Skip to main content
Top
Published in: Cancer and Metastasis Reviews 1/2023

09-01-2023 | Chronic Lymphocytic Leukemia | Non-Thematic Review

Mesenchymal stromal cell senescence in haematological malignancies

Authors: Natalya Plakhova, Vasilios Panagopoulos, Kate Vandyke, Andrew C. W. Zannettino, Krzysztof M. Mrozik

Published in: Cancer and Metastasis Reviews | Issue 1/2023

Login to get access

Abstract

Acute myeloid leukaemia (AML), chronic lymphocytic leukaemia (CLL), and multiple myeloma (MM) are age-related haematological malignancies with defined precursor states termed myelodysplastic syndrome (MDS), monoclonal B-cell lymphocytosis (MBL), and monoclonal gammopathy of undetermined significance (MGUS), respectively. While the progression from asymptomatic precursor states to malignancy is widely considered to be mediated by the accumulation of genetic mutations in neoplastic haematopoietic cell clones, recent studies suggest that intrinsic genetic changes, alone, may be insufficient to drive the progression to overt malignancy. Notably, studies suggest that extrinsic, microenvironmental changes in the bone marrow (BM) may also promote the transition from these precursor states to active disease. There is now enhanced focus on extrinsic, age-related changes in the BM microenvironment that accompany the development of AML, CLL, and MM. One of the most prominent changes associated with ageing is the accumulation of senescent mesenchymal stromal cells within tissues and organs. In comparison with proliferating cells, senescent cells display an altered profile of secreted factors (secretome), termed the senescence-associated-secretory phenotype (SASP), comprising proteases, inflammatory cytokines, and growth factors that may render the local microenvironment favourable for cancer growth. It is well established that BM mesenchymal stromal cells (BM-MSCs) are key regulators of haematopoietic stem cell maintenance and fate determination. Moreover, there is emerging evidence that BM-MSC senescence may contribute to age-related haematopoietic decline and cancer development. This review explores the association between BM-MSC senescence and the development of haematological malignancies, and the functional role of senescent BM-MSCs in the development of these cancers.
Literature
1.
go back to reference Welch, J. S., Ley, T. J., Link, D. C., Miller, C. A., Larson, D. E., Koboldt, D. C., Wartman, L. D., Lamprecht, T. L., Liu, F., Xia, J., Kandoth, C., Fulton, R. S., McLellan, M. D., Dooling, D. J., Wallis, J. W., Chen, K., Harris, C. C., Schmidt, H. K., Kalicki-Veizer, J. M., Lu, C., et al. (2012). The origin and evolution of mutations in acute myeloid leukemia. Cell, 150(2), 264–278. https://doi.org/10.1016/j.cell.2012.06.023CrossRefPubMedPubMedCentral Welch, J. S., Ley, T. J., Link, D. C., Miller, C. A., Larson, D. E., Koboldt, D. C., Wartman, L. D., Lamprecht, T. L., Liu, F., Xia, J., Kandoth, C., Fulton, R. S., McLellan, M. D., Dooling, D. J., Wallis, J. W., Chen, K., Harris, C. C., Schmidt, H. K., Kalicki-Veizer, J. M., Lu, C., et al. (2012). The origin and evolution of mutations in acute myeloid leukemia. Cell, 150(2), 264–278. https://​doi.​org/​10.​1016/​j.​cell.​2012.​06.​023CrossRefPubMedPubMedCentral
3.
go back to reference Jaiswal, S., Fontanillas, P., Flannick, J., Manning, A., Grauman, P., Mar, B. G., Lindsley, R. C., Mermel, C., Burtt, N., Chavez, A., Higgins, J. M., Moltchanov, V., Kinnunen, L., Koistinen, H., Ladenvall, C., Getz, G., Correa, A., Gabriel, S., Kathiresan, S., Stringham, H., et al. (2014). Clonal hematopoiesis with somatic mutations is a common, age-related condition associated with adverse outcomes. Blood, 124(21), 840. https://doi.org/10.1056/NEJMoa1408617CrossRef Jaiswal, S., Fontanillas, P., Flannick, J., Manning, A., Grauman, P., Mar, B. G., Lindsley, R. C., Mermel, C., Burtt, N., Chavez, A., Higgins, J. M., Moltchanov, V., Kinnunen, L., Koistinen, H., Ladenvall, C., Getz, G., Correa, A., Gabriel, S., Kathiresan, S., Stringham, H., et al. (2014). Clonal hematopoiesis with somatic mutations is a common, age-related condition associated with adverse outcomes. Blood, 124(21), 840. https://​doi.​org/​10.​1056/​NEJMoa1408617CrossRef
8.
go back to reference Genovese, G., Kahler, A. K., Handsaker, R. E., Lindberg, J., Rose, S. A., Bakhoum, S. F., Chambert, K., Mick, E., Neale, B. M., Fromer, M., Purcell, S. M., Svantesson, O., Landen, M., Hoglund, M., Lehmann, S., Gabriel, S. B., Moran, J. L., Lander, E. S., Sullivan, P. F., Sklar, P., et al. (2014). Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. New England Journal of Medicine, 371(26), 2477–2487. https://doi.org/10.1056/NEJMoa1409405CrossRefPubMed Genovese, G., Kahler, A. K., Handsaker, R. E., Lindberg, J., Rose, S. A., Bakhoum, S. F., Chambert, K., Mick, E., Neale, B. M., Fromer, M., Purcell, S. M., Svantesson, O., Landen, M., Hoglund, M., Lehmann, S., Gabriel, S. B., Moran, J. L., Lander, E. S., Sullivan, P. F., Sklar, P., et al. (2014). Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. New England Journal of Medicine, 371(26), 2477–2487. https://​doi.​org/​10.​1056/​NEJMoa1409405CrossRefPubMed
10.
go back to reference Shim, Y. K., Middleton, D. C., Caporaso, N. E., Rachel, J. M., Landgren, O., Abbasi, F., Raveche, E. S., Rawstron, A. C., Orfao, A., Marti, G. E., & Vogt, R. F. (2010). Prevalence of monoclonal B-cell lymphocytosis: a systematic review. Cytometry. Part B: Clinical Cytometry, 78. https://doi.org/10.1002/cyto.b.20538 Shim, Y. K., Middleton, D. C., Caporaso, N. E., Rachel, J. M., Landgren, O., Abbasi, F., Raveche, E. S., Rawstron, A. C., Orfao, A., Marti, G. E., & Vogt, R. F. (2010). Prevalence of monoclonal B-cell lymphocytosis: a systematic review. Cytometry. Part B: Clinical Cytometry, 78. https://​doi.​org/​10.​1002/​cyto.​b.​20538
11.
go back to reference Kyle, R. A., Therneau, T. M., Rajkumar, S. V., Larson, D. R., Plevak, M. F., Offord, J. R., Dispenzieri, A., Katzmann, J. A., & Melton, L. J., 3rd. (2006). Prevalence of monoclonal gammopathy of undetermined significance. New England Journal of Medicine, 354(13), 1362–1369. https://doi.org/10.1056/NEJMoa054494CrossRefPubMed Kyle, R. A., Therneau, T. M., Rajkumar, S. V., Larson, D. R., Plevak, M. F., Offord, J. R., Dispenzieri, A., Katzmann, J. A., & Melton, L. J., 3rd. (2006). Prevalence of monoclonal gammopathy of undetermined significance. New England Journal of Medicine, 354(13), 1362–1369. https://​doi.​org/​10.​1056/​NEJMoa054494CrossRefPubMed
17.
go back to reference Das, R., Strowig, T., Verma, R., Koduru, S., Hafemann, A., Hopf, S., Kocoglu, M. H., Borsotti, C., Zhang, L., Branagan, A., Eynon, E., Manz, M. G., Flavell, R. A., & Dhodapkar, M. V. (2016). Microenvironment-dependent growth of preneoplastic and malignant plasma cells in humanized mice. Nature Medicine, 22(11), 1351–1357. https://doi.org/10.1038/nm.4202CrossRefPubMedPubMedCentral Das, R., Strowig, T., Verma, R., Koduru, S., Hafemann, A., Hopf, S., Kocoglu, M. H., Borsotti, C., Zhang, L., Branagan, A., Eynon, E., Manz, M. G., Flavell, R. A., & Dhodapkar, M. V. (2016). Microenvironment-dependent growth of preneoplastic and malignant plasma cells in humanized mice. Nature Medicine, 22(11), 1351–1357. https://​doi.​org/​10.​1038/​nm.​4202CrossRefPubMedPubMedCentral
18.
go back to reference Medyouf, H., Mossner, M., Jann, J.-C., Nolte, F., Raffel, S., Herrmann, C., Lier, A., Eisen, C., Nowak, V., Zens, B., Müdder, K., Klein, C., Obländer, J., Fey, S., Vogler, J., Fabarius, A., Riedl, E., Roehl, H., Kohlmann, A., Staller, M., et al. (2014). Myelodysplastic cells in patients reprogram mesenchymal stromal cells to establish a transplantable stem cell niche disease unit. Cell Stem Cell, 14(6), 824–837. https://doi.org/10.1016/j.stem.2014.02.014CrossRefPubMed Medyouf, H., Mossner, M., Jann, J.-C., Nolte, F., Raffel, S., Herrmann, C., Lier, A., Eisen, C., Nowak, V., Zens, B., Müdder, K., Klein, C., Obländer, J., Fey, S., Vogler, J., Fabarius, A., Riedl, E., Roehl, H., Kohlmann, A., Staller, M., et al. (2014). Myelodysplastic cells in patients reprogram mesenchymal stromal cells to establish a transplantable stem cell niche disease unit. Cell Stem Cell, 14(6), 824–837. https://​doi.​org/​10.​1016/​j.​stem.​2014.​02.​014CrossRefPubMed
21.
go back to reference Jeon, O. H., Kim, C., Laberge, R. M., Demaria, M., Rathod, S., Vasserot, A. P., Chung, J. W., Kim, D. H., Poon, Y., David, N., Baker, D. J., van Deursen, J. M., Campisi, J., & Elisseeff, J. H. (2017). Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nature Medicine, 23(6), 775–781. https://doi.org/10.1038/nm.4324CrossRefPubMedPubMedCentral Jeon, O. H., Kim, C., Laberge, R. M., Demaria, M., Rathod, S., Vasserot, A. P., Chung, J. W., Kim, D. H., Poon, Y., David, N., Baker, D. J., van Deursen, J. M., Campisi, J., & Elisseeff, J. H. (2017). Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nature Medicine, 23(6), 775–781. https://​doi.​org/​10.​1038/​nm.​4324CrossRefPubMedPubMedCentral
22.
go back to reference Farr, J. N., Fraser, D. G., Wang, H., Jaehn, K., Ogrodnik, M. B., Weivoda, M. M., Drake, M. T., Tchkonia, T., LeBrasseur, N. K., Kirkland, J. L., Bonewald, L. F., Pignolo, R. J., Monroe, D. G., & Khosla, S. (2016). Identification of Senescent Cells in the Bone Microenvironment. Journal of Bone and Mineral Research, 31(11), 1920–1929. https://doi.org/10.1002/jbmr.2892CrossRefPubMed Farr, J. N., Fraser, D. G., Wang, H., Jaehn, K., Ogrodnik, M. B., Weivoda, M. M., Drake, M. T., Tchkonia, T., LeBrasseur, N. K., Kirkland, J. L., Bonewald, L. F., Pignolo, R. J., Monroe, D. G., & Khosla, S. (2016). Identification of Senescent Cells in the Bone Microenvironment. Journal of Bone and Mineral Research, 31(11), 1920–1929. https://​doi.​org/​10.​1002/​jbmr.​2892CrossRefPubMed
27.
go back to reference Laberge, R. M., Sun, Y., Orjalo, A. V., Patil, C. K., Freund, A., Zhou, L., Curran, S. C., Davalos, A. R., Wilson-Edell, K. A., Liu, S., Limbad, C., Demaria, M., Li, P., Hubbard, G. B., Ikeno, Y., Javors, M., Desprez, P. Y., Benz, C. C., Kapahi, P., Nelson, P. S., et al. (2015). MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation. Nature Cell Biology, 17(8), 1049–1061. https://doi.org/10.1038/ncb3195CrossRefPubMedPubMedCentral Laberge, R. M., Sun, Y., Orjalo, A. V., Patil, C. K., Freund, A., Zhou, L., Curran, S. C., Davalos, A. R., Wilson-Edell, K. A., Liu, S., Limbad, C., Demaria, M., Li, P., Hubbard, G. B., Ikeno, Y., Javors, M., Desprez, P. Y., Benz, C. C., Kapahi, P., Nelson, P. S., et al. (2015). MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation. Nature Cell Biology, 17(8), 1049–1061. https://​doi.​org/​10.​1038/​ncb3195CrossRefPubMedPubMedCentral
29.
go back to reference Luo, X., Fu, Y., Loza, A. J., Murali, B., Leahy, K. M., Ruhland, M. K., Gang, M., Su, X., Zamani, A., Shi, Y., Lavine, K. J., Ornitz, D. M., Weilbaecher, K. N., Long, F., Novack, D. V., Faccio, R., Longmore, G. D., & Stewart, S. A. (2016). Stromal-initiated changes in the bone promote metastatic niche development. Cell Reports, 14(1), 82–92. https://doi.org/10.1016/j.celrep.2015.12.016CrossRefPubMed Luo, X., Fu, Y., Loza, A. J., Murali, B., Leahy, K. M., Ruhland, M. K., Gang, M., Su, X., Zamani, A., Shi, Y., Lavine, K. J., Ornitz, D. M., Weilbaecher, K. N., Long, F., Novack, D. V., Faccio, R., Longmore, G. D., & Stewart, S. A. (2016). Stromal-initiated changes in the bone promote metastatic niche development. Cell Reports, 14(1), 82–92. https://​doi.​org/​10.​1016/​j.​celrep.​2015.​12.​016CrossRefPubMed
30.
go back to reference Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating, A., Prockop, D., & Horwitz, E. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315–317. https://doi.org/10.1080/14653240600855905CrossRefPubMed Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., Krause, D., Deans, R., Keating, A., Prockop, D., & Horwitz, E. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315–317. https://​doi.​org/​10.​1080/​1465324060085590​5CrossRefPubMed
42.
go back to reference Lawson, M. A., McDonald, M. M., Kovacic, N., Hua Khoo, W., Terry, R. L., Down, J., Kaplan, W., Paton-Hough, J., Fellows, C., Pettitt, J. A., Neil Dear, T., Van Valckenborgh, E., Baldock, P. A., Rogers, M. J., Eaton, C. L., Vanderkerken, K., Pettit, A. R., Quinn, J. M., Zannettino, A. C., Phan, T. G., et al. (2015). Osteoclasts control reactivation of dormant myeloma cells by remodelling the endosteal niche. Nature Communications, 6, 8983. https://doi.org/10.1038/ncomms9983CrossRefPubMed Lawson, M. A., McDonald, M. M., Kovacic, N., Hua Khoo, W., Terry, R. L., Down, J., Kaplan, W., Paton-Hough, J., Fellows, C., Pettitt, J. A., Neil Dear, T., Van Valckenborgh, E., Baldock, P. A., Rogers, M. J., Eaton, C. L., Vanderkerken, K., Pettit, A. R., Quinn, J. M., Zannettino, A. C., Phan, T. G., et al. (2015). Osteoclasts control reactivation of dormant myeloma cells by remodelling the endosteal niche. Nature Communications, 6, 8983. https://​doi.​org/​10.​1038/​ncomms9983CrossRefPubMed
44.
go back to reference Agarwal, P., Isringhausen, S., Li, H., Paterson, A. J., He, J., Gomariz, A., Nagasawa, T., Nombela-Arrieta, C., & Bhatia, R. (2019). Mesenchymal niche-specific expression of Cxcl12 controls quiescence of treatment-resistant leukemia stem cells. Cell Stem Cell, 24(5), 769–784 e766. https://doi.org/10.1016/j.stem.2019.02.018 Agarwal, P., Isringhausen, S., Li, H., Paterson, A. J., He, J., Gomariz, A., Nagasawa, T., Nombela-Arrieta, C., & Bhatia, R. (2019). Mesenchymal niche-specific expression of Cxcl12 controls quiescence of treatment-resistant leukemia stem cells. Cell Stem Cell, 24(5), 769–784 e766. https://​doi.​org/​10.​1016/​j.​stem.​2019.​02.​018
45.
go back to reference Kode, A., Manavalan, J. S., Mosialou, I., Bhagat, G., Rathinam, C. V., Luo, N., Khiabanian, H., Lee, A., Murty, V. V., Friedman, R., Brum, A., Park, D., Galili, N., Mukherjee, S., Teruya-Feldstein, J., Raza, A., Rabadan, R., Berman, E., & Kousteni, S. (2014). Leukaemogenesis induced by an activating beta-catenin mutation in osteoblasts. Nature, 506(7487), 240–244. https://doi.org/10.1038/nature12883CrossRefPubMedPubMedCentral Kode, A., Manavalan, J. S., Mosialou, I., Bhagat, G., Rathinam, C. V., Luo, N., Khiabanian, H., Lee, A., Murty, V. V., Friedman, R., Brum, A., Park, D., Galili, N., Mukherjee, S., Teruya-Feldstein, J., Raza, A., Rabadan, R., Berman, E., & Kousteni, S. (2014). Leukaemogenesis induced by an activating beta-catenin mutation in osteoblasts. Nature, 506(7487), 240–244. https://​doi.​org/​10.​1038/​nature12883CrossRefPubMedPubMedCentral
46.
go back to reference Krevvata, M., Silva, B. C., Manavalan, J. S., Galan-Diez, M., Kode, A., Matthews, B. G., Park, D., Zhang, C. A., Galili, N., Nickolas, T. L., Dempster, D. W., Dougall, W., Teruya-Feldstein, J., Economides, A. N., Kalajzic, I., Raza, A., Berman, E., Mukherjee, S., Bhagat, G., & Kousteni, S. (2014). Inhibition of leukemia cell engraftment and disease progression in mice by osteoblasts. Blood, 124(18), 2834–2846. https://doi.org/10.1182/blood-2013-07-517219CrossRefPubMedPubMedCentral Krevvata, M., Silva, B. C., Manavalan, J. S., Galan-Diez, M., Kode, A., Matthews, B. G., Park, D., Zhang, C. A., Galili, N., Nickolas, T. L., Dempster, D. W., Dougall, W., Teruya-Feldstein, J., Economides, A. N., Kalajzic, I., Raza, A., Berman, E., Mukherjee, S., Bhagat, G., & Kousteni, S. (2014). Inhibition of leukemia cell engraftment and disease progression in mice by osteoblasts. Blood, 124(18), 2834–2846. https://​doi.​org/​10.​1182/​blood-2013-07-517219CrossRefPubMedPubMedCentral
48.
go back to reference Raaijmakers, M. H., Mukherjee, S., Guo, S., Zhang, S., Kobayashi, T., Schoonmaker, J. A., Ebert, B. L., Al-Shahrour, F., Hasserjian, R. P., Scadden, E. O., Aung, Z., Matza, M., Merkenschlager, M., Lin, C., Rommens, J. M., & Scadden, D. T. (2010). Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature, 464(7290), 852–857. https://doi.org/10.1038/nature08851CrossRefPubMedPubMedCentral Raaijmakers, M. H., Mukherjee, S., Guo, S., Zhang, S., Kobayashi, T., Schoonmaker, J. A., Ebert, B. L., Al-Shahrour, F., Hasserjian, R. P., Scadden, E. O., Aung, Z., Matza, M., Merkenschlager, M., Lin, C., Rommens, J. M., & Scadden, D. T. (2010). Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature, 464(7290), 852–857. https://​doi.​org/​10.​1038/​nature08851CrossRefPubMedPubMedCentral
51.
go back to reference Mammoto, T., Torisawa, Y. S., Muyleart, M., Hendee, K., Anugwom, C., Gutterman, D., & Mammoto, A. (2019). Effects of age-dependent changes in cell size on endothelial cell proliferation and senescence through YAP1. Aging, 11(17), 7051–7069. https://doi.org/10.18632/aging.102236 Mammoto, T., Torisawa, Y. S., Muyleart, M., Hendee, K., Anugwom, C., Gutterman, D., & Mammoto, A. (2019). Effects of age-dependent changes in cell size on endothelial cell proliferation and senescence through YAP1. Aging, 11(17), 7051–7069. https://​doi.​org/​10.​18632/​aging.​102236
56.
go back to reference Roninson, I. B. (2003). Tumor cell senescence in cancer treatment. Cancer Research, 63(11), 2705–2715.PubMed Roninson, I. B. (2003). Tumor cell senescence in cancer treatment. Cancer Research, 63(11), 2705–2715.PubMed
58.
go back to reference Wang, E. (1995). Senescent human fibroblasts resist programmed cell death, and failure to suppress bcl2 is involved. Cancer Research, 55(11), 2284.PubMed Wang, E. (1995). Senescent human fibroblasts resist programmed cell death, and failure to suppress bcl2 is involved. Cancer Research, 55(11), 2284.PubMed
68.
go back to reference Beerman, I., Bhattacharya, D., Zandi, S., Sigvardsson, M., Weissman, I. L., Bryder, D., & Rossi, D. J. (2010). Functionally distinct hematopoietic stem cells modulate hematopoietic lineage potential during aging by a mechanism of clonal expansion. Proceedings of the National Academy of Sciences of the United States of America, 107(12), 5465–5470. https://doi.org/10.1073/pnas.1000834107CrossRefPubMedPubMedCentral Beerman, I., Bhattacharya, D., Zandi, S., Sigvardsson, M., Weissman, I. L., Bryder, D., & Rossi, D. J. (2010). Functionally distinct hematopoietic stem cells modulate hematopoietic lineage potential during aging by a mechanism of clonal expansion. Proceedings of the National Academy of Sciences of the United States of America, 107(12), 5465–5470. https://​doi.​org/​10.​1073/​pnas.​1000834107CrossRefPubMedPubMedCentral
75.
go back to reference Guo, J., Zhao, Y., Fei, C., Zhao, S., Zheng, Q., Su, J., Wu, D., Li, X., & Chang, C. (2018). Dicer1 downregulation by multiple myeloma cells promotes the senescence and tumor-supporting capacity and decreases the differentiation potential of mesenchymal stem cells. Cell Death & Disease, 9(5), 512. https://doi.org/10.1038/s41419-018-0545-6CrossRef Guo, J., Zhao, Y., Fei, C., Zhao, S., Zheng, Q., Su, J., Wu, D., Li, X., & Chang, C. (2018). Dicer1 downregulation by multiple myeloma cells promotes the senescence and tumor-supporting capacity and decreases the differentiation potential of mesenchymal stem cells. Cell Death & Disease, 9(5), 512. https://​doi.​org/​10.​1038/​s41419-018-0545-6CrossRef
86.
go back to reference Geyh, S., Oz, S., Cadeddu, R. P., Frobel, J., Bruckner, B., Kundgen, A., Fenk, R., Bruns, I., Zilkens, C., Hermsen, D., Gattermann, N., Kobbe, G., Germing, U., Lyko, F., Haas, R., & Schroeder, T. (2013). Insufficient stromal support in MDS results from molecular and functional deficits of mesenchymal stromal cells. Leukemia, 27(9), 1841–1851. https://doi.org/10.1038/leu.2013.193CrossRefPubMed Geyh, S., Oz, S., Cadeddu, R. P., Frobel, J., Bruckner, B., Kundgen, A., Fenk, R., Bruns, I., Zilkens, C., Hermsen, D., Gattermann, N., Kobbe, G., Germing, U., Lyko, F., Haas, R., & Schroeder, T. (2013). Insufficient stromal support in MDS results from molecular and functional deficits of mesenchymal stromal cells. Leukemia, 27(9), 1841–1851. https://​doi.​org/​10.​1038/​leu.​2013.​193CrossRefPubMed
87.
go back to reference Poloni, A., Maurizi, G., Mattiucci, D., Amatori, S., Fogliardi, B., Costantini, B., Mariani, M., Mancini, S., Olivieri, A., Fanelli, M., & Leoni, P. (2014). Overexpression of CDKN2B (p15INK4B) and altered global DNA methylation status in mesenchymal stem cells of high-risk myelodysplastic syndromes. Leukemia, 28(11), 2241–2244. https://doi.org/10.1038/leu.2014.197CrossRefPubMed Poloni, A., Maurizi, G., Mattiucci, D., Amatori, S., Fogliardi, B., Costantini, B., Mariani, M., Mancini, S., Olivieri, A., Fanelli, M., & Leoni, P. (2014). Overexpression of CDKN2B (p15INK4B) and altered global DNA methylation status in mesenchymal stem cells of high-risk myelodysplastic syndromes. Leukemia, 28(11), 2241–2244. https://​doi.​org/​10.​1038/​leu.​2014.​197CrossRefPubMed
88.
go back to reference Lopez-Villar, O., Garcia, J. L., Sanchez-Guijo, F. M., Robledo, C., Villaron, E. M., Hernández-Campo, P., Lopez-Holgado, N., Diez-Campelo, M., Barbado, M. V., Perez-Simon, J. A., Hernández-Rivas, J. M., San-Miguel, J. F., & del Cañizo, M. C. (2009). Both expanded and uncultured mesenchymal stem cells from MDS patients are genomically abnormal, showing a specific genetic profile for the 5q− syndrome. Leukemia, 23, 664. https://doi.org/10.1038/leu.2008.361CrossRefPubMed Lopez-Villar, O., Garcia, J. L., Sanchez-Guijo, F. M., Robledo, C., Villaron, E. M., Hernández-Campo, P., Lopez-Holgado, N., Diez-Campelo, M., Barbado, M. V., Perez-Simon, J. A., Hernández-Rivas, J. M., San-Miguel, J. F., & del Cañizo, M. C. (2009). Both expanded and uncultured mesenchymal stem cells from MDS patients are genomically abnormal, showing a specific genetic profile for the 5q− syndrome. Leukemia, 23, 664. https://​doi.​org/​10.​1038/​leu.​2008.​361CrossRefPubMed
91.
go back to reference Kornblau, S. M., Ruvolo, P. P., Wang, R. Y., Battula, V. L., Shpall, E. J., Ruvolo, V. R., McQueen, T., Qui, Y., Zeng, Z., Pierce, S., Jacamo, R., Yoo, S. Y., Le, P. M., Sun, J., Hail, N., Jr., Konopleva, M., & Andreeff, M. (2018). Distinct protein signatures of acute myeloid leukemia bone marrow-derived stromal cells are prognostic for patient survival. Haematologica, 103(5), 810–821. https://doi.org/10.3324/haematol.2017.172429CrossRefPubMedPubMedCentral Kornblau, S. M., Ruvolo, P. P., Wang, R. Y., Battula, V. L., Shpall, E. J., Ruvolo, V. R., McQueen, T., Qui, Y., Zeng, Z., Pierce, S., Jacamo, R., Yoo, S. Y., Le, P. M., Sun, J., Hail, N., Jr., Konopleva, M., & Andreeff, M. (2018). Distinct protein signatures of acute myeloid leukemia bone marrow-derived stromal cells are prognostic for patient survival. Haematologica, 103(5), 810–821. https://​doi.​org/​10.​3324/​haematol.​2017.​172429CrossRefPubMedPubMedCentral
94.
go back to reference Geyh, S., Rodríguez-Paredes, M., Jäger, P., Khandanpour, C., Cadeddu, R. P., Gutekunst, J., Wilk, C. M., Fenk, R., Zilkens, C., Hermsen, D., Germing, U., Kobbe, G., Lyko, F., Haas, R., & Schroeder, T. (2016). Functional inhibition of mesenchymal stromal cells in acute myeloid leukemia. Leukemia, 30(3), 683–691. https://doi.org/10.1038/leu.2015.325CrossRefPubMed Geyh, S., Rodríguez-Paredes, M., Jäger, P., Khandanpour, C., Cadeddu, R. P., Gutekunst, J., Wilk, C. M., Fenk, R., Zilkens, C., Hermsen, D., Germing, U., Kobbe, G., Lyko, F., Haas, R., & Schroeder, T. (2016). Functional inhibition of mesenchymal stromal cells in acute myeloid leukemia. Leukemia, 30(3), 683–691. https://​doi.​org/​10.​1038/​leu.​2015.​325CrossRefPubMed
95.
go back to reference Falconi, G., Fabiani, E., Fianchi, L., Criscuolo, M., Raffaelli, C. S., Bellesi, S., Hohaus, S., Voso, M. T., D'Alo, F., & Leone, G. (2016). Impairment of PI3K/AKT and WNT/beta-catenin pathways in bone marrow mesenchymal stem cells isolated from patients with myelodysplastic syndromes. Experimental Hematology, 44(1), 75–83 e71–74, https://doi.org/10.1016/j.exphem.2015.10.005 Falconi, G., Fabiani, E., Fianchi, L., Criscuolo, M., Raffaelli, C. S., Bellesi, S., Hohaus, S., Voso, M. T., D'Alo, F., & Leone, G. (2016). Impairment of PI3K/AKT and WNT/beta-catenin pathways in bone marrow mesenchymal stem cells isolated from patients with myelodysplastic syndromes. Experimental Hematology, 44(1), 75–83 e71–74, https://​doi.​org/​10.​1016/​j.​exphem.​2015.​10.​005
96.
go back to reference Poon, Z., Dighe, N., Venkatesan, S. S., Cheung, A. M. S., Fan, X., Bari, S., Hota, M., Ghosh, S., & Hwang, W. Y. K. (2019). Bone marrow MSCs in MDS: Contribution towards dysfunctional hematopoiesis and potential targets for disease response to hypomethylating therapy. Leukemia, 33(6), 1487–1500. https://doi.org/10.1038/s41375-018-0310-yCrossRefPubMed Poon, Z., Dighe, N., Venkatesan, S. S., Cheung, A. M. S., Fan, X., Bari, S., Hota, M., Ghosh, S., & Hwang, W. Y. K. (2019). Bone marrow MSCs in MDS: Contribution towards dysfunctional hematopoiesis and potential targets for disease response to hypomethylating therapy. Leukemia, 33(6), 1487–1500. https://​doi.​org/​10.​1038/​s41375-018-0310-yCrossRefPubMed
99.
go back to reference von der Heide, E. K., Neumann, M., Vosberg, S., James, A. R., Schroeder, M. P., Ortiz-Tanchez, J., Isaakidis, K., Schlee, C., Luther, M., Johrens, K., Anagnostopoulos, I., Mochmann, L. H., Nowak, D., Hofmann, W. K., Greif, P. A., & Baldus, C. D. (2017). Molecular alterations in bone marrow mesenchymal stromal cells derived from acute myeloid leukemia patients. Leukemia, 31(5), 1069–1078. https://doi.org/10.1038/leu.2016.324CrossRefPubMed von der Heide, E. K., Neumann, M., Vosberg, S., James, A. R., Schroeder, M. P., Ortiz-Tanchez, J., Isaakidis, K., Schlee, C., Luther, M., Johrens, K., Anagnostopoulos, I., Mochmann, L. H., Nowak, D., Hofmann, W. K., Greif, P. A., & Baldus, C. D. (2017). Molecular alterations in bone marrow mesenchymal stromal cells derived from acute myeloid leukemia patients. Leukemia, 31(5), 1069–1078. https://​doi.​org/​10.​1038/​leu.​2016.​324CrossRefPubMed
100.
go back to reference Cheng, J., Li, Y., Liu, S., Jiang, Y., Ma, J., Wan, L., Li, Q., & Pang, T. (2019). CXCL8 derived from mesenchymal stromal cells supports survival and proliferation of acute myeloid leukemia cells through the PI3K/AKT pathway. The Federation of American Societies of Experimental Biology Journal, 33(4), 4755–4764. https://doi.org/10.1096/fj.201801931RCrossRef Cheng, J., Li, Y., Liu, S., Jiang, Y., Ma, J., Wan, L., Li, Q., & Pang, T. (2019). CXCL8 derived from mesenchymal stromal cells supports survival and proliferation of acute myeloid leukemia cells through the PI3K/AKT pathway. The Federation of American Societies of Experimental Biology Journal, 33(4), 4755–4764. https://​doi.​org/​10.​1096/​fj.​201801931RCrossRef
103.
go back to reference Desbourdes, L., Javary, J., Charbonnier, T., Ishac, N., Bourgeais, J., Iltis, A., Chomel, J. C., Turhan, A., Guilloton, F., Tarte, K., Demattei, M. V., Ducrocq, E., Rouleux-Bonnin, F., Gyan, E., Herault, O., & Domenech, J. (2017). Alteration analysis of bone marrow mesenchymal stromal cells from de novo acute myeloid leukemia patients at diagnosis. Stem Cells and Development, 26(10), 709–722. https://doi.org/10.1089/scd.2016.0295CrossRefPubMed Desbourdes, L., Javary, J., Charbonnier, T., Ishac, N., Bourgeais, J., Iltis, A., Chomel, J. C., Turhan, A., Guilloton, F., Tarte, K., Demattei, M. V., Ducrocq, E., Rouleux-Bonnin, F., Gyan, E., Herault, O., & Domenech, J. (2017). Alteration analysis of bone marrow mesenchymal stromal cells from de novo acute myeloid leukemia patients at diagnosis. Stem Cells and Development, 26(10), 709–722. https://​doi.​org/​10.​1089/​scd.​2016.​0295CrossRefPubMed
104.
go back to reference Abdul-Aziz, A. M., Sun, Y., Hellmich, C., Marlein, C. R., Mistry, J., Forde, E., Piddock, R. E., Shafat, M. S., Morfakis, A., Mehta, T., Di Palma, F., Macaulay, I., Ingham, C. J., Haestier, A., Collins, A., Campisi, J., Bowles, K. M., & Rushworth, S. A. (2019). Acute myeloid leukemia induces protumoral p16INK4a-driven senescence in the bone marrow microenvironment. Blood, 133(5), 446–456. https://doi.org/10.1182/blood-2018-04-845420CrossRefPubMedPubMedCentral Abdul-Aziz, A. M., Sun, Y., Hellmich, C., Marlein, C. R., Mistry, J., Forde, E., Piddock, R. E., Shafat, M. S., Morfakis, A., Mehta, T., Di Palma, F., Macaulay, I., Ingham, C. J., Haestier, A., Collins, A., Campisi, J., Bowles, K. M., & Rushworth, S. A. (2019). Acute myeloid leukemia induces protumoral p16INK4a-driven senescence in the bone marrow microenvironment. Blood, 133(5), 446–456. https://​doi.​org/​10.​1182/​blood-2018-04-845420CrossRefPubMedPubMedCentral
108.
go back to reference Hallek, M., Cheson, B. D., Catovsky, D., Caligaris-Cappio, F., Dighiero, G., Dohner, H., Hillmen, P., Keating, M. J., Montserrat, E., Rai, K. R., Kipps, T. J., & International Workshop on Chronic Lymphocytic, L. (2008). Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: A report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines. Blood, 111(12), 5446–5456. https://doi.org/10.1182/blood-2007-06-093906CrossRef Hallek, M., Cheson, B. D., Catovsky, D., Caligaris-Cappio, F., Dighiero, G., Dohner, H., Hillmen, P., Keating, M. J., Montserrat, E., Rai, K. R., Kipps, T. J., & International Workshop on Chronic Lymphocytic, L. (2008). Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: A report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines. Blood, 111(12), 5446–5456. https://​doi.​org/​10.​1182/​blood-2007-06-093906CrossRef
109.
go back to reference Pontikoglou, C., Kastrinaki, M. C., Klaus, M., Kalpadakis, C., Katonis, P., Alpantaki, K., Pangalis, G. A., & Papadaki, H. A. (2013). Study of the quantitative, functional, cytogenetic, and immunoregulatory properties of bone marrow mesenchymal stem cells in patients with B-cell chronic lymphocytic leukemia. Stem Cells and Development, 22(9), 1329–1341. https://doi.org/10.1089/scd.2012.0255CrossRefPubMed Pontikoglou, C., Kastrinaki, M. C., Klaus, M., Kalpadakis, C., Katonis, P., Alpantaki, K., Pangalis, G. A., & Papadaki, H. A. (2013). Study of the quantitative, functional, cytogenetic, and immunoregulatory properties of bone marrow mesenchymal stem cells in patients with B-cell chronic lymphocytic leukemia. Stem Cells and Development, 22(9), 1329–1341. https://​doi.​org/​10.​1089/​scd.​2012.​0255CrossRefPubMed
110.
go back to reference Janel, A., Dubois-Galopin, F., Bourgne, C., Berger, J., Tarte, K., Boiret-Dupre, N., Boisgard, S., Verrelle, P., Dechelotte, P., Tournilhac, O., & Berger, M. G. (2014). The chronic lymphocytic leukemia clone disrupts the bone marrow microenvironment. Stem Cells and Development, 23(24), 2972–2982. https://doi.org/10.1089/scd.2014.0229CrossRefPubMed Janel, A., Dubois-Galopin, F., Bourgne, C., Berger, J., Tarte, K., Boiret-Dupre, N., Boisgard, S., Verrelle, P., Dechelotte, P., Tournilhac, O., & Berger, M. G. (2014). The chronic lymphocytic leukemia clone disrupts the bone marrow microenvironment. Stem Cells and Development, 23(24), 2972–2982. https://​doi.​org/​10.​1089/​scd.​2014.​0229CrossRefPubMed
120.
go back to reference Trimarco, V., Ave, E., Facco, M., Chiodin, G., Frezzato, F., Martini, V., Gattazzo, C., Lessi, F., Giorgi, C. A., Visentin, A., Castelli, M., Severin, F., Zambello, R., Piazza, F., Semenzato, G., & Trentin, L. (2015). Cross-talk between chronic lymphocytic leukemia (CLL) tumor B cells and mesenchymal stromal cells (MSCs): implications for neoplastic cell survival. Oncotarget, 6(39), 42130–42149. https://doi.org/10.18632/oncotarget.6239CrossRefPubMedPubMedCentral Trimarco, V., Ave, E., Facco, M., Chiodin, G., Frezzato, F., Martini, V., Gattazzo, C., Lessi, F., Giorgi, C. A., Visentin, A., Castelli, M., Severin, F., Zambello, R., Piazza, F., Semenzato, G., & Trentin, L. (2015). Cross-talk between chronic lymphocytic leukemia (CLL) tumor B cells and mesenchymal stromal cells (MSCs): implications for neoplastic cell survival. Oncotarget, 6(39), 42130–42149. https://​doi.​org/​10.​18632/​oncotarget.​6239CrossRefPubMedPubMedCentral
121.
go back to reference Crompot, E., Van Damme, M., Pieters, K., Vermeersch, M., Perez-Morga, D., Mineur, P., Maerevoet, M., Meuleman, N., Bron, D., Lagneaux, L., & Stamatopoulos, B. (2017). Extracellular vesicles of bone marrow stromal cells rescue chronic lymphocytic leukemia B cells from apoptosis, enhance their migration and induce gene expression modifications. Haematologica, 102(9), 1594–1604. https://doi.org/10.3324/haematol.2016.163337CrossRefPubMedPubMedCentral Crompot, E., Van Damme, M., Pieters, K., Vermeersch, M., Perez-Morga, D., Mineur, P., Maerevoet, M., Meuleman, N., Bron, D., Lagneaux, L., & Stamatopoulos, B. (2017). Extracellular vesicles of bone marrow stromal cells rescue chronic lymphocytic leukemia B cells from apoptosis, enhance their migration and induce gene expression modifications. Haematologica, 102(9), 1594–1604. https://​doi.​org/​10.​3324/​haematol.​2016.​163337CrossRefPubMedPubMedCentral
123.
124.
go back to reference Paesler, J., Gehrke, I., Gandhirajan, R. K., Filipovich, A., Hertweck, M., Erdfelder, F., Uhrmacher, S., Poll-Wolbeck, S. J., Hallek, M., & Kreuzer, K. A. (2010). The vascular endothelial growth factor receptor tyrosine kinase inhibitors vatalanib and pazopanib potently induce apoptosis in chronic lymphocytic leukemia cells in vitro and in vivo. Clinical Cancer Research, 16(13), 3390–3398. https://doi.org/10.1158/1078-0432.CCR-10-0232CrossRefPubMed Paesler, J., Gehrke, I., Gandhirajan, R. K., Filipovich, A., Hertweck, M., Erdfelder, F., Uhrmacher, S., Poll-Wolbeck, S. J., Hallek, M., & Kreuzer, K. A. (2010). The vascular endothelial growth factor receptor tyrosine kinase inhibitors vatalanib and pazopanib potently induce apoptosis in chronic lymphocytic leukemia cells in vitro and in vivo. Clinical Cancer Research, 16(13), 3390–3398. https://​doi.​org/​10.​1158/​1078-0432.​CCR-10-0232CrossRefPubMed
126.
go back to reference Blanco, G., Puiggros, A., Sherry, B., Nonell, L., Calvo, X., Puigdecanet, E., Chiu, P. Y., Kieso, Y., Ferrer, G., Palacios, F., Arnal, M., Rodriguez-Rivera, M., Gimeno, E., Abella, E., Rai, K. R., Abrisqueta, P., Bosch, F., Calon, A., Ferrer, A., Chiorazzi, N., et al. (2021). Chronic lymphocytic leukemia-like monoclonal B-cell lymphocytosis exhibits an increased inflammatory signature that is reduced in early-stage chronic lymphocytic leukemia. Experimental Hematology, 95, 68–80. https://doi.org/10.1016/j.exphem.2020.12.007CrossRefPubMedPubMedCentral Blanco, G., Puiggros, A., Sherry, B., Nonell, L., Calvo, X., Puigdecanet, E., Chiu, P. Y., Kieso, Y., Ferrer, G., Palacios, F., Arnal, M., Rodriguez-Rivera, M., Gimeno, E., Abella, E., Rai, K. R., Abrisqueta, P., Bosch, F., Calon, A., Ferrer, A., Chiorazzi, N., et al. (2021). Chronic lymphocytic leukemia-like monoclonal B-cell lymphocytosis exhibits an increased inflammatory signature that is reduced in early-stage chronic lymphocytic leukemia. Experimental Hematology, 95, 68–80. https://​doi.​org/​10.​1016/​j.​exphem.​2020.​12.​007CrossRefPubMedPubMedCentral
127.
go back to reference Aguilar-Santelises, M., Loftenius, A., Ljungh, C., Svenson, S. B., Andersson, B., Mellstedt, H., & Jondal, M. (1992). Serum levels of helper factors (IL-1α, IL-1β and IL-6), T-cell products (sCD4 and sCD8), sIL-2R and β2-microglobulin in patients with B-CLL and benign B lymphocytosis. Leukemia Research, 16(6–7), 607–613. https://doi.org/10.1016/0145-2126(92)90009-vCrossRefPubMed Aguilar-Santelises, M., Loftenius, A., Ljungh, C., Svenson, S. B., Andersson, B., Mellstedt, H., & Jondal, M. (1992). Serum levels of helper factors (IL-1α, IL-1β and IL-6), T-cell products (sCD4 and sCD8), sIL-2R and β2-microglobulin in patients with B-CLL and benign B lymphocytosis. Leukemia Research, 16(6–7), 607–613. https://​doi.​org/​10.​1016/​0145-2126(92)90009-vCrossRefPubMed
128.
go back to reference Rajkumar, S. V., Dimopoulos, M. A., Palumbo, A., Blade, J., Merlini, G., Mateos, M. V., Kumar, S., Hillengass, J., Kastritis, E., Richardson, P., Landgren, O., Paiva, B., Dispenzieri, A., Weiss, B., LeLeu, X., Zweegman, S., Lonial, S., Rosinol, L., Zamagni, E., Jagannath, S., et al. (2014). International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncology, 15(12), e538-548. https://doi.org/10.1016/S1470-2045(14)70442-5CrossRefPubMed Rajkumar, S. V., Dimopoulos, M. A., Palumbo, A., Blade, J., Merlini, G., Mateos, M. V., Kumar, S., Hillengass, J., Kastritis, E., Richardson, P., Landgren, O., Paiva, B., Dispenzieri, A., Weiss, B., LeLeu, X., Zweegman, S., Lonial, S., Rosinol, L., Zamagni, E., Jagannath, S., et al. (2014). International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncology, 15(12), e538-548. https://​doi.​org/​10.​1016/​S1470-2045(14)70442-5CrossRefPubMed
131.
go back to reference Xu, S., Evans, H., Buckle, C., De Veirman, K., Hu, J., Xu, D., Menu, E., De Becker, A., Vande Broek, I., Leleu, X., Camp, B. V., Croucher, P., Vanderkerken, K., & Van Riet, I. (2012). Impaired osteogenic differentiation of mesenchymal stem cells derived from multiple myeloma patients is associated with a blockade in the deactivation of the Notch signaling pathway. Leukemia, 26(12), 2546–2549. https://doi.org/10.1038/leu.2012.126CrossRefPubMed Xu, S., Evans, H., Buckle, C., De Veirman, K., Hu, J., Xu, D., Menu, E., De Becker, A., Vande Broek, I., Leleu, X., Camp, B. V., Croucher, P., Vanderkerken, K., & Van Riet, I. (2012). Impaired osteogenic differentiation of mesenchymal stem cells derived from multiple myeloma patients is associated with a blockade in the deactivation of the Notch signaling pathway. Leukemia, 26(12), 2546–2549. https://​doi.​org/​10.​1038/​leu.​2012.​126CrossRefPubMed
134.
go back to reference Mehdi, S. J., Johnson, S. K., Epstein, J., Zangari, M., Qu, P., Hoering, A., van Rhee, F., Schinke, C., Thanendrarajan, S., Barlogie, B., Davies, F. E., Morgan, G. J., & Yaccoby, S. (2019). Mesenchymal stem cells gene signature in high-risk myeloma bone marrow linked to suppression of distinct IGFBP2-expressing small adipocytes. British Journal of Haematology, 184(4), 578–593. https://doi.org/10.1111/bjh.15669CrossRefPubMed Mehdi, S. J., Johnson, S. K., Epstein, J., Zangari, M., Qu, P., Hoering, A., van Rhee, F., Schinke, C., Thanendrarajan, S., Barlogie, B., Davies, F. E., Morgan, G. J., & Yaccoby, S. (2019). Mesenchymal stem cells gene signature in high-risk myeloma bone marrow linked to suppression of distinct IGFBP2-expressing small adipocytes. British Journal of Haematology, 184(4), 578–593. https://​doi.​org/​10.​1111/​bjh.​15669CrossRefPubMed
136.
go back to reference Fairfield, H., Costa, S., Falank, C., Farrell, M., Murphy, C. S., D’Amico, A., Driscoll, H., & Reagan, M. R. (2020). Multiple Myeloma Cells Alter Adipogenesis, Increase Senescence-Related and Inflammatory Gene Transcript Expression, and Alter Metabolism in Preadipocytes. Frontiers in Oncology, 10, 584683. https://doi.org/10.3389/fonc.2020.584683CrossRefPubMed Fairfield, H., Costa, S., Falank, C., Farrell, M., Murphy, C. S., D’Amico, A., Driscoll, H., & Reagan, M. R. (2020). Multiple Myeloma Cells Alter Adipogenesis, Increase Senescence-Related and Inflammatory Gene Transcript Expression, and Alter Metabolism in Preadipocytes. Frontiers in Oncology, 10, 584683. https://​doi.​org/​10.​3389/​fonc.​2020.​584683CrossRefPubMed
139.
go back to reference Arnulf, B., Lecourt, S., Soulier, J., Ternaux, B., Lacassagne, M. N., Crinquette, A., Dessoly, J., Sciaini, A. K., Benbunan, M., Chomienne, C., Fermand, J. P., Marolleau, J. P., & Larghero, J. (2007). Phenotypic and functional characterization of bone marrow mesenchymal stem cells derived from patients with multiple myeloma. Leukemia, 21(1), 158–163. https://doi.org/10.1038/sj.leu.2404466CrossRefPubMed Arnulf, B., Lecourt, S., Soulier, J., Ternaux, B., Lacassagne, M. N., Crinquette, A., Dessoly, J., Sciaini, A. K., Benbunan, M., Chomienne, C., Fermand, J. P., Marolleau, J. P., & Larghero, J. (2007). Phenotypic and functional characterization of bone marrow mesenchymal stem cells derived from patients with multiple myeloma. Leukemia, 21(1), 158–163. https://​doi.​org/​10.​1038/​sj.​leu.​2404466CrossRefPubMed
145.
go back to reference Banaszkiewicz, M., Malyszko, J., Batko, K., Koc-Zorawska, E., Zorawski, M., Dumnicka, P., Jurczyszyn, A., Woziwodzka, K., Tisonczyk, J., Krzanowski, M., Malyszko, J., Waszczuk-Gajda, A., Drozdz, R., Kuzniewski, M., & Krzanowska, K. (2020). Evaluating the relationship of GDF-15 with clinical characteristics, cardinal features, and survival in multiple myeloma. Mediators of Inflammation, 5657864. https://doi.org/10.1155/2020/5657864 Banaszkiewicz, M., Malyszko, J., Batko, K., Koc-Zorawska, E., Zorawski, M., Dumnicka, P., Jurczyszyn, A., Woziwodzka, K., Tisonczyk, J., Krzanowski, M., Malyszko, J., Waszczuk-Gajda, A., Drozdz, R., Kuzniewski, M., & Krzanowska, K. (2020). Evaluating the relationship of GDF-15 with clinical characteristics, cardinal features, and survival in multiple myeloma. Mediators of Inflammation, 5657864. https://​doi.​org/​10.​1155/​2020/​5657864
146.
go back to reference Alexandrakis, M. G., Passam, F. H., Boula, A., Christophoridou, A., Aloizos, G., Roussou, P., & Kyriakou, D. S. (2003). Relationship between circulating serum soluble interleukin-6 receptor and the angiogenic cytokines basic fibroblast growth factor and vascular endothelial growth factor in multiple myeloma. Annals of Hematology, 82(1), 19–23. https://doi.org/10.1007/s00277-002-0558-0CrossRefPubMed Alexandrakis, M. G., Passam, F. H., Boula, A., Christophoridou, A., Aloizos, G., Roussou, P., & Kyriakou, D. S. (2003). Relationship between circulating serum soluble interleukin-6 receptor and the angiogenic cytokines basic fibroblast growth factor and vascular endothelial growth factor in multiple myeloma. Annals of Hematology, 82(1), 19–23. https://​doi.​org/​10.​1007/​s00277-002-0558-0CrossRefPubMed
147.
go back to reference Corre, J., Labat, E., Espagnolle, N., Hebraud, B., Avet-Loiseau, H., Roussel, M., Huynh, A., Gadelorge, M., Cordelier, P., Klein, B., Moreau, P., Facon, T., Fournie, J. J., Attal, M., & Bourin, P. (2012). Bioactivity and prognostic significance of growth differentiation factor GDF15 secreted by bone marrow mesenchymal stem cells in multiple myeloma. Cancer Research, 72(6), 1395–1406. https://doi.org/10.1158/0008-5472.CAN-11-0188CrossRefPubMed Corre, J., Labat, E., Espagnolle, N., Hebraud, B., Avet-Loiseau, H., Roussel, M., Huynh, A., Gadelorge, M., Cordelier, P., Klein, B., Moreau, P., Facon, T., Fournie, J. J., Attal, M., & Bourin, P. (2012). Bioactivity and prognostic significance of growth differentiation factor GDF15 secreted by bone marrow mesenchymal stem cells in multiple myeloma. Cancer Research, 72(6), 1395–1406. https://​doi.​org/​10.​1158/​0008-5472.​CAN-11-0188CrossRefPubMed
150.
go back to reference Zingone, A., Wang, W., Corrigan-Cummins, M., Wu, S. P., Plyler, R., Korde, N., Kwok, M., Manasanch, E. E., Tageja, N., Bhutani, M., Mulquin, M., Zuchlinski, D., Yancey, M. A., Roschewski, M., Zhang, Y., Roccaro, A. M., Ghobrial, I. M., Calvo, K. R., & Landgren, O. (2014). Altered cytokine and chemokine profiles in multiple myeloma and its precursor disease. Cytokine, 69(2), 294–297. https://doi.org/10.1016/j.cyto.2014.05.017CrossRefPubMedPubMedCentral Zingone, A., Wang, W., Corrigan-Cummins, M., Wu, S. P., Plyler, R., Korde, N., Kwok, M., Manasanch, E. E., Tageja, N., Bhutani, M., Mulquin, M., Zuchlinski, D., Yancey, M. A., Roschewski, M., Zhang, Y., Roccaro, A. M., Ghobrial, I. M., Calvo, K. R., & Landgren, O. (2014). Altered cytokine and chemokine profiles in multiple myeloma and its precursor disease. Cytokine, 69(2), 294–297. https://​doi.​org/​10.​1016/​j.​cyto.​2014.​05.​017CrossRefPubMedPubMedCentral
153.
154.
go back to reference Roccaro, A. M., Sacco, A., Maiso, P., Azab, A. K., Tai, Y. T., Reagan, M., Azab, F., Flores, L. M., Campigotto, F., Weller, E., Anderson, K. C., Scadden, D. T., & Ghobrial, I. M. (2013). BM mesenchymal stromal cell-derived exosomes facilitate multiple myeloma progression. Journal of Clinical Investigation, 123(4), 1542–1555. https://doi.org/10.1172/JCI66517CrossRefPubMedPubMedCentral Roccaro, A. M., Sacco, A., Maiso, P., Azab, A. K., Tai, Y. T., Reagan, M., Azab, F., Flores, L. M., Campigotto, F., Weller, E., Anderson, K. C., Scadden, D. T., & Ghobrial, I. M. (2013). BM mesenchymal stromal cell-derived exosomes facilitate multiple myeloma progression. Journal of Clinical Investigation, 123(4), 1542–1555. https://​doi.​org/​10.​1172/​JCI66517CrossRefPubMedPubMedCentral
155.
go back to reference Kanehira, M., Fujiwara, T., Nakajima, S., Okitsu, Y., Onishi, Y., Fukuhara, N., Ichinohasama, R., Okada, Y., & Harigae, H. (2017). An lysophosphatidic acid receptors 1 and 3 axis governs cellular senescence of mesenchymal stromal cells and promotes growth and vascularization of multiple myeloma. Stem Cells, 35(3), 739–753. https://doi.org/10.1002/stem.2499CrossRefPubMed Kanehira, M., Fujiwara, T., Nakajima, S., Okitsu, Y., Onishi, Y., Fukuhara, N., Ichinohasama, R., Okada, Y., & Harigae, H. (2017). An lysophosphatidic acid receptors 1 and 3 axis governs cellular senescence of mesenchymal stromal cells and promotes growth and vascularization of multiple myeloma. Stem Cells, 35(3), 739–753. https://​doi.​org/​10.​1002/​stem.​2499CrossRefPubMed
162.
go back to reference Rossi, J. F., Fegueux, N., Lu, Z. Y., Legouffe, E., Exbrayat, C., Bozonnat, M. C., Navarro, R., Lopez, E., Quittet, P., Daures, J. P., Rouille, V., Kanouni, T., Widjenes, J., & Klein, B. (2005). Optimizing the use of anti-interleukin-6 monoclonal antibody with dexamethasone and 140 mg/m2 of melphalan in multiple myeloma: Results of a pilot study including biological aspects. Bone Marrow Transplantation, 36(9), 771–779. https://doi.org/10.1038/sj.bmt.1705138CrossRefPubMedPubMedCentral Rossi, J. F., Fegueux, N., Lu, Z. Y., Legouffe, E., Exbrayat, C., Bozonnat, M. C., Navarro, R., Lopez, E., Quittet, P., Daures, J. P., Rouille, V., Kanouni, T., Widjenes, J., & Klein, B. (2005). Optimizing the use of anti-interleukin-6 monoclonal antibody with dexamethasone and 140 mg/m2 of melphalan in multiple myeloma: Results of a pilot study including biological aspects. Bone Marrow Transplantation, 36(9), 771–779. https://​doi.​org/​10.​1038/​sj.​bmt.​1705138CrossRefPubMedPubMedCentral
164.
go back to reference Voorhees, P. M., Manges, R. F., Sonneveld, P., Jagannath, S., Somlo, G., Krishnan, A., Lentzsch, S., Frank, R. C., Zweegman, S., Wijermans, P. W., Orlowski, R. Z., Kranenburg, B., Hall, B., Casneuf, T., Qin, X., van de Velde, H., Xie, H., & Thomas, S. K. (2013). A phase 2 multicentre study of siltuximab, an anti-interleukin-6 monoclonal antibody, in patients with relapsed or refractory multiple myeloma. British Journal of Haematology, 161(3), 357–366. https://doi.org/10.1111/bjh.12266CrossRefPubMedPubMedCentral Voorhees, P. M., Manges, R. F., Sonneveld, P., Jagannath, S., Somlo, G., Krishnan, A., Lentzsch, S., Frank, R. C., Zweegman, S., Wijermans, P. W., Orlowski, R. Z., Kranenburg, B., Hall, B., Casneuf, T., Qin, X., van de Velde, H., Xie, H., & Thomas, S. K. (2013). A phase 2 multicentre study of siltuximab, an anti-interleukin-6 monoclonal antibody, in patients with relapsed or refractory multiple myeloma. British Journal of Haematology, 161(3), 357–366. https://​doi.​org/​10.​1111/​bjh.​12266CrossRefPubMedPubMedCentral
165.
go back to reference Brighton, T. A., Khot, A., Harrison, S. J., Ghez, D., Weiss, B. M., Kirsch, A., Magen, H., Gironella, M., Oriol, A., Streetly, M., Kranenburg, B., Qin, X., Bandekar, R., Hu, P., Guilfoyle, M., Qi, M., Nemat, S., & Goldschmidt, H. (2019). Randomized, double-blind, placebo-controlled, multicenter study of siltuximab in high-risk smoldering multiple myeloma. Clinical Cancer Research, 25(13), 3772–3775. https://doi.org/10.1158/1078-0432.CCR-18-3470CrossRefPubMed Brighton, T. A., Khot, A., Harrison, S. J., Ghez, D., Weiss, B. M., Kirsch, A., Magen, H., Gironella, M., Oriol, A., Streetly, M., Kranenburg, B., Qin, X., Bandekar, R., Hu, P., Guilfoyle, M., Qi, M., Nemat, S., & Goldschmidt, H. (2019). Randomized, double-blind, placebo-controlled, multicenter study of siltuximab in high-risk smoldering multiple myeloma. Clinical Cancer Research, 25(13), 3772–3775. https://​doi.​org/​10.​1158/​1078-0432.​CCR-18-3470CrossRefPubMed
166.
go back to reference Jourdan, M., Tarte, K., Legouffe, E., Brochier, J., Rossi, J. F., & Klein, B. (1999). Tumor necrosis factor is a survival and proliferation factor for human myeloma cells. European Cytokine Network, 10(1), 65–70.PubMedPubMedCentral Jourdan, M., Tarte, K., Legouffe, E., Brochier, J., Rossi, J. F., & Klein, B. (1999). Tumor necrosis factor is a survival and proliferation factor for human myeloma cells. European Cytokine Network, 10(1), 65–70.PubMedPubMedCentral
167.
go back to reference Bosseboeuf, A., Allain-Maillet, S., Mennesson, N., Tallet, A., Rossi, C., Garderet, L., Caillot, D., Moreau, P., Piver, E., Girodon, F., Perreault, H., Brouard, S., Nicot, A., Bigot-Corbel, E., Hermouet, S., & Harb, J. (2017). Pro-inflammatory state in monoclonal gammopathy of undetermined significance and in multiple myeloma is characterized by low sialylation of pathogen-specific and other monoclonal immunoglobulins. Frontiers in Immunology, 8, 1347. https://doi.org/10.3389/fimmu.2017.01347CrossRefPubMedPubMedCentral Bosseboeuf, A., Allain-Maillet, S., Mennesson, N., Tallet, A., Rossi, C., Garderet, L., Caillot, D., Moreau, P., Piver, E., Girodon, F., Perreault, H., Brouard, S., Nicot, A., Bigot-Corbel, E., Hermouet, S., & Harb, J. (2017). Pro-inflammatory state in monoclonal gammopathy of undetermined significance and in multiple myeloma is characterized by low sialylation of pathogen-specific and other monoclonal immunoglobulins. Frontiers in Immunology, 8, 1347. https://​doi.​org/​10.​3389/​fimmu.​2017.​01347CrossRefPubMedPubMedCentral
168.
169.
go back to reference Schneiderova, P., Pika, T., Gajdos, P., Fillerova, R., Kromer, P., Kudelka, M., Minarik, J., Papajik, T., Scudla, V., & Kriegova, E. (2017). Serum protein fingerprinting by PEA immunoassay coupled with a pattern-recognition algorithms distinguishes MGUS and multiple myeloma. Oncotarget, 8(41), 69408–69421. https://doi.org/10.18632/oncotarget.11242CrossRefPubMed Schneiderova, P., Pika, T., Gajdos, P., Fillerova, R., Kromer, P., Kudelka, M., Minarik, J., Papajik, T., Scudla, V., & Kriegova, E. (2017). Serum protein fingerprinting by PEA immunoassay coupled with a pattern-recognition algorithms distinguishes MGUS and multiple myeloma. Oncotarget, 8(41), 69408–69421. https://​doi.​org/​10.​18632/​oncotarget.​11242CrossRefPubMed
171.
go back to reference Tarantini, S., Balasubramanian, P., Delfavero, J., Csipo, T., Yabluchanskiy, A., Kiss, T., Nyul-Toth, A., Mukli, P., Toth, P., Ahire, C., Ungvari, A., Benyo, Z., Csiszar, A., & Ungvari, Z. (2021). Treatment with the BCL-2/BCL-xL inhibitor senolytic drug ABT263/Navitoclax improves functional hyperemia in aged mice. Geroscience, 43(5), 2427–2440. https://doi.org/10.1007/s11357-021-00440-zCrossRefPubMedPubMedCentral Tarantini, S., Balasubramanian, P., Delfavero, J., Csipo, T., Yabluchanskiy, A., Kiss, T., Nyul-Toth, A., Mukli, P., Toth, P., Ahire, C., Ungvari, A., Benyo, Z., Csiszar, A., & Ungvari, Z. (2021). Treatment with the BCL-2/BCL-xL inhibitor senolytic drug ABT263/Navitoclax improves functional hyperemia in aged mice. Geroscience, 43(5), 2427–2440. https://​doi.​org/​10.​1007/​s11357-021-00440-zCrossRefPubMedPubMedCentral
172.
go back to reference Pan, J., Li, D., Xu, Y., Zhang, J., Wang, Y., Chen, M., Lin, S., Huang, L., Chung, E. J., Citrin, D. E., Wang, Y., Hauer-Jensen, M., Zhou, D., & Meng, A. (2017). Inhibition of Bcl-2/xl with ABT-263 selectively kills senescent type II pneumocytes and reverses persistent pulmonary fibrosis induced by ionizing radiation in mice. International Journal of Radiation Oncology Biology Physics, 99(2), 353–361. https://doi.org/10.1016/j.ijrobp.2017.02.216CrossRefPubMed Pan, J., Li, D., Xu, Y., Zhang, J., Wang, Y., Chen, M., Lin, S., Huang, L., Chung, E. J., Citrin, D. E., Wang, Y., Hauer-Jensen, M., Zhou, D., & Meng, A. (2017). Inhibition of Bcl-2/xl with ABT-263 selectively kills senescent type II pneumocytes and reverses persistent pulmonary fibrosis induced by ionizing radiation in mice. International Journal of Radiation Oncology Biology Physics, 99(2), 353–361. https://​doi.​org/​10.​1016/​j.​ijrobp.​2017.​02.​216CrossRefPubMed
173.
go back to reference Chang, J., Wang, Y., Shao, L., Laberge, R.-M., Demaria, M., Campisi, J., Janakiraman, K., Sharpless, N. E., Ding, S., Feng, W., Luo, Y., Wang, X., Aykin-Burns, N., Krager, K., Ponnappan, U., Hauer-Jensen, M., Meng, A., & Zhou, D. (2016). Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nature Medicine, 22(1), 78–83. https://doi.org/10.1038/nm.4010CrossRefPubMed Chang, J., Wang, Y., Shao, L., Laberge, R.-M., Demaria, M., Campisi, J., Janakiraman, K., Sharpless, N. E., Ding, S., Feng, W., Luo, Y., Wang, X., Aykin-Burns, N., Krager, K., Ponnappan, U., Hauer-Jensen, M., Meng, A., & Zhou, D. (2016). Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nature Medicine, 22(1), 78–83. https://​doi.​org/​10.​1038/​nm.​4010CrossRefPubMed
175.
go back to reference Sharma, A. K., Roberts, R. L., Benson, R. D., Jr., Pierce, J. L., Yu, K., Hamrick, M. W., & McGee-Lawrence, M. E. (2020). The senolytic drug navitoclax (ABT-263) causes trabecular bone loss and impaired osteoprogenitor function in aged mice. Frontiers in Cell and Developmental Biology, 8(354). https://doi.org/10.3389/fcell.2020.00354 Sharma, A. K., Roberts, R. L., Benson, R. D., Jr., Pierce, J. L., Yu, K., Hamrick, M. W., & McGee-Lawrence, M. E. (2020). The senolytic drug navitoclax (ABT-263) causes trabecular bone loss and impaired osteoprogenitor function in aged mice. Frontiers in Cell and Developmental Biology, 8(354). https://​doi.​org/​10.​3389/​fcell.​2020.​00354
177.
go back to reference Song, X., Dai, J., Li, H., Li, Y., Hao, W., Zhang, Y., Zhang, Y., Su, L., & Wei, H. (2019). Anti-aging effects exerted by Tetramethylpyrazine enhances self-renewal and neuronal differentiation of rat bMSCs by suppressing NF-kB signaling. Bioscience Reports, 39(6). https://doi.org/10.1042/BSR20190761 Song, X., Dai, J., Li, H., Li, Y., Hao, W., Zhang, Y., Zhang, Y., Su, L., & Wei, H. (2019). Anti-aging effects exerted by Tetramethylpyrazine enhances self-renewal and neuronal differentiation of rat bMSCs by suppressing NF-kB signaling. Bioscience Reports, 39(6). https://​doi.​org/​10.​1042/​BSR20190761
178.
go back to reference Gao, B., Lin, X., Jing, H., Fan, J., Ji, C., Jie, Q., Zheng, C., Wang, D., Xu, X., Hu, Y., Lu, W., Luo, Z., & Yang, L. (2018). Local delivery of tetramethylpyrazine eliminates the senescent phenotype of bone marrow mesenchymal stromal cells and creates an anti-inflammatory and angiogenic environment in aging mice. Aging Cell, 17(3), e12741. https://doi.org/10.1111/acel.12741CrossRefPubMedPubMedCentral Gao, B., Lin, X., Jing, H., Fan, J., Ji, C., Jie, Q., Zheng, C., Wang, D., Xu, X., Hu, Y., Lu, W., Luo, Z., & Yang, L. (2018). Local delivery of tetramethylpyrazine eliminates the senescent phenotype of bone marrow mesenchymal stromal cells and creates an anti-inflammatory and angiogenic environment in aging mice. Aging Cell, 17(3), e12741. https://​doi.​org/​10.​1111/​acel.​12741CrossRefPubMedPubMedCentral
179.
go back to reference Zhu, Y., Tchkonia, T., Pirtskhalava, T., Gower, A. C., Ding, H., Giorgadze, N., Palmer, A. K., Ikeno, Y., Hubbard, G. B., Lenburg, M., O’Hara, S. P., LaRusso, N. F., Miller, J. D., Roos, C. M., Verzosa, G. C., LeBrasseur, N. K., Wren, J. D., Farr, J. N., Khosla, S., Stout, M. B., et al. (2015). The Achilles’ heel of senescent cells: From transcriptome to senolytic drugs. Aging Cell, 14(4), 644–658. https://doi.org/10.1111/acel.12344CrossRefPubMedPubMedCentral Zhu, Y., Tchkonia, T., Pirtskhalava, T., Gower, A. C., Ding, H., Giorgadze, N., Palmer, A. K., Ikeno, Y., Hubbard, G. B., Lenburg, M., O’Hara, S. P., LaRusso, N. F., Miller, J. D., Roos, C. M., Verzosa, G. C., LeBrasseur, N. K., Wren, J. D., Farr, J. N., Khosla, S., Stout, M. B., et al. (2015). The Achilles’ heel of senescent cells: From transcriptome to senolytic drugs. Aging Cell, 14(4), 644–658. https://​doi.​org/​10.​1111/​acel.​12344CrossRefPubMedPubMedCentral
180.
go back to reference Farr, J. N., Xu, M., Weivoda, M. M., Monroe, D. G., Fraser, D. G., Onken, J. L., Negley, B. A., Sfeir, J. G., Ogrodnik, M. B., Hachfeld, C. M., LeBrasseur, N. K., Drake, M. T., Pignolo, R. J., Pirtskhalava, T., Tchkonia, T., Oursler, M. J., Kirkland, J. L., & Khosla, S. (2017). Targeting cellular senescence prevents age-related bone loss in mice. Nature Medicine, 23(9), 1072–1079. https://doi.org/10.1038/nm.4385CrossRefPubMedPubMedCentral Farr, J. N., Xu, M., Weivoda, M. M., Monroe, D. G., Fraser, D. G., Onken, J. L., Negley, B. A., Sfeir, J. G., Ogrodnik, M. B., Hachfeld, C. M., LeBrasseur, N. K., Drake, M. T., Pignolo, R. J., Pirtskhalava, T., Tchkonia, T., Oursler, M. J., Kirkland, J. L., & Khosla, S. (2017). Targeting cellular senescence prevents age-related bone loss in mice. Nature Medicine, 23(9), 1072–1079. https://​doi.​org/​10.​1038/​nm.​4385CrossRefPubMedPubMedCentral
181.
go back to reference Hickson, L. J., Langhi Prata, L. G. P., Bobart, S. A., Evans, T. K., Giorgadze, N., Hashmi, S. K., Herrmann, S. M., Jensen, M. D., Jia, Q., Jordan, K. L., Kellogg, T. A., Khosla, S., Koerber, D. M., Lagnado, A. B., Lawson, D. K., LeBrasseur, N. K., Lerman, L. O., McDonald, K. M., McKenzie, T. J., Passos, J. F., et al. (2019). Senolytics decrease senescent cells in humans: Preliminary report from a clinical trial of dasatinib plus quercetin in individuals with diabetic kidney disease. eBioMedicine, 47, 446–456. https://doi.org/10.1016/j.ebiom.2019.08.069CrossRefPubMedPubMedCentral Hickson, L. J., Langhi Prata, L. G. P., Bobart, S. A., Evans, T. K., Giorgadze, N., Hashmi, S. K., Herrmann, S. M., Jensen, M. D., Jia, Q., Jordan, K. L., Kellogg, T. A., Khosla, S., Koerber, D. M., Lagnado, A. B., Lawson, D. K., LeBrasseur, N. K., Lerman, L. O., McDonald, K. M., McKenzie, T. J., Passos, J. F., et al. (2019). Senolytics decrease senescent cells in humans: Preliminary report from a clinical trial of dasatinib plus quercetin in individuals with diabetic kidney disease. eBioMedicine, 47, 446–456. https://​doi.​org/​10.​1016/​j.​ebiom.​2019.​08.​069CrossRefPubMedPubMedCentral
184.
go back to reference Banaszkiewicz, M., Malyszko, J., Batko, K., Koc-Zorawska, E., Zorawski, M., Dumnicka, P., Jurczyszyn, A., Woziwodzka, K., Tisonczyk, J., Krzanowski, M., Malyszko, J., Waszczuk-Gajda, A., Drozdz, R., Kuzniewski, M., & Krzanowska, K. (2020). Evaluating the relationship of GDF-15 with clinical characteristics, cardinal features, and survival in multiple myeloma. Mediators of Inflammation, 2020, 5657864. https://doi.org/10.1155/2020/5657864CrossRefPubMedPubMedCentral Banaszkiewicz, M., Malyszko, J., Batko, K., Koc-Zorawska, E., Zorawski, M., Dumnicka, P., Jurczyszyn, A., Woziwodzka, K., Tisonczyk, J., Krzanowski, M., Malyszko, J., Waszczuk-Gajda, A., Drozdz, R., Kuzniewski, M., & Krzanowska, K. (2020). Evaluating the relationship of GDF-15 with clinical characteristics, cardinal features, and survival in multiple myeloma. Mediators of Inflammation, 2020, 5657864. https://​doi.​org/​10.​1155/​2020/​5657864CrossRefPubMedPubMedCentral
Metadata
Title
Mesenchymal stromal cell senescence in haematological malignancies
Authors
Natalya Plakhova
Vasilios Panagopoulos
Kate Vandyke
Andrew C. W. Zannettino
Krzysztof M. Mrozik
Publication date
09-01-2023
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 1/2023
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-022-10069-9

Other articles of this Issue 1/2023

Cancer and Metastasis Reviews 1/2023 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine