Skip to main content
Top
Published in: Inflammation 1/2024

27-09-2023 | RESEARCH

Anti-Necroptotic Effects of Itaconate and its Derivatives

Authors: Si-tao Ni, Qing Li, Ying Chen, Fu-li Shi, Tak-sui Wong, Li-sha Yuan, Rong Xu, Ying-qing Gan, Na Lu, Ya-ping Li, Zhi-ya Zhou, Li-hui Xu, Xian-hui He, Bo Hu, Dong-yun Ouyang

Published in: Inflammation | Issue 1/2024

Login to get access

Abstract

Itaconate is an unsaturated dicarboxylic acid that is derived from the decarboxylation of the Krebs cycle intermediate cis-aconitate and has been shown to exhibit anti-inflammatory and anti-bacterial/viral properties. But the mechanisms underlying itaconate’s anti-inflammatory activities are not fully understood. Necroptosis, a lytic form of regulated cell death (RCD), is mediated by receptor-interacting protein kinase 1 (RIPK1), RIPK3, and mixed lineage kinase domain-like protein (MLKL) signaling. It has been involved in the pathogenesis of organ injury in many inflammatory diseases. In this study, we aimed to explore whether itaconate and its derivatives can inhibit necroptosis in murine macrophages, a mouse MPC-5 cell line and a human HT-29 cell line in response to different necroptotic activators. Our results showed that itaconate and its derivatives dose-dependently inhibited necroptosis, among which dimethyl itaconate (DMI) was the most effective one. Mechanistically, itaconate and its derivatives inhibited necroptosis by suppressing the RIPK1/RIPK3/MLKL signaling and the oligomerization of MLKL. Furthermore, DMI promoted the nuclear translocation of Nrf2 that is a critical regulator of intracellular redox homeostasis, and reduced the levels of intracellular reactive oxygen species (ROS) and mitochondrial superoxide (mtROS) that were induced by necroptotic activators. Consistently, DMI prevented the loss of mitochondrial membrane potential induced by the necroptotic activators. In addition, DMI mitigated caerulein-induced acute pancreatitis in mice accompanied by reduced activation of the necroptotic signaling in vivo. Collectively, our study demonstrates that itaconate and its derivatives can inhibit necroptosis by suppressing the RIPK1/RIPK3/MLKL signaling, highlighting their potential applications for treating necroptosis-associated diseases.
Appendix
Available only for authorised users
Literature
1.
go back to reference Michelucci, A., T. Cordes, J. Ghelfi, et al. 2013. Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production [J]. Proceedings of the National Academy of Sciences of the United States of America 110 (19): 7820–7825.PubMedPubMedCentralCrossRef Michelucci, A., T. Cordes, J. Ghelfi, et al. 2013. Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production [J]. Proceedings of the National Academy of Sciences of the United States of America 110 (19): 7820–7825.PubMedPubMedCentralCrossRef
2.
go back to reference Zhang, P., Y. Wang, W. Yang, et al. 2022. 4-octyl itaconate regulates immune balance by activating Nrf2 and negatively regulating PD-L1 in a mouse model of sepsis [J]. International journal of biological sciences 18 (16): 6189–6209.PubMedPubMedCentralCrossRef Zhang, P., Y. Wang, W. Yang, et al. 2022. 4-octyl itaconate regulates immune balance by activating Nrf2 and negatively regulating PD-L1 in a mouse model of sepsis [J]. International journal of biological sciences 18 (16): 6189–6209.PubMedPubMedCentralCrossRef
3.
go back to reference Bambouskova, M., L. Gorvel, V. Lampropoulou, et al. 2018. Electrophilic properties of itaconate and derivatives regulate the IκBζ-ATF3 inflammatory axis [J]. Nature 556 (7702): 501–504.PubMedPubMedCentralCrossRef Bambouskova, M., L. Gorvel, V. Lampropoulou, et al. 2018. Electrophilic properties of itaconate and derivatives regulate the IκBζ-ATF3 inflammatory axis [J]. Nature 556 (7702): 501–504.PubMedPubMedCentralCrossRef
4.
go back to reference Ogger P.P, G.J. Albers, R.J. Hewitt, et al. 2020. Itaconate controls the severity of pulmonary fibrosis [J]. Science Immunology 5 (52). Ogger P.P, G.J. Albers, R.J. Hewitt, et al. 2020. Itaconate controls the severity of pulmonary fibrosis [J]. Science Immunology 5 (52).
5.
go back to reference Olagnier, D., E. Farahani, J. Thyrsted, et al. 2020. SARS-CoV2-mediated suppression of NRF2-signaling reveals potent antiviral and anti-inflammatory activity of 4-octyl-itaconate and dimethyl fumarate [J]. Nature communications 11 (1): 4938.PubMedPubMedCentralCrossRef Olagnier, D., E. Farahani, J. Thyrsted, et al. 2020. SARS-CoV2-mediated suppression of NRF2-signaling reveals potent antiviral and anti-inflammatory activity of 4-octyl-itaconate and dimethyl fumarate [J]. Nature communications 11 (1): 4938.PubMedPubMedCentralCrossRef
6.
go back to reference Yi, Z., M. Deng, M.J. Scott, et al. 2020. Immune-responsive gene 1/Itaconate activates nuclear factor erythroid 2-related factor 2 in hepatocytes to protect against liver ischemia-reperfusion injury [J]. Hepatology (Baltimore, MD) 72 (4): 1394–1411.PubMedCrossRef Yi, Z., M. Deng, M.J. Scott, et al. 2020. Immune-responsive gene 1/Itaconate activates nuclear factor erythroid 2-related factor 2 in hepatocytes to protect against liver ischemia-reperfusion injury [J]. Hepatology (Baltimore, MD) 72 (4): 1394–1411.PubMedCrossRef
7.
go back to reference Song, H., T. Xu, X. Feng, et al. 2020. Itaconate prevents abdominal aortic aneurysm formation through inhibiting inflammation via activation of Nrf2 [J]. eBioMedicine 57: 102832.PubMedPubMedCentralCrossRef Song, H., T. Xu, X. Feng, et al. 2020. Itaconate prevents abdominal aortic aneurysm formation through inhibiting inflammation via activation of Nrf2 [J]. eBioMedicine 57: 102832.PubMedPubMedCentralCrossRef
8.
go back to reference Tang, C., X. Wang, Y. Xie, et al. 2018. 4-octyl itaconate activates Nrf2 signaling to inhibit pro-inflammatory cytokine production in peripheral blood mononuclear cells of systemic lupus erythematosus patients [J]. Cellular physiology and biochemistry : International journal of experimental cellular physiology, biochemistry, and pharmacology 51 (2): 979–990.PubMedCrossRef Tang, C., X. Wang, Y. Xie, et al. 2018. 4-octyl itaconate activates Nrf2 signaling to inhibit pro-inflammatory cytokine production in peripheral blood mononuclear cells of systemic lupus erythematosus patients [J]. Cellular physiology and biochemistry : International journal of experimental cellular physiology, biochemistry, and pharmacology 51 (2): 979–990.PubMedCrossRef
9.
go back to reference Hooftman, A., S. Angiari, S. Hester, et al. 2020. The immunomodulatory metabolite itaconate modifies NLRP3 and inhibits inflammasome activation [J]. Cell metabolism 32 (3): 468–78.e7.PubMedPubMedCentralCrossRef Hooftman, A., S. Angiari, S. Hester, et al. 2020. The immunomodulatory metabolite itaconate modifies NLRP3 and inhibits inflammasome activation [J]. Cell metabolism 32 (3): 468–78.e7.PubMedPubMedCentralCrossRef
10.
go back to reference Liu, Y., L. Song, N. Zheng, et al. 2022. A urinary proteomic landscape of COVID-19 progression identifies signaling pathways and therapeutic options [J]. Science China Life sciences 65 (9): 1866–1880.PubMedPubMedCentralCrossRef Liu, Y., L. Song, N. Zheng, et al. 2022. A urinary proteomic landscape of COVID-19 progression identifies signaling pathways and therapeutic options [J]. Science China Life sciences 65 (9): 1866–1880.PubMedPubMedCentralCrossRef
11.
go back to reference Xie, Y., Z. Chen, and Z. Wu. 2022. Four-octyl itaconate attenuates UVB-induced melanocytes and keratinocytes apoptosis by Nrf2 activation-dependent ROS inhibition [J]. Oxidative medicine and cellular longevity 2022: 9897442.PubMedPubMedCentralCrossRef Xie, Y., Z. Chen, and Z. Wu. 2022. Four-octyl itaconate attenuates UVB-induced melanocytes and keratinocytes apoptosis by Nrf2 activation-dependent ROS inhibition [J]. Oxidative medicine and cellular longevity 2022: 9897442.PubMedPubMedCentralCrossRef
12.
go back to reference He, R., B. Liu, R. Xiong, et al. 2022. Itaconate inhibits ferroptosis of macrophage via Nrf2 pathways against sepsis-induced acute lung injury [J]. Cell death discovery 8 (1): 43.PubMedPubMedCentralCrossRef He, R., B. Liu, R. Xiong, et al. 2022. Itaconate inhibits ferroptosis of macrophage via Nrf2 pathways against sepsis-induced acute lung injury [J]. Cell death discovery 8 (1): 43.PubMedPubMedCentralCrossRef
13.
go back to reference Shan, Q., X. Li, M. Zheng, et al. 2019. Protective effects of dimethyl itaconate in mice acute cardiotoxicity induced by doxorubicin [J]. Biochemical and biophysical research communications 517 (3): 538–544.PubMedCrossRef Shan, Q., X. Li, M. Zheng, et al. 2019. Protective effects of dimethyl itaconate in mice acute cardiotoxicity induced by doxorubicin [J]. Biochemical and biophysical research communications 517 (3): 538–544.PubMedCrossRef
14.
go back to reference Jiao, H., L. Wachsmuth, S. Kumari, et al. 2020. Z-nucleic-acid sensing triggers ZBP1-dependent necroptosis and inflammation [J]. Nature 580 (7803): 391–395.PubMedPubMedCentralCrossRef Jiao, H., L. Wachsmuth, S. Kumari, et al. 2020. Z-nucleic-acid sensing triggers ZBP1-dependent necroptosis and inflammation [J]. Nature 580 (7803): 391–395.PubMedPubMedCentralCrossRef
15.
go back to reference Degterev, A., Z. Huang, M. Boyce, et al. 2005. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury [J]. Nature chemical biology 1 (2): 112–119.PubMedCrossRef Degterev, A., Z. Huang, M. Boyce, et al. 2005. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury [J]. Nature chemical biology 1 (2): 112–119.PubMedCrossRef
16.
go back to reference Chen, X., W. Li, J. Ren, et al. 2014. Translocation of mixed lineage kinase domain-like protein to plasma membrane leads to necrotic cell death [J]. Cell Research 24 (1): 105–121.PubMedCrossRef Chen, X., W. Li, J. Ren, et al. 2014. Translocation of mixed lineage kinase domain-like protein to plasma membrane leads to necrotic cell death [J]. Cell Research 24 (1): 105–121.PubMedCrossRef
17.
go back to reference Sun, L., H. Wang, Z. Wang, et al. 2012. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase [J]. Cell 148 (1–2): 213–227.PubMedCrossRef Sun, L., H. Wang, Z. Wang, et al. 2012. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase [J]. Cell 148 (1–2): 213–227.PubMedCrossRef
18.
go back to reference Zhao, J., S. Jitkaew, Z. Cai, et al. 2012. Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis [J]. Proceedings of the National Academy of Sciences of the United States of America 109 (14): 5322–5327.PubMedPubMedCentralCrossRef Zhao, J., S. Jitkaew, Z. Cai, et al. 2012. Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis [J]. Proceedings of the National Academy of Sciences of the United States of America 109 (14): 5322–5327.PubMedPubMedCentralCrossRef
19.
go back to reference Vandenabeele, P., L. Galluzzi, T. Vanden Berghe, et al. 2010. Molecular mechanisms of necroptosis: an ordered cellular explosion [J]. Nature reviews Molecular cell biology 11 (10): 700–714.PubMedCrossRef Vandenabeele, P., L. Galluzzi, T. Vanden Berghe, et al. 2010. Molecular mechanisms of necroptosis: an ordered cellular explosion [J]. Nature reviews Molecular cell biology 11 (10): 700–714.PubMedCrossRef
20.
go back to reference Tenev, T., K. Bianchi, M. Darding, et al. 2011. The ripoptosome, a signaling platform that assembles in response to genotoxic stress and loss of IAPs [J]. Molecular cell 43 (3): 432–448.PubMedCrossRef Tenev, T., K. Bianchi, M. Darding, et al. 2011. The ripoptosome, a signaling platform that assembles in response to genotoxic stress and loss of IAPs [J]. Molecular cell 43 (3): 432–448.PubMedCrossRef
21.
go back to reference Mccomb, S., B. Shutinoski, S. Thurston, et al. 2014. Cathepsins limit macrophage necroptosis through cleavage of Rip1 kinase [J]. Journal of immunology (Baltimore, Md : 1950) 192 (12): 5671–8. Mccomb, S., B. Shutinoski, S. Thurston, et al. 2014. Cathepsins limit macrophage necroptosis through cleavage of Rip1 kinase [J]. Journal of immunology (Baltimore, Md : 1950) 192 (12): 5671–8.
22.
go back to reference Degterev, A., J. Hitomi, M. Germscheid, et al. 2008. Identification of RIP1 kinase as a specific cellular target of necrostatins [J]. Nature Chemical Biology 4 (5): 313–321.PubMedPubMedCentralCrossRef Degterev, A., J. Hitomi, M. Germscheid, et al. 2008. Identification of RIP1 kinase as a specific cellular target of necrostatins [J]. Nature Chemical Biology 4 (5): 313–321.PubMedPubMedCentralCrossRef
23.
go back to reference Li, D., J. Chen, J. Guo, et al. 2021. A phosphorylation of RIPK3 kinase initiates an intracellular apoptotic pathway that promotes prostaglandin(2α)-induced corpus luteum regression [J]. eLife 10. Li, D., J. Chen, J. Guo, et al. 2021. A phosphorylation of RIPK3 kinase initiates an intracellular apoptotic pathway that promotes prostaglandin(2α)-induced corpus luteum regression [J]. eLife 10.
24.
go back to reference Murphy, J.M., P.E. Czabotar, J.M. Hildebrand, et al. 2013. The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism [J]. Immunity 39 (3): 443–453.PubMedCrossRef Murphy, J.M., P.E. Czabotar, J.M. Hildebrand, et al. 2013. The pseudokinase MLKL mediates necroptosis via a molecular switch mechanism [J]. Immunity 39 (3): 443–453.PubMedCrossRef
25.
go back to reference Dondelinger, Y., W. Declercq, S. Montessuit, et al. 2014. MLKL compromises plasma membrane integrity by binding to phosphatidylinositol phosphates [J]. Cell reports 7 (4): 971–981.PubMedCrossRef Dondelinger, Y., W. Declercq, S. Montessuit, et al. 2014. MLKL compromises plasma membrane integrity by binding to phosphatidylinositol phosphates [J]. Cell reports 7 (4): 971–981.PubMedCrossRef
26.
go back to reference Quarato, G., C.S. Guy, C.R. Grace, et al. 2016. Sequential engagement of distinct MLKL phosphatidylinositol-binding sites executes necroptosis [J]. Molecular cell 61 (4): 589–601.PubMedPubMedCentralCrossRef Quarato, G., C.S. Guy, C.R. Grace, et al. 2016. Sequential engagement of distinct MLKL phosphatidylinositol-binding sites executes necroptosis [J]. Molecular cell 61 (4): 589–601.PubMedPubMedCentralCrossRef
27.
go back to reference Karki, R., B.R. Sharma, S. Tuladhar, et al. 2021. Synergism of TNF-α and IFN-γ triggers inflammatory cell death, tissue damage, and mortality in SARS-CoV-2 infection and cytokine shock syndromes [J]. Cell 184 (1): 149–68.e17.PubMedCrossRef Karki, R., B.R. Sharma, S. Tuladhar, et al. 2021. Synergism of TNF-α and IFN-γ triggers inflammatory cell death, tissue damage, and mortality in SARS-CoV-2 infection and cytokine shock syndromes [J]. Cell 184 (1): 149–68.e17.PubMedCrossRef
29.
go back to reference Cao, L., and W. Mu. 2021. Necrostatin-1 and necroptosis inhibition: pathophysiology and therapeutic implications [J]. Pharmacological research 163: 105297.PubMedCrossRef Cao, L., and W. Mu. 2021. Necrostatin-1 and necroptosis inhibition: pathophysiology and therapeutic implications [J]. Pharmacological research 163: 105297.PubMedCrossRef
30.
go back to reference Cuchet-Lourenço, D., D. Eletto, C. Wu, et al. 2018. Biallelic RIPK1 mutations in humans cause severe immunodeficiency, arthritis, and intestinal inflammation [J]. Science (New York, NY) 361 (6404): 810–813.CrossRef Cuchet-Lourenço, D., D. Eletto, C. Wu, et al. 2018. Biallelic RIPK1 mutations in humans cause severe immunodeficiency, arthritis, and intestinal inflammation [J]. Science (New York, NY) 361 (6404): 810–813.CrossRef
31.
go back to reference Shi, F.L., L.S. Yuan, T.S. Wong, et al. 2023. Dimethyl fumarate inhibits necroptosis and alleviates systemic inflammatory response syndrome by blocking the RIPK1-RIPK3-MLKL axis [J]. Pharmacological research 189: 106697.PubMedCrossRef Shi, F.L., L.S. Yuan, T.S. Wong, et al. 2023. Dimethyl fumarate inhibits necroptosis and alleviates systemic inflammatory response syndrome by blocking the RIPK1-RIPK3-MLKL axis [J]. Pharmacological research 189: 106697.PubMedCrossRef
32.
go back to reference Huang, Y.T., Q.Q. Liang, H.R. Zhang, et al. 2022. Baicalin inhibits necroptosis by decreasing oligomerization of phosphorylated MLKL and mitigates caerulein-induced acute pancreatitis in mice [J]. International Immunopharmacology 108: 108885.PubMedCrossRef Huang, Y.T., Q.Q. Liang, H.R. Zhang, et al. 2022. Baicalin inhibits necroptosis by decreasing oligomerization of phosphorylated MLKL and mitigates caerulein-induced acute pancreatitis in mice [J]. International Immunopharmacology 108: 108885.PubMedCrossRef
33.
go back to reference Shi, F.L., S.T. Ni, S.Q. Luo, et al. 2022. Dimethyl fumarate ameliorates autoimmune hepatitis in mice by blocking NLRP3 inflammasome activation [J]. International Immunopharmacology 108: 108867.PubMedCrossRef Shi, F.L., S.T. Ni, S.Q. Luo, et al. 2022. Dimethyl fumarate ameliorates autoimmune hepatitis in mice by blocking NLRP3 inflammasome activation [J]. International Immunopharmacology 108: 108867.PubMedCrossRef
34.
go back to reference Li, C.G., Q.Z. Zeng, M.Y. Chen, et al. 2019. Evodiamine augments NLRP3 inflammasome activation and anti-bacterial responses through inducing α-tubulin acetylation [J]. Frontiers in pharmacology 10: 290.PubMedPubMedCentralCrossRef Li, C.G., Q.Z. Zeng, M.Y. Chen, et al. 2019. Evodiamine augments NLRP3 inflammasome activation and anti-bacterial responses through inducing α-tubulin acetylation [J]. Frontiers in pharmacology 10: 290.PubMedPubMedCentralCrossRef
35.
go back to reference Zeng, B., Y. Huang, S. Chen, et al. 2022. Dextran sodium sulfate potentiates NLRP3 inflammasome activation by modulating the KCa3.1 potassium channel in a mouse model of colitis [J]. Cellular & Molecular Immunology 19 (8): 925–43. Zeng, B., Y. Huang, S. Chen, et al. 2022. Dextran sodium sulfate potentiates NLRP3 inflammasome activation by modulating the KCa3.1 potassium channel in a mouse model of colitis [J]. Cellular & Molecular Immunology 19 (8): 925–43.
36.
go back to reference Wu, J., Z. Huang, J. Ren, et al. 2013. Mlkl knockout mice demonstrate the indispensable role of mlkl in necroptosis [J]. Cell Research 23 (8): 994–1006.PubMedPubMedCentralCrossRef Wu, J., Z. Huang, J. Ren, et al. 2013. Mlkl knockout mice demonstrate the indispensable role of mlkl in necroptosis [J]. Cell Research 23 (8): 994–1006.PubMedPubMedCentralCrossRef
37.
go back to reference Han, Y.Y., X. Gu, C.Y. Yang, et al. 2021. Protective effect of dimethyl itaconate against fibroblast-myofibroblast differentiation during pulmonary fibrosis by inhibiting TXNIP [J]. Journal of cellular physiology 236 (11): 7734–7744.PubMedCrossRef Han, Y.Y., X. Gu, C.Y. Yang, et al. 2021. Protective effect of dimethyl itaconate against fibroblast-myofibroblast differentiation during pulmonary fibrosis by inhibiting TXNIP [J]. Journal of cellular physiology 236 (11): 7734–7744.PubMedCrossRef
38.
go back to reference Bertheloot, D., E. Latz, and B.S. Franklin. 2021. Necroptosis, pyroptosis and apoptosis: an intricate game of cell death [J]. Cellular & molecular immunology 18 (5): 1106–1121.CrossRef Bertheloot, D., E. Latz, and B.S. Franklin. 2021. Necroptosis, pyroptosis and apoptosis: an intricate game of cell death [J]. Cellular & molecular immunology 18 (5): 1106–1121.CrossRef
39.
go back to reference Baird, L., and M. Yamamoto, 2020. The Molecular Mechanisms Regulating the KEAP1-NRF2 Pathway [J]. Molecular and Cellular Biology 40 (13). Baird, L., and M. Yamamoto, 2020. The Molecular Mechanisms Regulating the KEAP1-NRF2 Pathway [J]. Molecular and Cellular Biology 40 (13).
40.
go back to reference Louhimo, J., M.L. Steer, and G. Perides. 2016. Necroptosis is an important severity determinant and potential therapeutic target in experimental severe pancreatitis [J]. Cellular and molecular gastroenterology and hepatology 2 (4): 519–535.PubMedPubMedCentralCrossRef Louhimo, J., M.L. Steer, and G. Perides. 2016. Necroptosis is an important severity determinant and potential therapeutic target in experimental severe pancreatitis [J]. Cellular and molecular gastroenterology and hepatology 2 (4): 519–535.PubMedPubMedCentralCrossRef
41.
go back to reference Li, M., Y. Yuan, X. Han, et al. 2022. Antioxidant mitoquinone alleviates chronic pancreatitis via anti-fibrotic and antioxidant effects [J]. Journal of inflammation research 15: 4409–4420.PubMedPubMedCentralCrossRef Li, M., Y. Yuan, X. Han, et al. 2022. Antioxidant mitoquinone alleviates chronic pancreatitis via anti-fibrotic and antioxidant effects [J]. Journal of inflammation research 15: 4409–4420.PubMedPubMedCentralCrossRef
42.
go back to reference Marciniak, A., B. Walczyna, G. Rajtar, et al. 2016. Tempol, a membrane-permeable radical scavenger, exhibits anti-inflammatory and cardioprotective effects in the cerulein-induced pancreatitis rat model [J]. Oxidative medicine and cellular longevity 2016: 4139851.PubMedCrossRef Marciniak, A., B. Walczyna, G. Rajtar, et al. 2016. Tempol, a membrane-permeable radical scavenger, exhibits anti-inflammatory and cardioprotective effects in the cerulein-induced pancreatitis rat model [J]. Oxidative medicine and cellular longevity 2016: 4139851.PubMedCrossRef
43.
go back to reference Yu, J.H., J.W. Lim, W. Namkung, et al. 2002. Suppression of cerulein-induced cytokine expression by antioxidants in pancreatic acinar cells [J]. Laboratory Investigation: A Journal of Technical Methods and Pathology 82 (10): 1359–68. Yu, J.H., J.W. Lim, W. Namkung, et al. 2002. Suppression of cerulein-induced cytokine expression by antioxidants in pancreatic acinar cells [J]. Laboratory Investigation: A Journal of Technical Methods and Pathology 82 (10): 1359–68.
44.
go back to reference Shi, J., and C. Cai. 2022. Research Progress on the mechanism of itaconate regulating macrophage immunometabolism [J]. Frontiers in immunology 13: 937247.PubMedPubMedCentralCrossRef Shi, J., and C. Cai. 2022. Research Progress on the mechanism of itaconate regulating macrophage immunometabolism [J]. Frontiers in immunology 13: 937247.PubMedPubMedCentralCrossRef
45.
go back to reference Peace, C.G., and L.A. O'neill. 2022. The role of itaconate in host defense and inflammation [J]. The Journal of Clinical Investigation 132 (2). Peace, C.G., and L.A. O'neill. 2022. The role of itaconate in host defense and inflammation [J]. The Journal of Clinical Investigation 132 (2).
46.
go back to reference Hooftman, A., and L.A.J. O'Neill. 2019. The Immunomodulatory Potential of the Metabolite Itaconate [J]. Trends in Immunology 40 (8): 687–98. Hooftman, A., and L.A.J. O'Neill. 2019. The Immunomodulatory Potential of the Metabolite Itaconate [J]. Trends in Immunology 40 (8): 687–98.
47.
go back to reference Swain, A., M. Bambouskova, H. Kim, et al. 2020. Comparative evaluation of itaconate and its derivatives reveals divergent inflammasome and type I interferon regulation in macrophages [J]. Nature metabolism 2 (7): 594–602.PubMedPubMedCentralCrossRef Swain, A., M. Bambouskova, H. Kim, et al. 2020. Comparative evaluation of itaconate and its derivatives reveals divergent inflammasome and type I interferon regulation in macrophages [J]. Nature metabolism 2 (7): 594–602.PubMedPubMedCentralCrossRef
48.
go back to reference Mills, E.L., D.G. Ryan, H.A. Prag, et al. 2018. Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1 [J]. Nature 556 (7699): 113–117.PubMedPubMedCentralCrossRef Mills, E.L., D.G. Ryan, H.A. Prag, et al. 2018. Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1 [J]. Nature 556 (7699): 113–117.PubMedPubMedCentralCrossRef
49.
go back to reference Ryan, D.G, E.V. Knatko, A.M. Casey, et al. 2022. Nrf2 activation reprograms macrophage intermediary metabolism and suppresses the type I interferon response [J]. iScience 25 (2): 103827. Ryan, D.G, E.V. Knatko, A.M. Casey, et al. 2022. Nrf2 activation reprograms macrophage intermediary metabolism and suppresses the type I interferon response [J]. iScience 25 (2): 103827.
50.
go back to reference Waqas, S.F., A. Sohail, A.H.H. Nguyen, et al. 2022. ISG15 deficiency features a complex cellular phenotype that responds to treatment with itaconate and derivatives [J]. Clinical and translational medicine 12 (7): e931.PubMedPubMedCentralCrossRef Waqas, S.F., A. Sohail, A.H.H. Nguyen, et al. 2022. ISG15 deficiency features a complex cellular phenotype that responds to treatment with itaconate and derivatives [J]. Clinical and translational medicine 12 (7): e931.PubMedPubMedCentralCrossRef
51.
go back to reference Liao, S.T., C. Han, D.Q. Xu, et al. 2019. 4-octyl itaconate inhibits aerobic glycolysis by targeting GAPDH to exert anti-inflammatory effects [J]. Nature communications 10 (1): 5091.PubMedPubMedCentralCrossRef Liao, S.T., C. Han, D.Q. Xu, et al. 2019. 4-octyl itaconate inhibits aerobic glycolysis by targeting GAPDH to exert anti-inflammatory effects [J]. Nature communications 10 (1): 5091.PubMedPubMedCentralCrossRef
52.
go back to reference Qin, W., K. Qin, Y. Zhang, et al. 2019. S-glycosylation-based cysteine profiling reveals regulation of glycolysis by itaconate [J]. Nature Chemical Biology 15 (10): 983–991.PubMedCrossRef Qin, W., K. Qin, Y. Zhang, et al. 2019. S-glycosylation-based cysteine profiling reveals regulation of glycolysis by itaconate [J]. Nature Chemical Biology 15 (10): 983–991.PubMedCrossRef
53.
go back to reference Qin, W., Y. Zhang, H. Tang, et al. 2020. Chemoproteomic profiling of itaconation by bioorthogonal probes in inflammatory macrophages [J]. Journal of the American Chemical Society 142 (25): 10894–10898.PubMedCrossRef Qin, W., Y. Zhang, H. Tang, et al. 2020. Chemoproteomic profiling of itaconation by bioorthogonal probes in inflammatory macrophages [J]. Journal of the American Chemical Society 142 (25): 10894–10898.PubMedCrossRef
54.
go back to reference Bambouskova, M., L. Potuckova, T. Paulenda, et al. 2021. Itaconate confers tolerance to late NLRP3 inflammasome activation [J]. Cell reports 34 (10): 108756.PubMedCrossRef Bambouskova, M., L. Potuckova, T. Paulenda, et al. 2021. Itaconate confers tolerance to late NLRP3 inflammasome activation [J]. Cell reports 34 (10): 108756.PubMedCrossRef
55.
go back to reference Yang, W., Y. Wang, Y. Huang, et al. 2023. 4-Octyl itaconate inhibits aerobic glycolysis by targeting GAPDH to promote cuproptosis in colorectal cancer [J]. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 159 : 114301. Yang, W., Y. Wang, Y. Huang, et al. 2023. 4-Octyl itaconate inhibits aerobic glycolysis by targeting GAPDH to promote cuproptosis in colorectal cancer [J]. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 159 : 114301.
56.
go back to reference Van Herreweghe, F., N. Festjens, W. Declercq, et al. 2010. Tumor necrosis factor-mediated cell death: to break or to burst, that’s the question [J]. Cellular and Molecular Life Sciences 67 (10): 1567–1579.PubMedCrossRef Van Herreweghe, F., N. Festjens, W. Declercq, et al. 2010. Tumor necrosis factor-mediated cell death: to break or to burst, that’s the question [J]. Cellular and Molecular Life Sciences 67 (10): 1567–1579.PubMedCrossRef
57.
go back to reference Zhang, Y., S.S. Su, S. Zhao, et al. 2017. RIP1 autophosphorylation is promoted by mitochondrial ROS and is essential for RIP3 recruitment into necrosome [J]. Nature communications 8: 14329.PubMedPubMedCentralCrossRef Zhang, Y., S.S. Su, S. Zhao, et al. 2017. RIP1 autophosphorylation is promoted by mitochondrial ROS and is essential for RIP3 recruitment into necrosome [J]. Nature communications 8: 14329.PubMedPubMedCentralCrossRef
58.
go back to reference Yang, Z., Y. Wang, Y. Zhang, et al. 2018. RIP3 targets pyruvate dehydrogenase complex to increase aerobic respiration in TNF-induced necroptosis [J]. Nature cell biology 20 (2): 186–197.PubMedCrossRef Yang, Z., Y. Wang, Y. Zhang, et al. 2018. RIP3 targets pyruvate dehydrogenase complex to increase aerobic respiration in TNF-induced necroptosis [J]. Nature cell biology 20 (2): 186–197.PubMedCrossRef
59.
go back to reference Qiu, X., Y. Zhang, and J. Han. 2018. RIP3 is an upregulator of aerobic metabolism and the enhanced respiration by necrosomal RIP3 feeds back on necrosome to promote necroptosis [J]. Cell death and differentiation 25 (5): 821–824.PubMedPubMedCentral Qiu, X., Y. Zhang, and J. Han. 2018. RIP3 is an upregulator of aerobic metabolism and the enhanced respiration by necrosomal RIP3 feeds back on necrosome to promote necroptosis [J]. Cell death and differentiation 25 (5): 821–824.PubMedPubMedCentral
60.
go back to reference Sohail, A., A.A. Iqbal, N. Sahini, et al. 2022. Itaconate and derivatives reduce interferon responses and inflammation in influenza a virus infection [J]. PLoS pathogens 18 (1): e1010219.PubMedPubMedCentralCrossRef Sohail, A., A.A. Iqbal, N. Sahini, et al. 2022. Itaconate and derivatives reduce interferon responses and inflammation in influenza a virus infection [J]. PLoS pathogens 18 (1): e1010219.PubMedPubMedCentralCrossRef
61.
go back to reference Lin, Y., S. Choksi, H.M. Shen, et al. 2004. Tumor necrosis factor-induced nonapoptotic cell death requires receptor-interacting protein-mediated cellular reactive oxygen species accumulation [J]. The Journal of biological chemistry 279 (11): 10822–10828.PubMedCrossRef Lin, Y., S. Choksi, H.M. Shen, et al. 2004. Tumor necrosis factor-induced nonapoptotic cell death requires receptor-interacting protein-mediated cellular reactive oxygen species accumulation [J]. The Journal of biological chemistry 279 (11): 10822–10828.PubMedCrossRef
62.
go back to reference Kamata, H., S. Honda, S. Maeda, et al. 2005. Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases [J]. Cell 120 (5): 649–661.PubMedCrossRef Kamata, H., S. Honda, S. Maeda, et al. 2005. Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases [J]. Cell 120 (5): 649–661.PubMedCrossRef
63.
go back to reference Lampropoulou, V., A. Sergushichev, M. Bambouskova, et al. 2016. Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation [J]. Cell metabolism 24 (1): 158–166.PubMedPubMedCentralCrossRef Lampropoulou, V., A. Sergushichev, M. Bambouskova, et al. 2016. Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation [J]. Cell metabolism 24 (1): 158–166.PubMedPubMedCentralCrossRef
64.
go back to reference Cordes, T., M. Wallace, A. Michelucci, et al. 2016. Immunoresponsive gene 1 and itaconate inhibit succinate dehydrogenase to modulate intracellular succinate levels [J]. The Journal of biological chemistry 291 (27): 14274–14284.PubMedPubMedCentralCrossRef Cordes, T., M. Wallace, A. Michelucci, et al. 2016. Immunoresponsive gene 1 and itaconate inhibit succinate dehydrogenase to modulate intracellular succinate levels [J]. The Journal of biological chemistry 291 (27): 14274–14284.PubMedPubMedCentralCrossRef
65.
go back to reference Huang, S., and A.H. Millar. 2013. Succinate dehydrogenase: the complex roles of a simple enzyme [J]. Current opinion in plant biology 16 (3): 344–349.PubMedCrossRef Huang, S., and A.H. Millar. 2013. Succinate dehydrogenase: the complex roles of a simple enzyme [J]. Current opinion in plant biology 16 (3): 344–349.PubMedCrossRef
66.
go back to reference Billingham, L.K., J.S. Stoolman, K. Vasan, et al. 2022. Mitochondrial electron transport chain is necessary for NLRP3 inflammasome activation [J]. Nature immunology 23 (5): 692–704.PubMedPubMedCentralCrossRef Billingham, L.K., J.S. Stoolman, K. Vasan, et al. 2022. Mitochondrial electron transport chain is necessary for NLRP3 inflammasome activation [J]. Nature immunology 23 (5): 692–704.PubMedPubMedCentralCrossRef
67.
go back to reference Wang, Y.P., A. Sharda, S.N. Xu, et al. 2021. Malic enzyme 2 connects the Krebs cycle intermediate fumarate to mitochondrial biogenesis [J]. Cell metabolism 33 (5): 1027–41.e8.PubMedPubMedCentralCrossRef Wang, Y.P., A. Sharda, S.N. Xu, et al. 2021. Malic enzyme 2 connects the Krebs cycle intermediate fumarate to mitochondrial biogenesis [J]. Cell metabolism 33 (5): 1027–41.e8.PubMedPubMedCentralCrossRef
68.
go back to reference Hooftman, A., C.G. Peace, D.G. Ryan, et al. 2023. Macrophage fumarate hydratase restrains mtRNA-mediated interferon production [J]. Nature 615 (7952): 490–498.PubMedPubMedCentralCrossRef Hooftman, A., C.G. Peace, D.G. Ryan, et al. 2023. Macrophage fumarate hydratase restrains mtRNA-mediated interferon production [J]. Nature 615 (7952): 490–498.PubMedPubMedCentralCrossRef
69.
go back to reference Spinelli, J.B., P.C. Rosen, H.G. Sprenger, et al. 2021. Fumarate is a terminal electron acceptor in the mammalian electron transport chain [J]. Science (New York, NY) 374 (6572): 1227–1237.CrossRef Spinelli, J.B., P.C. Rosen, H.G. Sprenger, et al. 2021. Fumarate is a terminal electron acceptor in the mammalian electron transport chain [J]. Science (New York, NY) 374 (6572): 1227–1237.CrossRef
70.
go back to reference Leppäniemi, A., M. Tolonen, A. Tarasconi, et al. 2019. 2019 WSES guidelines for the management of severe acute pancreatitis [J]. World journal of emergency surgery : WJES 14: 27.PubMedPubMedCentralCrossRef Leppäniemi, A., M. Tolonen, A. Tarasconi, et al. 2019. 2019 WSES guidelines for the management of severe acute pancreatitis [J]. World journal of emergency surgery : WJES 14: 27.PubMedPubMedCentralCrossRef
71.
go back to reference Kuo, P.C., W.T. Weng, B.A. Scofield, et al. 2020. Dimethyl itaconate, an itaconate derivative, exhibits immunomodulatory effects on neuroinflammation in experimental autoimmune encephalomyelitis [J]. Journal of neuroinflammation 17 (1): 138.PubMedPubMedCentralCrossRef Kuo, P.C., W.T. Weng, B.A. Scofield, et al. 2020. Dimethyl itaconate, an itaconate derivative, exhibits immunomodulatory effects on neuroinflammation in experimental autoimmune encephalomyelitis [J]. Journal of neuroinflammation 17 (1): 138.PubMedPubMedCentralCrossRef
Metadata
Title
Anti-Necroptotic Effects of Itaconate and its Derivatives
Authors
Si-tao Ni
Qing Li
Ying Chen
Fu-li Shi
Tak-sui Wong
Li-sha Yuan
Rong Xu
Ying-qing Gan
Na Lu
Ya-ping Li
Zhi-ya Zhou
Li-hui Xu
Xian-hui He
Bo Hu
Dong-yun Ouyang
Publication date
27-09-2023
Publisher
Springer US
Published in
Inflammation / Issue 1/2024
Print ISSN: 0360-3997
Electronic ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-023-01909-z

Other articles of this Issue 1/2024

Inflammation 1/2024 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine