. 2020. Pulmonary innate immune response determines the outcome of inflammation during pneumonia and sepsis-associated acute lung injury. Frontiers in Immunology 11: 1722.CrossRefPubMedPubMedCentral Kumar, V. 2020. Pulmonary innate immune response determines the outcome of inflammation during pneumonia and sepsis-associated acute lung injury. Frontiers in Immunology 11: 1722.CrossRefPubMedPubMedCentral
4.
go back to reference Nova, Z., H. Skovierova, and A. Calkovska. 2019. Alveolar-capillary membrane-related pulmonary cells as a target in endotoxin-induced acute lung injury. International Journal of Molecular Science 20. Nova, Z., H. Skovierova, and A. Calkovska. 2019. Alveolar-capillary membrane-related pulmonary cells as a target in endotoxin-induced acute lung injury. International Journal of Molecular Science 20.
5.
go back to reference Fisher, F.M., and E. Maratos-Flier. 2016. Understanding the physiology of FGF21. Annual Review of Physiology 78: 223–241.CrossRefPubMed Fisher, F.M., and E. Maratos-Flier. 2016. Understanding the physiology of FGF21. Annual Review of Physiology 78: 223–241.CrossRefPubMed
6.
go back to reference Zhang, X., L. Yang, X. Xu, F. Tang, P. Yi, B. Qiu, and Y. Hao. 2019. A review of fibroblast growth factor 21 in diabetic cardiomyopathy. Heart Failure Reviews 24: 1005–1017.CrossRefPubMed Zhang, X., L. Yang, X. Xu, F. Tang, P. Yi, B. Qiu, and Y. Hao. 2019. A review of fibroblast growth factor 21 in diabetic cardiomyopathy. Heart Failure Reviews 24: 1005–1017.CrossRefPubMed
7.
go back to reference Broadbent, J.M. 1987. An American Board of Orthodontics case report. American Journal of Orthodontics and Dentofacial Orthopedics 91: 62–69.CrossRefPubMed Broadbent, J.M. 1987. An American Board of Orthodontics case report. American Journal of Orthodontics and Dentofacial Orthopedics 91: 62–69.CrossRefPubMed
9.
go back to reference Ruan, C.C., L.R. Kong, X.H. Chen, Y. Ma, X.X. Pan, Z.B. Zhang, and P.J. Gao. 2018. A2A receptor activation attenuates hypertensive cardiac remodeling via promoting brown adipose tissue-derived FGF21. Cell Metabolism 28 (476–489). Ruan, C.C., L.R. Kong, X.H. Chen, Y. Ma, X.X. Pan, Z.B. Zhang, and P.J. Gao. 2018. A2A receptor activation attenuates hypertensive cardiac remodeling via promoting brown adipose tissue-derived FGF21. Cell Metabolism 28 (476–489).
10.
go back to reference Hong, E.S., C. Lim, H.Y. Choi, Y.K. Lee, E.J. Ku, J.H. Moon, K.S. Park, H.C. Jang, and S.H. Choi. 2019. Plasma fibroblast growth factor 21 levels increase with ectopic fat accumulation and its receptor levels are decreased in the visceral fat of patients with type 2 diabetes. BMJ Open Diabetes Research & Care 7: e000776. Hong, E.S., C. Lim, H.Y. Choi, Y.K. Lee, E.J. Ku, J.H. Moon, K.S. Park, H.C. Jang, and S.H. Choi. 2019. Plasma fibroblast growth factor 21 levels increase with ectopic fat accumulation and its receptor levels are decreased in the visceral fat of patients with type 2 diabetes. BMJ Open Diabetes Research & Care 7: e000776.
11.
go back to reference von Holstein-Rathlou, S., and M.P. Gillum. 2019. Fibroblast growth factor 21: An endocrine inhibitor of sugar and alcohol appetite. Journal of Physiology 597: 3539–3548.CrossRefPubMed von Holstein-Rathlou, S., and M.P. Gillum. 2019. Fibroblast growth factor 21: An endocrine inhibitor of sugar and alcohol appetite. Journal of Physiology 597: 3539–3548.CrossRefPubMed
12.
go back to reference Gariani, K., G. Drifte, I. Dunn-Siegrist, J. Pugin, and F.R. Jornayvaz. 2013. Increased FGF21 plasma levels in humans with sepsis and SIRS. Endocrine Connections 2: 146–153.CrossRefPubMedPubMedCentral Gariani, K., G. Drifte, I. Dunn-Siegrist, J. Pugin, and F.R. Jornayvaz. 2013. Increased FGF21 plasma levels in humans with sepsis and SIRS. Endocrine Connections 2: 146–153.CrossRefPubMedPubMedCentral
13.
go back to reference Yu, Y., J. He, S. Li, L. Song, X. Guo, W. Yao, D. Zou, X. Gao, Y. Liu, F. Bai, and G. Ren. 2016. Fibroblast growth factor 21 (FGF21) inhibits macrophage-mediated inflammation by activating Nrf2 and suppressing the NF-kappaB signaling pathway. International Immunopharmacology 38: 144–152. Yu, Y., J. He, S. Li, L. Song, X. Guo, W. Yao, D. Zou, X. Gao, Y. Liu, F. Bai, and G. Ren. 2016. Fibroblast growth factor 21 (FGF21) inhibits macrophage-mediated inflammation by activating Nrf2 and suppressing the NF-kappaB signaling pathway. International Immunopharmacology 38: 144–152.
14.
go back to reference Zhou, X., X. Wang, L. Lu, M. Deng, and X. Shi. 2022. Fibroblast growth factor 21 improves lipopolysaccharide-induced pulmonary microvascular endothelial cell dysfunction and inflammatory response through SIRT1-mediated NF-kappaB deacetylation. Canadian Journal of Physiology and Pharmacology 100: 492–499.CrossRefPubMed Zhou, X., X. Wang, L. Lu, M. Deng, and X. Shi. 2022. Fibroblast growth factor 21 improves lipopolysaccharide-induced pulmonary microvascular endothelial cell dysfunction and inflammatory response through SIRT1-mediated NF-kappaB deacetylation. Canadian Journal of Physiology and Pharmacology 100: 492–499.CrossRefPubMed
15.
go back to reference Root-Bernstein R. 2021. Innate receptor activation patterns involving TLR and NLR synergisms in COVID-19, ALI/ARDS and sepsis cytokine storms: a review and model making novel predictions and therapeutic suggestions. International Journal of Molecular Science 22. Root-Bernstein R. 2021. Innate receptor activation patterns involving TLR and NLR synergisms in COVID-19, ALI/ARDS and sepsis cytokine storms: a review and model making novel predictions and therapeutic suggestions. International Journal of Molecular Science 22.
16.
go back to reference Fara, A., Z. Mitrev, R.A. Rosalia, and B.M. Assas. 2020. Cytokine storm and COVID-19: A chronicle of pro-inflammatory cytokines. Open Biology 10. Fara, A., Z. Mitrev, R.A. Rosalia, and B.M. Assas. 2020. Cytokine storm and COVID-19: A chronicle of pro-inflammatory cytokines. Open Biology 10.
17.
go back to reference Tanaka, T., M. Narazaki, and T. Kishimoto. 2016. Immunotherapeutic implications of IL-6 blockade for cytokine storm. Immunotherapy 8: 959–970.CrossRefPubMed Tanaka, T., M. Narazaki, and T. Kishimoto. 2016. Immunotherapeutic implications of IL-6 blockade for cytokine storm. Immunotherapy 8: 959–970.CrossRefPubMed
18.
go back to reference Montero, P., J. Milara, I. Roger, and J. Cortijo. 2021. Role of JAK/STAT in interstitial lung diseases; molecular and cellular mechanisms. International Journal of Molecular Science 22. Montero, P., J. Milara, I. Roger, and J. Cortijo. 2021. Role of JAK/STAT in interstitial lung diseases; molecular and cellular mechanisms. International Journal of Molecular Science 22.
19.
go back to reference Uciechowski, P., and W. Dempke. 2020. Interleukin-6: A masterplayer in the cytokine network. Oncology 98: 131–137.CrossRefPubMed Uciechowski, P., and W. Dempke. 2020. Interleukin-6: A masterplayer in the cytokine network. Oncology 98: 131–137.CrossRefPubMed
20.
go back to reference Mihara, M., M. Hashizume, H. Yoshida, M. Suzuki, and M. Shiina. 2012. IL-6/IL-6 receptor system and its role in physiological and pathological conditions. Clinical Science (London, England) 122: 143–159.CrossRef Mihara, M., M. Hashizume, H. Yoshida, M. Suzuki, and M. Shiina. 2012. IL-6/IL-6 receptor system and its role in physiological and pathological conditions. Clinical Science (London, England) 122: 143–159.CrossRef
21.
go back to reference Ying, X.D., G. Wei, and H. An. 2021. Sodium butyrate relieves lung ischemia-reperfusion injury by inhibiting NF-kappaB and JAK2/STAT3 signaling pathways. European Review for Medical and Pharmacological Sciences 25: 413–422. Ying, X.D., G. Wei, and H. An. 2021. Sodium butyrate relieves lung ischemia-reperfusion injury by inhibiting NF-kappaB and JAK2/STAT3 signaling pathways. European Review for Medical and Pharmacological Sciences 25: 413–422.
22.
go back to reference Potthoff, M.J., T. Inagaki, S. Satapati, X. Ding, T. He, R. Goetz, M. Mohammadi, B.N. Finck, D.J. Mangelsdorf, S.A. Kliewer, and S.C. Burgess. 2009. FGF21 induces PGC-1alpha and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response. Proceedings of the National Academy of Sciences of the United States of America 106: 10853–10858.CrossRefPubMedPubMedCentral Potthoff, M.J., T. Inagaki, S. Satapati, X. Ding, T. He, R. Goetz, M. Mohammadi, B.N. Finck, D.J. Mangelsdorf, S.A. Kliewer, and S.C. Burgess. 2009. FGF21 induces PGC-1alpha and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response. Proceedings of the National Academy of Sciences of the United States of America 106: 10853–10858.CrossRefPubMedPubMedCentral
23.
go back to reference Ye, Z., P. Wang, G. Feng, Q. Wang, C. Liu, J. Lu, J. Chen, and P. Liu. 2022. Cryptotanshinone attenuates LPS-induced acute lung injury by regulating metabolic reprogramming of macrophage. Frontiers in Medicine 9: 1075465.CrossRefPubMed Ye, Z., P. Wang, G. Feng, Q. Wang, C. Liu, J. Lu, J. Chen, and P. Liu. 2022. Cryptotanshinone attenuates LPS-induced acute lung injury by regulating metabolic reprogramming of macrophage. Frontiers in Medicine 9: 1075465.CrossRefPubMed
24.
go back to reference Gong, F., R. Li, X. Zheng, W. Chen, Y. Zheng, Z. Yang, Y. Chen, H. Qu, E. Mao, and E. Chen. 2021. OLFM4 regulates lung epithelial cell function in sepsis-associated ARDS/ALI via LDHA-mediated NF-κB signaling. Journal of Inflammation Research 14: 7035–7051.CrossRefPubMedPubMedCentral Gong, F., R. Li, X. Zheng, W. Chen, Y. Zheng, Z. Yang, Y. Chen, H. Qu, E. Mao, and E. Chen. 2021. OLFM4 regulates lung epithelial cell function in sepsis-associated ARDS/ALI via LDHA-mediated NF-κB signaling. Journal of Inflammation Research 14: 7035–7051.CrossRefPubMedPubMedCentral
25.
go back to reference Peritore, A. F., R. D'Amico, R. Siracusa, M. Cordaro, R. Fusco, E. Gugliandolo, T. Genovese, R. Crupi, R. Di Paola, S. Cuzzocrea, and D. Impellizzeri. 2021. Management of acute lung injury: palmitoylethanolamide as a new approach. International Journal of Molecular Sciences 22. Peritore, A. F., R. D'Amico, R. Siracusa, M. Cordaro, R. Fusco, E. Gugliandolo, T. Genovese, R. Crupi, R. Di Paola, S. Cuzzocrea, and D. Impellizzeri. 2021. Management of acute lung injury: palmitoylethanolamide as a new approach. International Journal of Molecular Sciences 22.
26.
go back to reference Li, W.W., T.Y. Wang, B. Cao, B. Liu, Y.M. Rong, J.J. Wang, F. Wei, L.Q. Wei, H. Chen, and Y.X. Liu. 2019. Synergistic protection of matrine and lycopene against lipopolysaccharide-induced acute lung injury in mice. Molecular medicine reports 20: 455–462.PubMedPubMedCentral Li, W.W., T.Y. Wang, B. Cao, B. Liu, Y.M. Rong, J.J. Wang, F. Wei, L.Q. Wei, H. Chen, and Y.X. Liu. 2019. Synergistic protection of matrine and lycopene against lipopolysaccharide-induced acute lung injury in mice. Molecular medicine reports 20: 455–462.PubMedPubMedCentral
27.
go back to reference Zhou, B., M. Xiao, H. Hu, X. Pei, Y. Xue, G. Miao, J. Wang, W. Li, Y. Du, P. Zhang, and T. Wei. 2021. Cardioprotective role of SIRT5 in response to acute ischemia through a novel liver-cardiac crosstalk mechanism. Frontiers in cell and developmental biology 9. Zhou, B., M. Xiao, H. Hu, X. Pei, Y. Xue, G. Miao, J. Wang, W. Li, Y. Du, P. Zhang, and T. Wei. 2021. Cardioprotective role of SIRT5 in response to acute ischemia through a novel liver-cardiac crosstalk mechanism. Frontiers in cell and developmental biology 9.
28.
go back to reference Jia, W.H., N.Q. Wang, L. Yin, X. Chen, B.Y. Hou, J.H. Wang, G.F. Qiang, C.B. Chan, X.Y. Yang, and G.H. Du. 2020. Effects of fasting on the expression pattern of FGFs in different skeletal muscle fibre types and sexes in mice. Biology of sex differences 11:9. Jia, W.H., N.Q. Wang, L. Yin, X. Chen, B.Y. Hou, J.H. Wang, G.F. Qiang, C.B. Chan, X.Y. Yang, and G.H. Du. 2020. Effects of fasting on the expression pattern of FGFs in different skeletal muscle fibre types and sexes in mice. Biology of sex differences 11:9.
29.
go back to reference Ribeiro, A., V.I. Almeida, C. Costola-de-Souza, V. Ferraz-de-Paula, M.L. Pinheiro, L.B. Vitoretti, J.A. Gimenes-Junior, A.T. Akamine, J.A. Crippa, W. Tavares-de-Lima, and J. Palermo-Neto. 2015. Cannabidiol improves lung function and inflammation in mice submitted to LPS-induced acute lung injury. Immunopharmacology and Immunotoxicology 37: 35–41.CrossRefPubMed Ribeiro, A., V.I. Almeida, C. Costola-de-Souza, V. Ferraz-de-Paula, M.L. Pinheiro, L.B. Vitoretti, J.A. Gimenes-Junior, A.T. Akamine, J.A. Crippa, W. Tavares-de-Lima, and J. Palermo-Neto. 2015. Cannabidiol improves lung function and inflammation in mice submitted to LPS-induced acute lung injury. Immunopharmacology and Immunotoxicology 37: 35–41.CrossRefPubMed
30.
go back to reference Yang, Q.W., and W.H. Ling. 2016. The role of FGF21 in regulating lipid and glucose metabolism. Sheng Li Ke Xue Jin Zhan 47: 260–264.PubMed Yang, Q.W., and W.H. Ling. 2016. The role of FGF21 in regulating lipid and glucose metabolism. Sheng Li Ke Xue Jin Zhan 47: 260–264.PubMed
31.
go back to reference Xie, T., and P.S. Leung. 2017. Fibroblast growth factor 21: A regulator of metabolic disease and health span. American journal of physiology. Endocrinology and metabolism 313: E292–E302.CrossRefPubMedPubMedCentral Xie, T., and P.S. Leung. 2017. Fibroblast growth factor 21: A regulator of metabolic disease and health span. American journal of physiology. Endocrinology and metabolism 313: E292–E302.CrossRefPubMedPubMedCentral
32.
go back to reference Pan, X., Y. Shao, F. Wu, Y. Wang, R. Xiong, J. Zheng, H. Tian, B. Wang, Y. Wang, Y. Zhang, and Z. Han. 2018. FGF21 prevents angiotensin II-induced hypertension and vascular dysfunction by activation of ACE2/angiotensin-(1–7) axis in mice. Cell Metabolism 27: 1323–1337.e1325.CrossRefPubMed Pan, X., Y. Shao, F. Wu, Y. Wang, R. Xiong, J. Zheng, H. Tian, B. Wang, Y. Wang, Y. Zhang, and Z. Han. 2018. FGF21 prevents angiotensin II-induced hypertension and vascular dysfunction by activation of ACE2/angiotensin-(1–7) axis in mice. Cell Metabolism 27: 1323–1337.e1325.CrossRefPubMed
33.
go back to reference Pan, Q., S. Lin, Y. Li, L. Liu, X. Li, X. Gao, J. Yan, B. Gu, X. Chen, W. Li, and X. Tang. 2021. A novel GLP-1 and FGF21 dual agonist has therapeutic potential for diabetes and non-alcoholic steatohepatitis. eBioMedicine 63. Pan, Q., S. Lin, Y. Li, L. Liu, X. Li, X. Gao, J. Yan, B. Gu, X. Chen, W. Li, and X. Tang. 2021. A novel GLP-1 and FGF21 dual agonist has therapeutic potential for diabetes and non-alcoholic steatohepatitis. eBioMedicine 63.
34.
go back to reference Jimenez, V., C. Jambrina, E. Casana, V. Sacristan, S. Munoz, S. Darriba, J. Rodo, C. Mallol, M. Garcia, X. Leon, and S. Marco. 2018. FGF21 gene therapy as treatment for obesity and insulin resistance. EMBO Molecular Medicine 10. Jimenez, V., C. Jambrina, E. Casana, V. Sacristan, S. Munoz, S. Darriba, J. Rodo, C. Mallol, M. Garcia, X. Leon, and S. Marco. 2018. FGF21 gene therapy as treatment for obesity and insulin resistance. EMBO Molecular Medicine 10.
35.
go back to reference Li, S., Z. Zhu, M. Xue, X. Yi, J. Liang, C. Niu, G. Chen, Y. Shen, H. Zhang, J. Zheng, and C. Zhao. 2019. Fibroblast growth factor 21 protects the heart from angiotensin II-induced cardiac hypertrophy and dysfunction via SIRT1. Biochimica et Biophysica Acta, Molecular Basis of Disease 1865: 1241–1252.CrossRefPubMed Li, S., Z. Zhu, M. Xue, X. Yi, J. Liang, C. Niu, G. Chen, Y. Shen, H. Zhang, J. Zheng, and C. Zhao. 2019. Fibroblast growth factor 21 protects the heart from angiotensin II-induced cardiac hypertrophy and dysfunction via SIRT1. Biochimica et Biophysica Acta, Molecular Basis of Disease 1865: 1241–1252.CrossRefPubMed
36.
go back to reference Li, H., Q. Fang, F. Gao, J. Fan, J. Zhou, X. Wang, H. Zhang, X. Pan, Y. Bao, K. Xiang, and A. Xu. 2010. Fibroblast growth factor 21 levels are increased in nonalcoholic fatty liver disease patients and are correlated with hepatic triglyceride. Journal of Hepatology 53: 934–940.CrossRefPubMed Li, H., Q. Fang, F. Gao, J. Fan, J. Zhou, X. Wang, H. Zhang, X. Pan, Y. Bao, K. Xiang, and A. Xu. 2010. Fibroblast growth factor 21 levels are increased in nonalcoholic fatty liver disease patients and are correlated with hepatic triglyceride. Journal of Hepatology 53: 934–940.CrossRefPubMed
37.
go back to reference Semba, R.D., C. Crasto, J. Strait, K. Sun, D.A. Schaumberg, and L. Ferrucci. 2013. Elevated serum fibroblast growth factor 21 is associated with hypertension in community-dwelling adults. Journal of Human Hypertension 27: 397–399.CrossRefPubMed Semba, R.D., C. Crasto, J. Strait, K. Sun, D.A. Schaumberg, and L. Ferrucci. 2013. Elevated serum fibroblast growth factor 21 is associated with hypertension in community-dwelling adults. Journal of Human Hypertension 27: 397–399.CrossRefPubMed
38.
go back to reference Chow, W.S., A. Xu, Y.C. Woo, A.W. Tso, S.C. Cheung, C.H. Fong, H.F. Tse, M.T. Chua, B.M. Cheng, and Lam KS. 2013. Serum fibroblast growth factor-21 levels are associated with carotid atherosclerosis independent of established cardiovascular risk factors. Arteriosclerosis, Thrombosis, and Vascular Biology 33: 2454–2459.CrossRefPubMed Chow, W.S., A. Xu, Y.C. Woo, A.W. Tso, S.C. Cheung, C.H. Fong, H.F. Tse, M.T. Chua, B.M. Cheng, and Lam KS. 2013. Serum fibroblast growth factor-21 levels are associated with carotid atherosclerosis independent of established cardiovascular risk factors. Arteriosclerosis, Thrombosis, and Vascular Biology 33: 2454–2459.CrossRefPubMed
39.
go back to reference Iglesias, P., R. Selgas, S. Romero, and J.J. Diez. 2012. Biological role, clinical significance, and therapeutic possibilities of the recently discovered metabolic hormone fibroblastic growth factor 21. European Journal of Endocrinology 167: 301–309.CrossRefPubMed Iglesias, P., R. Selgas, S. Romero, and J.J. Diez. 2012. Biological role, clinical significance, and therapeutic possibilities of the recently discovered metabolic hormone fibroblastic growth factor 21. European Journal of Endocrinology 167: 301–309.CrossRefPubMed
40.
go back to reference Dushay, J., and M. Lai. 2019. Is trimming the fat enough? Fibroblast growth factor 21 as an emerging treatment for nonalcoholic fatty liver disease. Hepatology 70: 1860–1862.CrossRefPubMed Dushay, J., and M. Lai. 2019. Is trimming the fat enough? Fibroblast growth factor 21 as an emerging treatment for nonalcoholic fatty liver disease. Hepatology 70: 1860–1862.CrossRefPubMed
41.
go back to reference Martinez-Garza, Ú., D. Torres-Oteros, A. Yarritu-Gallego, P.F. Marrero, D. Haro, and J. Relat. 2019. Fibroblast growth factor 21 and the adaptive response to nutritional challenges. International Journal of Molecular Sciences 20. Martinez-Garza, Ú., D. Torres-Oteros, A. Yarritu-Gallego, P.F. Marrero, D. Haro, and J. Relat. 2019. Fibroblast growth factor 21 and the adaptive response to nutritional challenges. International Journal of Molecular Sciences 20.
42.
go back to reference Abu-Odeh, M., Y. Zhang, S.M. Reilly, N. Ebadat, O. Keinan, J.M. Valentine, M. Hafezi-Bakhtiari, H. Ashayer, L. Mamoun, X. Zhou, and J. Zhang. 2021. FGF21 promotes thermogenic gene expression as an autocrine factor in adipocytes. Cell Reports 35. Abu-Odeh, M., Y. Zhang, S.M. Reilly, N. Ebadat, O. Keinan, J.M. Valentine, M. Hafezi-Bakhtiari, H. Ashayer, L. Mamoun, X. Zhou, and J. Zhang. 2021. FGF21 promotes thermogenic gene expression as an autocrine factor in adipocytes. Cell Reports 35.
43.
go back to reference Wang, N., T.Y. Xu, X. Zhang, J.Y. Li, Y.X. Wang, X.C. Guo, S.M. Li, W.F. Wang, and D.S. Li. 2018. Improving hyperglycemic effect of FGF-21 is associated with alleviating inflammatory state in diabetes. International Immunopharmacology 56:301–309. Wang, N., T.Y. Xu, X. Zhang, J.Y. Li, Y.X. Wang, X.C. Guo, S.M. Li, W.F. Wang, and D.S. Li. 2018. Improving hyperglycemic effect of FGF-21 is associated with alleviating inflammatory state in diabetes. International Immunopharmacology 56:301–309.
44.
go back to reference Liu, M.H. 2015. FGF-21 alleviates diabetes-associated vascular complications: Inhibiting NF-kappaB/NLRP3 inflammasome-mediated inflammation? International Journal of Cardiology 185: 320–321.CrossRefPubMed Liu, M.H. 2015. FGF-21 alleviates diabetes-associated vascular complications: Inhibiting NF-kappaB/NLRP3 inflammasome-mediated inflammation? International Journal of Cardiology 185: 320–321.CrossRefPubMed
45.
go back to reference Huen, S.C., A. Wang, K. Feola, R. Desrouleaux, H.H. Luan, R. Hogg, C. Zhang, Q. Zhang, and Z.P. Liu. 2021. Hepatic FGF21 preserves thermoregulation and cardiovascular function during bacterial inflammation. Journal of Experiment Medicine 218. Huen, S.C., A. Wang, K. Feola, R. Desrouleaux, H.H. Luan, R. Hogg, C. Zhang, Q. Zhang, and Z.P. Liu. 2021. Hepatic FGF21 preserves thermoregulation and cardiovascular function during bacterial inflammation. Journal of Experiment Medicine 218.
46.
go back to reference Gao, J., Q. Liu, J. Li, Hu, W. Zhao, W. Ma, and L. Xing. 2020. Fibroblast Growth Factor 21 dependent TLR4/MYD88/NF-kappaB signaling activation is involved in lipopolysaccharide-induced acute lung injury. International Immunopharmacology 80. Gao, J., Q. Liu, J. Li, Hu, W. Zhao, W. Ma, and L. Xing. 2020. Fibroblast Growth Factor 21 dependent TLR4/MYD88/NF-kappaB signaling activation is involved in lipopolysaccharide-induced acute lung injury. International Immunopharmacology 80.
47.
go back to reference Villarino, A.V., Y. Kanno, J.R. Ferdinand, and J.J. O’Shea. 2015. Mechanisms of Jak/STAT signaling in immunity and disease. The Journal of Immunology 194: 21–27.CrossRefPubMed Villarino, A.V., Y. Kanno, J.R. Ferdinand, and J.J. O’Shea. 2015. Mechanisms of Jak/STAT signaling in immunity and disease. The Journal of Immunology 194: 21–27.CrossRefPubMed
48.
go back to reference Wu, J., X. Yan, and G. Jin. 2018. Ulinastatin protects rats from sepsis-induced acute lung injury by suppressing the JAK-STAT3 pathway. Journal of Cellular Biochemistry. Wu, J., X. Yan, and G. Jin. 2018. Ulinastatin protects rats from sepsis-induced acute lung injury by suppressing the JAK-STAT3 pathway. Journal of Cellular Biochemistry.
49.
go back to reference Kong, F., Y. Sun, W. Song, Y. Zhou, and S. Zhu. 2020. MiR-216a alleviates LPS-induced acute lung injury via regulating JAK2/STAT3 and NF-kappaB signaling. Human Cell 33: 67–78.CrossRefPubMed Kong, F., Y. Sun, W. Song, Y. Zhou, and S. Zhu. 2020. MiR-216a alleviates LPS-induced acute lung injury via regulating JAK2/STAT3 and NF-kappaB signaling. Human Cell 33: 67–78.CrossRefPubMed
50.
go back to reference Sun, Y., W.Z. Liu, T. Liu, X. Feng, N. Yang, and H.F. Zhou. 2015. Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. Journal of Receptor and Signal Transduction Research 35: 600–604.CrossRefPubMed Sun, Y., W.Z. Liu, T. Liu, X. Feng, N. Yang, and H.F. Zhou. 2015. Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. Journal of Receptor and Signal Transduction Research 35: 600–604.CrossRefPubMed
51.
go back to reference Xu, F., J. Xu, X. Xiong, and Y. Deng. 2019. Salidroside inhibits MAPK, NF-kappaB, and STAT3 pathways in psoriasis-associated oxidative stress via SIRT1 activation. Redox Report 24: 70–74.CrossRefPubMedPubMedCentral Xu, F., J. Xu, X. Xiong, and Y. Deng. 2019. Salidroside inhibits MAPK, NF-kappaB, and STAT3 pathways in psoriasis-associated oxidative stress via SIRT1 activation. Redox Report 24: 70–74.CrossRefPubMedPubMedCentral
52.
go back to reference Yeung, Y.T., F. Aziz, A. Guerrero-Castilla, and S. Arguelles. 2018. Signaling pathways in inflammation and anti-inflammatory therapies. Current Pharmaceutical Design 24: 1449–1484.CrossRefPubMed Yeung, Y.T., F. Aziz, A. Guerrero-Castilla, and S. Arguelles. 2018. Signaling pathways in inflammation and anti-inflammatory therapies. Current Pharmaceutical Design 24: 1449–1484.CrossRefPubMed
Metadata
Title
Fibroblast Growth Factor 21 Relieves Lipopolysaccharide-Induced Acute Lung Injury by Suppressing JAK2/STAT3 Signaling Pathway
Authors
Mengsi Cai
Huihui Ye
Xiayan Zhu
Xiuchun Li
Luqiong Cai
Jiajia Jin
Qiwen Chen
Yuzhe Shi
Lehe Yang
Liangxing Wang
Xiaoying Huang
Publication date
21-10-2023
Publisher
Springer US
Published in
Inflammation / Issue 1/2024
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-023-01905-3

Other articles of this Issue 1/2024

Inflammation 1/2024 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine