Skip to main content
Top
Published in: Cancer and Metastasis Reviews 1/2023

05-01-2023 | Metastasis

The genomic regulation of metastatic dormancy

Author: Irwin H. Gelman

Published in: Cancer and Metastasis Reviews | Issue 1/2023

Login to get access

Abstract

The genomics and pathways governing metastatic dormancy are critically important drivers of long-term patient survival given the considerable portion of cancers that recur aggressively months to years after initial treatments. Our understanding of dormancy has expanded greatly in the last two decades, with studies elucidating that the dormant state is regulated by multiple genes, microenvironmental (ME) interactions, and immune components. These forces are exerted through mechanisms that are intrinsic to the tumor cell, manifested through cross-talk between tumor and ME cells including those from the immune system, and regulated by angiogenic processes in the nascent micrometastatic niche. The development of new in vivo and 3D ME models, as well as enhancements to decades-old tumor cell pedigree models that span the development of metastatic dormancy to aggressive growth, has helped fuel what arguably is one of the least understood areas of cancer biology that nonetheless contributes immensely to patient mortality. The current review focuses on the genes and molecular pathways that regulate dormancy via tumor-intrinsic and ME cells, and how groups have envisioned harnessing these therapeutically to benefit patient survival.
Literature
3.
go back to reference Banys-Paluchowski, M., Reinhardt, F., & Fehm, T. (2020). Disseminated tumor cells and dormancy in breast cancer progression. Advances in Experimental Medicine and Biology, 122035, 35–43. Banys-Paluchowski, M., Reinhardt, F., & Fehm, T. (2020). Disseminated tumor cells and dormancy in breast cancer progression. Advances in Experimental Medicine and Biology, 122035, 35–43.
4.
go back to reference Bushnell, G. G., Deshmukh, A. P., den Hollander, P., Luo, M., Soundararajan, R., Jia, D., Levine, H., Mani, S. A., & Wicha, M. S. (2021). Breast cancer dormancy: Need for clinically relevant models to address current gaps in knowledge. NPJ Breast Cancer, 7(1), 66.PubMedPubMedCentralCrossRef Bushnell, G. G., Deshmukh, A. P., den Hollander, P., Luo, M., Soundararajan, R., Jia, D., Levine, H., Mani, S. A., & Wicha, M. S. (2021). Breast cancer dormancy: Need for clinically relevant models to address current gaps in knowledge. NPJ Breast Cancer, 7(1), 66.PubMedPubMedCentralCrossRef
5.
go back to reference Phan, T. G., & Croucher, P. I. (2020). The dormant cancer cell life cycle. Nature Reviews Cancer, 20(7), 398–411.PubMedCrossRef Phan, T. G., & Croucher, P. I. (2020). The dormant cancer cell life cycle. Nature Reviews Cancer, 20(7), 398–411.PubMedCrossRef
6.
go back to reference Gawrzak, S., Rinaldi, L., Gregorio, S., Arenas, E. J., Salvador, F., Urosevic, J., et al. (2018). MSK1 regulates luminal cell differentiation and metastatic dormancy in ER(+) breast cancer. Nature Cell Biology, 20(2), 211–221.PubMedCrossRef Gawrzak, S., Rinaldi, L., Gregorio, S., Arenas, E. J., Salvador, F., Urosevic, J., et al. (2018). MSK1 regulates luminal cell differentiation and metastatic dormancy in ER(+) breast cancer. Nature Cell Biology, 20(2), 211–221.PubMedCrossRef
7.
go back to reference Keydar, I., Chen, L., Karby, S., Weiss, F. R., Delarea, J., Radu, M., Chaitcik, S., & Brenner, H. J. (1979). Establishment and characterization of a cell line of human breast carcinoma origin. European Journal of Cancer, 15(5), 659–670.PubMedCrossRef Keydar, I., Chen, L., Karby, S., Weiss, F. R., Delarea, J., Radu, M., Chaitcik, S., & Brenner, H. J. (1979). Establishment and characterization of a cell line of human breast carcinoma origin. European Journal of Cancer, 15(5), 659–670.PubMedCrossRef
8.
go back to reference Harrell, J. C., Dye, W. W., Allred, D. C., Jedlicka, P., Spoelstra, N. S., Sartorius, C. A., & Horwitz, K. B. (2006). Estrogen receptor positive breast cancer metastasis: Altered hormonal sensitivity and tumor aggressiveness in lymphatic vessels and lymph nodes. Cancer Research, 66(18), 9308–9315.PubMedCrossRef Harrell, J. C., Dye, W. W., Allred, D. C., Jedlicka, P., Spoelstra, N. S., Sartorius, C. A., & Horwitz, K. B. (2006). Estrogen receptor positive breast cancer metastasis: Altered hormonal sensitivity and tumor aggressiveness in lymphatic vessels and lymph nodes. Cancer Research, 66(18), 9308–9315.PubMedCrossRef
9.
go back to reference Puchalapalli, M., Zeng, X., Mu, L., Anderson, A., Hix, G. L., Zhang, M., Sayyad, M. R., Mosticone, W. S., Clevenger, C. V., & Koblinski, J. E. (2016). NSG mice provide a better spontaneous model of breast cancer metastasis than athymic (Nude) mice. PLoS ONE, 11(9), e0163521.PubMedPubMedCentralCrossRef Puchalapalli, M., Zeng, X., Mu, L., Anderson, A., Hix, G. L., Zhang, M., Sayyad, M. R., Mosticone, W. S., Clevenger, C. V., & Koblinski, J. E. (2016). NSG mice provide a better spontaneous model of breast cancer metastasis than athymic (Nude) mice. PLoS ONE, 11(9), e0163521.PubMedPubMedCentralCrossRef
10.
go back to reference Lefley, D., Howard, F., Arshad, F., Bradbury, S., Brown, H., Tulotta, C., Eyre, R., Alférez, D., Wilkinson, J. M., Holen, I., Clarke, R. B., & Ottewell, P. (2019). Development of clinically relevant in vivo metastasis models using human bone discs and breast cancer patient-derived xenografts. Breast Cancer Research, 21(1), 130–1220. Lefley, D., Howard, F., Arshad, F., Bradbury, S., Brown, H., Tulotta, C., Eyre, R., Alférez, D., Wilkinson, J. M., Holen, I., Clarke, R. B., & Ottewell, P. (2019). Development of clinically relevant in vivo metastasis models using human bone discs and breast cancer patient-derived xenografts. Breast Cancer Research, 21(1), 130–1220.
11.
go back to reference Lu, X., Mu, E., Wei, Y., Riethdorf, S., Yang, Q., Yuan, M., Yan, J., Hua, Y., Tiede, B. J., Lu, X., Haffty, B. G., Pantel, K., Massagué, J., & Kang, Y. (2011). VCAM-1 promotes osteolytic expansion of indolent bone micrometastasis of breast cancer by engaging alpha4beta1-positive osteoclast progenitors. Cancer Cell, 20(6), 701–714.PubMedPubMedCentralCrossRef Lu, X., Mu, E., Wei, Y., Riethdorf, S., Yang, Q., Yuan, M., Yan, J., Hua, Y., Tiede, B. J., Lu, X., Haffty, B. G., Pantel, K., Massagué, J., & Kang, Y. (2011). VCAM-1 promotes osteolytic expansion of indolent bone micrometastasis of breast cancer by engaging alpha4beta1-positive osteoclast progenitors. Cancer Cell, 20(6), 701–714.PubMedPubMedCentralCrossRef
12.
go back to reference Albrengues, J., Shields, M. A., Ng, D., Park, C. G., Ambrico, A., Poindexter, M. E., et al. (2018). Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science, 361(6409), eaao4227.PubMedPubMedCentralCrossRef Albrengues, J., Shields, M. A., Ng, D., Park, C. G., Ambrico, A., Poindexter, M. E., et al. (2018). Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science, 361(6409), eaao4227.PubMedPubMedCentralCrossRef
13.
go back to reference Wada, M., Canals, D., Adada, M., Coant, N., Salama, M. F., Helke, K. L., Arthur, J. S., Shroyer, K. R., Kitatani, K., Obeid, L. M., & Hannun, Y. A. (2017). P38 delta MAPK promotes breast cancer progression and lung metastasis by enhancing cell proliferation and cell detachment. Oncogene., 36(47), 6649–6657.PubMedPubMedCentralCrossRef Wada, M., Canals, D., Adada, M., Coant, N., Salama, M. F., Helke, K. L., Arthur, J. S., Shroyer, K. R., Kitatani, K., Obeid, L. M., & Hannun, Y. A. (2017). P38 delta MAPK promotes breast cancer progression and lung metastasis by enhancing cell proliferation and cell detachment. Oncogene., 36(47), 6649–6657.PubMedPubMedCentralCrossRef
14.
go back to reference Barkan, D., Kleinman, H., Simmons, J. L., Asmussen, H., Kamaraju, A. K., Hoenorhoff, M. J., Liu, Z. Y., Costes, S. V., Cho, E. H., Lockett, S., Khanna, C., Chambers, A. F., & Green, J. E. (2008). Inhibition of metastatic outgrowth from single dormant tumor cells by targeting the cytoskeleton. Cancer Research, 68(15), 6241–6250.PubMedPubMedCentralCrossRef Barkan, D., Kleinman, H., Simmons, J. L., Asmussen, H., Kamaraju, A. K., Hoenorhoff, M. J., Liu, Z. Y., Costes, S. V., Cho, E. H., Lockett, S., Khanna, C., Chambers, A. F., & Green, J. E. (2008). Inhibition of metastatic outgrowth from single dormant tumor cells by targeting the cytoskeleton. Cancer Research, 68(15), 6241–6250.PubMedPubMedCentralCrossRef
15.
go back to reference Rucci, N., Ricevuto, E., Ficorella, C., Longo, M., Perez, M., Di, G. C., Funari, A., Teti, A., & Migliaccio, S. (2004). In vivo bone metastases, osteoclastogenic ability, and phenotypic characterization of human breast cancer cells. Bone, 34(4), 697–709.PubMedCrossRef Rucci, N., Ricevuto, E., Ficorella, C., Longo, M., Perez, M., Di, G. C., Funari, A., Teti, A., & Migliaccio, S. (2004). In vivo bone metastases, osteoclastogenic ability, and phenotypic characterization of human breast cancer cells. Bone, 34(4), 697–709.PubMedCrossRef
16.
go back to reference Sowder, M. E., & Johnson, R. W. (2018). Enrichment and detection of bone disseminated tumor cells in models of low tumor burden. Science Reports, 8(1), 14299.CrossRef Sowder, M. E., & Johnson, R. W. (2018). Enrichment and detection of bone disseminated tumor cells in models of low tumor burden. Science Reports, 8(1), 14299.CrossRef
17.
go back to reference Carlson, P., Dasgupta, A., Grzelak, C. A., Kim, J., Barrett, A., Coleman, I. M., Shor, R. E., Goddard, E. T., Dai, J., Schweitzer, E. M., Lim, A. R., Crist, S. B., Cheresh, D. A., Nelson, P. S., Hansen, K. C., & Ghajar, C. M. (2019). Targeting the perivascular niche sensitizes disseminated tumour cells to chemotherapy. Nature Cell Biology, 21(2), 238–250.PubMedPubMedCentralCrossRef Carlson, P., Dasgupta, A., Grzelak, C. A., Kim, J., Barrett, A., Coleman, I. M., Shor, R. E., Goddard, E. T., Dai, J., Schweitzer, E. M., Lim, A. R., Crist, S. B., Cheresh, D. A., Nelson, P. S., Hansen, K. C., & Ghajar, C. M. (2019). Targeting the perivascular niche sensitizes disseminated tumour cells to chemotherapy. Nature Cell Biology, 21(2), 238–250.PubMedPubMedCentralCrossRef
18.
go back to reference Holen, I., Walker, M., Nutter, F., Fowles, A., Evans, C. A., Eaton, C. L., & Ottewell, P. D. (2016). Oestrogen receptor positive breast cancer metastasis to bone: Inhibition by targeting the bone microenvironment in vivo. Clinical and Experimental Metastasis, 33(3), 211–224.PubMedCrossRef Holen, I., Walker, M., Nutter, F., Fowles, A., Evans, C. A., Eaton, C. L., & Ottewell, P. D. (2016). Oestrogen receptor positive breast cancer metastasis to bone: Inhibition by targeting the bone microenvironment in vivo. Clinical and Experimental Metastasis, 33(3), 211–224.PubMedCrossRef
19.
go back to reference Malladi, S., Macalinao, D. G., Jin, X., He, L., Basnet, H., Zou, Y., De, S. E., & Massagué, J. (2016). Metastatic Latency and Immune Evasion through Autocrine Inhibition of WNT. Cell, 165(1), 45–60.PubMedPubMedCentralCrossRef Malladi, S., Macalinao, D. G., Jin, X., He, L., Basnet, H., Zou, Y., De, S. E., & Massagué, J. (2016). Metastatic Latency and Immune Evasion through Autocrine Inhibition of WNT. Cell, 165(1), 45–60.PubMedPubMedCentralCrossRef
20.
go back to reference Ghajar, C. M., Peinado, H., Mori, H., Matei, I. R., Evason, K. J., Brazier, H., et al. (2013). The perivascular niche regulates breast tumour dormancy. Nature Cell Biology, 15(7), 807–817.PubMedPubMedCentralCrossRef Ghajar, C. M., Peinado, H., Mori, H., Matei, I. R., Evason, K. J., Brazier, H., et al. (2013). The perivascular niche regulates breast tumour dormancy. Nature Cell Biology, 15(7), 807–817.PubMedPubMedCentralCrossRef
21.
go back to reference Gao, H., Chakraborty, G., Lee-Lim, A. P., Mo, Q., Decker, M., Vonica, A., Shen, R., Brogi, E., Brivanlou, A. H., & Giancotti, F. G. (2012). The BMP inhibitor Coco reactivates breast cancer cells at lung metastatic sites. Cell, 150(4), 764–779.PubMedPubMedCentralCrossRef Gao, H., Chakraborty, G., Lee-Lim, A. P., Mo, Q., Decker, M., Vonica, A., Shen, R., Brogi, E., Brivanlou, A. H., & Giancotti, F. G. (2012). The BMP inhibitor Coco reactivates breast cancer cells at lung metastatic sites. Cell, 150(4), 764–779.PubMedPubMedCentralCrossRef
22.
go back to reference Montagner, M., Bhome, R., Hooper, S., Chakravarty, P., Qin, X., Sufi, J., Bhargava, A., Ratcliffe, C. D. H., Naito, Y., Pocaterra, A., Tape, C. J., & Sahai, E. (2020). Crosstalk with lung epithelial cells regulates Sfrp2-mediated latency in breast cancer dissemination. Nature Cell Biology, 22(3), 289–296.PubMedPubMedCentralCrossRef Montagner, M., Bhome, R., Hooper, S., Chakravarty, P., Qin, X., Sufi, J., Bhargava, A., Ratcliffe, C. D. H., Naito, Y., Pocaterra, A., Tape, C. J., & Sahai, E. (2020). Crosstalk with lung epithelial cells regulates Sfrp2-mediated latency in breast cancer dissemination. Nature Cell Biology, 22(3), 289–296.PubMedPubMedCentralCrossRef
23.
go back to reference De Cock, J. M., Shibue, T., Dongre, A., Keckesova, Z., Reinhardt, F., & Weinberg, R. A. (2016). Inflammation triggers Zeb1-dependent escape from tumor latency. Cancer Research, 76(23), 6778–6784.PubMedPubMedCentralCrossRef De Cock, J. M., Shibue, T., Dongre, A., Keckesova, Z., Reinhardt, F., & Weinberg, R. A. (2016). Inflammation triggers Zeb1-dependent escape from tumor latency. Cancer Research, 76(23), 6778–6784.PubMedPubMedCentralCrossRef
24.
go back to reference Piranlioglu, R., Lee, E., Ouzounova, M., Bollag, R. J., Vinyard, A. H., Arbab, A. S., Marasco, D., Guzel, M., Cowell, J. K., Thangaraju, M., Chadli, A., Hassan, K. A., Wicha, M. S., Celis, E., & Korkaya, H. (2019). Primary tumor-induced immunity eradicates disseminated tumor cells in syngeneic mouse model. Nature Communications, 10(1), 1430.PubMedPubMedCentralCrossRef Piranlioglu, R., Lee, E., Ouzounova, M., Bollag, R. J., Vinyard, A. H., Arbab, A. S., Marasco, D., Guzel, M., Cowell, J. K., Thangaraju, M., Chadli, A., Hassan, K. A., Wicha, M. S., Celis, E., & Korkaya, H. (2019). Primary tumor-induced immunity eradicates disseminated tumor cells in syngeneic mouse model. Nature Communications, 10(1), 1430.PubMedPubMedCentralCrossRef
25.
go back to reference Luo, X. L., Deng, C. C., Su, X. D., Wang, F., Chen, Z., Wu, X. P., Liang, S. B., Liu, J. H., & Fu, L. W. (2018). Loss of MED12 induces tumor dormancy in human epithelial ovarian cancer via downregulation of EGFR. Cancer Research, 78(13), 3532–3543.PubMedCrossRef Luo, X. L., Deng, C. C., Su, X. D., Wang, F., Chen, Z., Wu, X. P., Liang, S. B., Liu, J. H., & Fu, L. W. (2018). Loss of MED12 induces tumor dormancy in human epithelial ovarian cancer via downregulation of EGFR. Cancer Research, 78(13), 3532–3543.PubMedCrossRef
26.
go back to reference Liang, X., Gu, J., Li, T., Zhao, L., Fu, X., Zhang, W., Wang, J., Shang, Z., Huang, W., & Zhou, J. (2018). PAX5 haploinsufficiency induce cancer cell dormancy in Raji cells. Experimental Cell Research, 367(1), 30–36.PubMedCrossRef Liang, X., Gu, J., Li, T., Zhao, L., Fu, X., Zhang, W., Wang, J., Shang, Z., Huang, W., & Zhou, J. (2018). PAX5 haploinsufficiency induce cancer cell dormancy in Raji cells. Experimental Cell Research, 367(1), 30–36.PubMedCrossRef
27.
go back to reference Kleinsmith, L. J., & Pierce, G. B., Jr. (1964). Multipotentiality of single embryonal carcinoma cells. Cancer Research, 24, 1544–1551.PubMed Kleinsmith, L. J., & Pierce, G. B., Jr. (1964). Multipotentiality of single embryonal carcinoma cells. Cancer Research, 24, 1544–1551.PubMed
28.
go back to reference Lawson, M. A., McDonald, M. M., Kovacic, N., Hua, K. W., Terry, R. L., Down, J., Kaplan, W., Paton-Hough, J., Fellows, C., Pettitt, J. A., Neil, D. T., Van, V. E., Baldock, P. A., Rogers, M. J., Eaton, C. L., Vanderkerken, K., Pettit, A. R., Quinn, J. M., Zannettino, A. C., … Croucher, P. I. (2015). Osteoclasts control reactivation of dormant myeloma cells by remodelling the endosteal niche. Nature Communications, 6, 8983.PubMedCrossRef Lawson, M. A., McDonald, M. M., Kovacic, N., Hua, K. W., Terry, R. L., Down, J., Kaplan, W., Paton-Hough, J., Fellows, C., Pettitt, J. A., Neil, D. T., Van, V. E., Baldock, P. A., Rogers, M. J., Eaton, C. L., Vanderkerken, K., Pettit, A. R., Quinn, J. M., Zannettino, A. C., … Croucher, P. I. (2015). Osteoclasts control reactivation of dormant myeloma cells by remodelling the endosteal niche. Nature Communications, 6, 8983.PubMedCrossRef
29.
go back to reference Chery, L., Lam, H. M., Coleman, I., Lakely, B., Coleman, R., Larson, S., Aguirre-Ghiso, J. A., Xia, J., Gulati, R., Nelson, P. S., Montgomery, B., Lange, P., Snyder, L. A., Vessella, R. L., & Morrissey, C. (2014). Characterization of single disseminated prostate cancer cells reveals tumor cell heterogeneity and identifies dormancy associated pathways. Oncotarget, 5(20), 9939–9951.PubMedPubMedCentralCrossRef Chery, L., Lam, H. M., Coleman, I., Lakely, B., Coleman, R., Larson, S., Aguirre-Ghiso, J. A., Xia, J., Gulati, R., Nelson, P. S., Montgomery, B., Lange, P., Snyder, L. A., Vessella, R. L., & Morrissey, C. (2014). Characterization of single disseminated prostate cancer cells reveals tumor cell heterogeneity and identifies dormancy associated pathways. Oncotarget, 5(20), 9939–9951.PubMedPubMedCentralCrossRef
30.
go back to reference Sistigu, A., Musella, M., Galassi, C., Vitale, I., & De, M. R. (2020). Tuning cancer fate: Tumor microenvironment’s role in cancer stem cell quiescence and reawakening. Frontiers Immunology, 11, 2166.CrossRef Sistigu, A., Musella, M., Galassi, C., Vitale, I., & De, M. R. (2020). Tuning cancer fate: Tumor microenvironment’s role in cancer stem cell quiescence and reawakening. Frontiers Immunology, 11, 2166.CrossRef
31.
go back to reference Jahangiri, L., & Ishola, T. (2022). Dormancy in breast cancer, the role of autophagy, lncRNAs, miRNAs and exosomes. International Journal of Molecular Science, 23(9), 5271.CrossRef Jahangiri, L., & Ishola, T. (2022). Dormancy in breast cancer, the role of autophagy, lncRNAs, miRNAs and exosomes. International Journal of Molecular Science, 23(9), 5271.CrossRef
32.
go back to reference Korentzelos, D., Clark, A. M., & Wells, A. (2020). A perspective on therapeutic pan-resistance in metastatic cancer. International Journal of Molecular Science, 21(19), E7304.CrossRef Korentzelos, D., Clark, A. M., & Wells, A. (2020). A perspective on therapeutic pan-resistance in metastatic cancer. International Journal of Molecular Science, 21(19), E7304.CrossRef
33.
go back to reference Baram, T., Rubinstein-Achiasaf, L., Ben-Yaakov, H., & Ben-Baruch, A. (2021). Inflammation-driven breast tumor cell plasticity: Stemness/EMT, therapy resistance and dormancy. Frontiers Oncology, 10, 614468.CrossRef Baram, T., Rubinstein-Achiasaf, L., Ben-Yaakov, H., & Ben-Baruch, A. (2021). Inflammation-driven breast tumor cell plasticity: Stemness/EMT, therapy resistance and dormancy. Frontiers Oncology, 10, 614468.CrossRef
34.
go back to reference Smart, J. A., Oleksak, J. E., & Hartsough, E. J. (2021). Cell Adhesion Molecules in Plasticity and Metastasis. Molecular Cancer Research, 19(1), 25–37.PubMedCrossRef Smart, J. A., Oleksak, J. E., & Hartsough, E. J. (2021). Cell Adhesion Molecules in Plasticity and Metastasis. Molecular Cancer Research, 19(1), 25–37.PubMedCrossRef
35.
go back to reference Dhaliwal, D., & Shepherd, T. G. (2022). Molecular and cellular mechanisms controlling integrin-mediated cell adhesion and tumor progression in ovarian cancer metastasis: A review. Clinical Experimental Metastasis, 39(2), 291–301.PubMedCrossRef Dhaliwal, D., & Shepherd, T. G. (2022). Molecular and cellular mechanisms controlling integrin-mediated cell adhesion and tumor progression in ovarian cancer metastasis: A review. Clinical Experimental Metastasis, 39(2), 291–301.PubMedCrossRef
36.
go back to reference Stuelten, C. H., Parent, C. A., & Montell, D. J. (2018). Cell motility in cancer invasion and metastasis: Insights from simple model organisms. Nature Reviews Cancer, 18(5), 296–312.PubMedPubMedCentralCrossRef Stuelten, C. H., Parent, C. A., & Montell, D. J. (2018). Cell motility in cancer invasion and metastasis: Insights from simple model organisms. Nature Reviews Cancer, 18(5), 296–312.PubMedPubMedCentralCrossRef
37.
38.
go back to reference Zavyalova, M. V., Denisov, E. V., Tashireva, L. A., Savelieva, O. E., Kaigorodova, E. V., Krakhmal, N. V., & Perelmuter, V. M. (2019). Intravasation as a key step in cancer metastasis. Biochemistry (Mosc), 84(7), 762–772.PubMedCrossRef Zavyalova, M. V., Denisov, E. V., Tashireva, L. A., Savelieva, O. E., Kaigorodova, E. V., Krakhmal, N. V., & Perelmuter, V. M. (2019). Intravasation as a key step in cancer metastasis. Biochemistry (Mosc), 84(7), 762–772.PubMedCrossRef
39.
go back to reference Tajbakhsh, A., Rivandi, M., Abedini, S., Pasdar, A., & Sahebkar, A. (2019). Regulators and mechanisms of anoikis in triple-negative breast cancer (TNBC): A review. Critical Reviews in Oncology and Hematology, 140, 17–27.CrossRef Tajbakhsh, A., Rivandi, M., Abedini, S., Pasdar, A., & Sahebkar, A. (2019). Regulators and mechanisms of anoikis in triple-negative breast cancer (TNBC): A review. Critical Reviews in Oncology and Hematology, 140, 17–27.CrossRef
40.
go back to reference Adeshakin, F. O., Adeshakin, A. O., Afolabi, L. O., Yan, D., Zhang, G., & Wan, X. (2021). Mechanisms for modulating anoikis resistance in cancer and the relevance of metabolic reprogramming. Frontiers Oncology, 11, 626577.CrossRef Adeshakin, F. O., Adeshakin, A. O., Afolabi, L. O., Yan, D., Zhang, G., & Wan, X. (2021). Mechanisms for modulating anoikis resistance in cancer and the relevance of metabolic reprogramming. Frontiers Oncology, 11, 626577.CrossRef
41.
go back to reference Khan, S. U., Fatima, K., & Malik, F. (2022). Understanding the cell survival mechanism of anoikis-resistant cancer cells during different steps of metastasis. Clinical and Experimental Metastasis, 39(5), 715–726.PubMedCrossRef Khan, S. U., Fatima, K., & Malik, F. (2022). Understanding the cell survival mechanism of anoikis-resistant cancer cells during different steps of metastasis. Clinical and Experimental Metastasis, 39(5), 715–726.PubMedCrossRef
42.
go back to reference Liu, Y., Zhang, Y., Ding, Y., & Zhuang, R. (2021). Platelet-mediated tumor metastasis mechanism and the role of cell adhesion molecules. Critical Reviews in Oncology and Hematology, 167, 103502.CrossRef Liu, Y., Zhang, Y., Ding, Y., & Zhuang, R. (2021). Platelet-mediated tumor metastasis mechanism and the role of cell adhesion molecules. Critical Reviews in Oncology and Hematology, 167, 103502.CrossRef
43.
go back to reference Reduzzi, C., Vismara, M., Gerratana, L., Silvestri, M., De, B. F., Raspagliesi, F., Verzoni, E., Di, C. S., Locati, L. D., Cristofanilli, M., Daidone, M. G., & Cappelletti, V. (2020). The curious phenomenon of dual-positive circulating cells: Longtime overlooked tumor cells. Seminars in Cancer Biology, 60, 344–350.PubMedCrossRef Reduzzi, C., Vismara, M., Gerratana, L., Silvestri, M., De, B. F., Raspagliesi, F., Verzoni, E., Di, C. S., Locati, L. D., Cristofanilli, M., Daidone, M. G., & Cappelletti, V. (2020). The curious phenomenon of dual-positive circulating cells: Longtime overlooked tumor cells. Seminars in Cancer Biology, 60, 344–350.PubMedCrossRef
44.
go back to reference Hamilton, G., & Rath, B. (2017). Circulating tumor cell interactions with macrophages: Implications for biology and treatment. Translational Lung Cancer Research, 6(4), 418–430.PubMedPubMedCentralCrossRef Hamilton, G., & Rath, B. (2017). Circulating tumor cell interactions with macrophages: Implications for biology and treatment. Translational Lung Cancer Research, 6(4), 418–430.PubMedPubMedCentralCrossRef
45.
go back to reference Banys, M., Krawczyk, N., & Fehm, T. (2014). The role and clinical relevance of disseminated tumor cells in breast cancer. Cancers (Basel), 6(1), 143–152.PubMedCrossRef Banys, M., Krawczyk, N., & Fehm, T. (2014). The role and clinical relevance of disseminated tumor cells in breast cancer. Cancers (Basel), 6(1), 143–152.PubMedCrossRef
46.
go back to reference Linde, N., Fluegen, G., & Aguirre-Ghiso, J. A. (2016). The relationship between dormant cancer cells and their microenvironment. Advances in Cancer Reseach, 13, 245–71. Linde, N., Fluegen, G., & Aguirre-Ghiso, J. A. (2016). The relationship between dormant cancer cells and their microenvironment. Advances in Cancer Reseach, 13, 245–71.
47.
go back to reference Ring, A., Spataro, M., Wicki, A., & Aceto, N. (2022). Clinical and biological aspects of disseminated tumor cells and dormancy in breast cancer. Frontiers in Cell and Developmental Biology, 10, 929893.PubMedPubMedCentralCrossRef Ring, A., Spataro, M., Wicki, A., & Aceto, N. (2022). Clinical and biological aspects of disseminated tumor cells and dormancy in breast cancer. Frontiers in Cell and Developmental Biology, 10, 929893.PubMedPubMedCentralCrossRef
48.
go back to reference Illyes, I., Tokes, A. M., Kovacs, A., Szasz, A. M., Molnar, B. A., Molnar, I. A., Kaszas, I., Baranyak, Z., Laszlo, Z., Kenessey, I., & Kulka, J. (2014). In breast cancer patients sentinel lymph node metastasis characteristics predict further axillary involvement. Virchows Archives, 465(1), 15–24.CrossRef Illyes, I., Tokes, A. M., Kovacs, A., Szasz, A. M., Molnar, B. A., Molnar, I. A., Kaszas, I., Baranyak, Z., Laszlo, Z., Kenessey, I., & Kulka, J. (2014). In breast cancer patients sentinel lymph node metastasis characteristics predict further axillary involvement. Virchows Archives, 465(1), 15–24.CrossRef
49.
go back to reference Walter, S. D., Chao, D. L., Feuer, W., Schiffman, J., Char, D. H., & Harbour, J. W. (2016). Prognostic implications of tumor diameter in association with gene expression profile for uveal melanoma. JAMA Ophthalmology, 134(7), 734–740.PubMedPubMedCentralCrossRef Walter, S. D., Chao, D. L., Feuer, W., Schiffman, J., Char, D. H., & Harbour, J. W. (2016). Prognostic implications of tumor diameter in association with gene expression profile for uveal melanoma. JAMA Ophthalmology, 134(7), 734–740.PubMedPubMedCentralCrossRef
50.
go back to reference Wangchinda, P., & Ithimakin, S. (2016). Factors that predict recurrence later than 5 years after initial treatment in operable breast cancer. World Journal of Surgical Oncology, 14(1), 223–0988.PubMedPubMedCentralCrossRef Wangchinda, P., & Ithimakin, S. (2016). Factors that predict recurrence later than 5 years after initial treatment in operable breast cancer. World Journal of Surgical Oncology, 14(1), 223–0988.PubMedPubMedCentralCrossRef
51.
go back to reference Sopik, V., & Narod, S. A. (2018). The relationship between tumour size, nodal status and distant metastases: On the origins of breast cancer. Breast Cancer Research and Treatments, 170(3), 647–656.CrossRef Sopik, V., & Narod, S. A. (2018). The relationship between tumour size, nodal status and distant metastases: On the origins of breast cancer. Breast Cancer Research and Treatments, 170(3), 647–656.CrossRef
52.
go back to reference Asare, E. A., Silva-Figueroa, A., Hess, K. R., Busaidy, N., Graham, P. H., Grubbs, E. G., Lee, J. E., Williams, M. D., & Perrier, N. D. (2019). Risk of distant metastasis in parathyroid carcinoma and its effect on survival: A retrospective review from a high-volume center. Annals of Surgical Oncology, 26(11), 3593–3599.PubMedCrossRef Asare, E. A., Silva-Figueroa, A., Hess, K. R., Busaidy, N., Graham, P. H., Grubbs, E. G., Lee, J. E., Williams, M. D., & Perrier, N. D. (2019). Risk of distant metastasis in parathyroid carcinoma and its effect on survival: A retrospective review from a high-volume center. Annals of Surgical Oncology, 26(11), 3593–3599.PubMedCrossRef
53.
go back to reference Holmberg, L., Bill-Axelson, A., Helgesen, F., Salo, J. O., Folmerz, P., Häggman, M., Andersson, S. O., Spångberg, A., Busch, C., Nordling, S., Palmgren, J., Adami, H. O., Johansson, J. E., & Norlén, B. J. (2002). A randomized trial comparing radical prostatectomy with watchful waiting in early prostate cancer. New England Journal of Medicine, 347(11), 781–789.PubMedCrossRef Holmberg, L., Bill-Axelson, A., Helgesen, F., Salo, J. O., Folmerz, P., Häggman, M., Andersson, S. O., Spångberg, A., Busch, C., Nordling, S., Palmgren, J., Adami, H. O., Johansson, J. E., & Norlén, B. J. (2002). A randomized trial comparing radical prostatectomy with watchful waiting in early prostate cancer. New England Journal of Medicine, 347(11), 781–789.PubMedCrossRef
54.
go back to reference Fidler, I. J., & Kripke, M. L. (1977). Metastasis results from preexisting variant cells within a malignant tumor. Science, 197(4306), 893–895.PubMedCrossRef Fidler, I. J., & Kripke, M. L. (1977). Metastasis results from preexisting variant cells within a malignant tumor. Science, 197(4306), 893–895.PubMedCrossRef
55.
go back to reference Kang, Y., Siegel, P. M., Shu, W., Drobnjak, M., Kakonen, S. M., Cordon-Cardo, C., Guise, T. A., & Massagué, J. (2003). A multigenic program mediating breast cancer metastasis to bone. Cancer Cell, 3(6), 537–549.PubMedCrossRef Kang, Y., Siegel, P. M., Shu, W., Drobnjak, M., Kakonen, S. M., Cordon-Cardo, C., Guise, T. A., & Massagué, J. (2003). A multigenic program mediating breast cancer metastasis to bone. Cancer Cell, 3(6), 537–549.PubMedCrossRef
56.
go back to reference Va’nt Veer, L. J., Dai, H., van de Vijver, M. J., He, Y. D., Hart, A. A., Mao, M., Peterse, H. L., van der Kooy, K., Marton, M. J., Witteveen, A. T., Schreiber, G. J., Kerkhoven, R. M., Roberts, C., Linsley, P. S., Bernards, R., & Friend, S. H. (2002). Gene expression profiling predicts clinical outcome of breast cancer. Nature, 415(6871), 530–536.CrossRef Va’nt Veer, L. J., Dai, H., van de Vijver, M. J., He, Y. D., Hart, A. A., Mao, M., Peterse, H. L., van der Kooy, K., Marton, M. J., Witteveen, A. T., Schreiber, G. J., Kerkhoven, R. M., Roberts, C., Linsley, P. S., Bernards, R., & Friend, S. H. (2002). Gene expression profiling predicts clinical outcome of breast cancer. Nature, 415(6871), 530–536.CrossRef
57.
go back to reference Patsialou, A., Wang, Y., Lin, J., Whitney, K., Goswami, S., Kenny, P. A., & Condeelis, J. S. (2012). Selective gene-expression profiling of migratory tumor cells in vivo predicts clinical outcome in breast cancer patients. Breast Cancer Research, 14(5), R139.PubMedPubMedCentralCrossRef Patsialou, A., Wang, Y., Lin, J., Whitney, K., Goswami, S., Kenny, P. A., & Condeelis, J. S. (2012). Selective gene-expression profiling of migratory tumor cells in vivo predicts clinical outcome in breast cancer patients. Breast Cancer Research, 14(5), R139.PubMedPubMedCentralCrossRef
58.
go back to reference Kato, S., Alsafar, A., Walavalkar, V., Hainsworth, J., & Kurzrock, R. (2021). Cancer of unknown primary in the molecular era. Trends in Cancer, 7(5), 465–477.PubMedPubMedCentralCrossRef Kato, S., Alsafar, A., Walavalkar, V., Hainsworth, J., & Kurzrock, R. (2021). Cancer of unknown primary in the molecular era. Trends in Cancer, 7(5), 465–477.PubMedPubMedCentralCrossRef
59.
go back to reference Schmidt-Kittler, O., Ragg, T., Daskalakis, A., Granzow, M., Ahr, A., Blankenstein, T. J., Kaufmann, M., Diebold, J., Arnholdt, H., Muller, P., Bischoff, J., Harich, D., Schlimok, G., Riethmuller, G., Eils, R., & Klein, C. A. (2003). From latent disseminated cells to overt metastasis: Genetic analysis of systemic breast cancer progression. Proceedings of the National Academy of Sciences, USA, 100(13), 7737–7742.CrossRef Schmidt-Kittler, O., Ragg, T., Daskalakis, A., Granzow, M., Ahr, A., Blankenstein, T. J., Kaufmann, M., Diebold, J., Arnholdt, H., Muller, P., Bischoff, J., Harich, D., Schlimok, G., Riethmuller, G., Eils, R., & Klein, C. A. (2003). From latent disseminated cells to overt metastasis: Genetic analysis of systemic breast cancer progression. Proceedings of the National Academy of Sciences, USA, 100(13), 7737–7742.CrossRef
60.
go back to reference Hüsemann, Y., Geigl, J. B., Schubert, F., Musiani, P., Meyer, M., Burghart, E., Forni, G., Eils, R., Fehm, T., Riethmüller, G., & Klein, C. A. (2008). Systemic spread is an early step in breast cancer. Cancer Cell, 13(1), 58–68.PubMedCrossRef Hüsemann, Y., Geigl, J. B., Schubert, F., Musiani, P., Meyer, M., Burghart, E., Forni, G., Eils, R., Fehm, T., Riethmüller, G., & Klein, C. A. (2008). Systemic spread is an early step in breast cancer. Cancer Cell, 13(1), 58–68.PubMedCrossRef
61.
go back to reference Schardt, J. A., Meyer, M., Hartmann, C. H., Schubert, F., Schmidt-Kittler, O., Fuhrmann, C., Polzer, B., Petronio, M., Eils, R., & Klein, C. A. (2005). Genomic analysis of single cytokeratin-positive cells from bone marrow reveals early mutational events in breast cancer. Cancer Cell, 8(3), 227–239.PubMedCrossRef Schardt, J. A., Meyer, M., Hartmann, C. H., Schubert, F., Schmidt-Kittler, O., Fuhrmann, C., Polzer, B., Petronio, M., Eils, R., & Klein, C. A. (2005). Genomic analysis of single cytokeratin-positive cells from bone marrow reveals early mutational events in breast cancer. Cancer Cell, 8(3), 227–239.PubMedCrossRef
62.
go back to reference Harper, K. L., Sosa, M. S., Entenberg, D., Hosseini, H., Cheung, J. F., Nobre, R., Avivar-Valderas, A., Nagi, C., Girnius, N., Davis, R. J., Farias, E. F., Condeelis, J., Klein, C. A., & Aguirre-Ghiso, J. A. (2016). Mechanism of early dissemination and metastasis in Her2+ mammary cancer. Nature, 540588-592. Harper, K. L., Sosa, M. S., Entenberg, D., Hosseini, H., Cheung, J. F., Nobre, R., Avivar-Valderas, A., Nagi, C., Girnius, N., Davis, R. J., Farias, E. F., Condeelis, J., Klein, C. A., & Aguirre-Ghiso, J. A. (2016). Mechanism of early dissemination and metastasis in Her2+ mammary cancer. Nature, 540588-592.
63.
go back to reference Fox, D. B., Garcia, N. M. G., McKinney, B. J., Lupo, R., Noteware, L. C., Newcomb, R., Liu, J., Locasale, J. W., Hirschey, M. D., & Alvarez, J. V. (2020). NRF2 activation promotes the recurrence of dormant tumour cells through regulation of redox and nucleotide metabolism. Nature Metabolism, 2(4), 318–334.PubMedPubMedCentralCrossRef Fox, D. B., Garcia, N. M. G., McKinney, B. J., Lupo, R., Noteware, L. C., Newcomb, R., Liu, J., Locasale, J. W., Hirschey, M. D., & Alvarez, J. V. (2020). NRF2 activation promotes the recurrence of dormant tumour cells through regulation of redox and nucleotide metabolism. Nature Metabolism, 2(4), 318–334.PubMedPubMedCentralCrossRef
64.
go back to reference Hartkopf, A. D., Brucker, S. Y., Taran, F. A., Harbeck, N., von Au, A., Naume, B., et al. (2021). Disseminated tumour cells from the bone marrow of early breast cancer patients: Results from an international pooled analysis. European Journal of Cancer, 154, 128–137.PubMedCrossRef Hartkopf, A. D., Brucker, S. Y., Taran, F. A., Harbeck, N., von Au, A., Naume, B., et al. (2021). Disseminated tumour cells from the bone marrow of early breast cancer patients: Results from an international pooled analysis. European Journal of Cancer, 154, 128–137.PubMedCrossRef
65.
go back to reference Popawski, A. B., Jankowski, M., Erickson, S. W., de Díaz, S. T., Partridge, E. C., Crasto, C., et al. (2010). Frequent genetic differences between matched primary and metastatic breast cancer provide an approach to identification of biomarkers for disease progression. European Journal of Human Genetics, 18(5), 560–568.CrossRef Popawski, A. B., Jankowski, M., Erickson, S. W., de Díaz, S. T., Partridge, E. C., Crasto, C., et al. (2010). Frequent genetic differences between matched primary and metastatic breast cancer provide an approach to identification of biomarkers for disease progression. European Journal of Human Genetics, 18(5), 560–568.CrossRef
66.
go back to reference Stoecklein, N. H., & Klein, C. A. (2010). Genetic disparity between primary tumours, disseminated tumour cells, and manifest metastasis. International Journal of Cancer, 126(3), 589–598.PubMedCrossRef Stoecklein, N. H., & Klein, C. A. (2010). Genetic disparity between primary tumours, disseminated tumour cells, and manifest metastasis. International Journal of Cancer, 126(3), 589–598.PubMedCrossRef
67.
go back to reference Gundem, G., Van, L. P., Kremeyer, B., Alexandrov, L. B., Tubio, J. M., Papaemmanuil, E., et al. (2015). The evolutionary history of lethal metastatic prostate cancer. Nature, 520(7547), 353–357.PubMedPubMedCentralCrossRef Gundem, G., Van, L. P., Kremeyer, B., Alexandrov, L. B., Tubio, J. M., Papaemmanuil, E., et al. (2015). The evolutionary history of lethal metastatic prostate cancer. Nature, 520(7547), 353–357.PubMedPubMedCentralCrossRef
68.
go back to reference Cackowski, F. C., Wang, Y., Decker, J. T., Sifuentes, C., Weindorf, S., Jung, Y., et al. (2019). Detection and isolation of disseminated tumor cells in bone marrow of patients with clinically localized prostate cancer. Prostate, 79(14), 1715–1727.PubMedPubMedCentralCrossRef Cackowski, F. C., Wang, Y., Decker, J. T., Sifuentes, C., Weindorf, S., Jung, Y., et al. (2019). Detection and isolation of disseminated tumor cells in bone marrow of patients with clinically localized prostate cancer. Prostate, 79(14), 1715–1727.PubMedPubMedCentralCrossRef
69.
go back to reference Werner-Klein, M., Scheitler, S., Hoffmann, M., Hodak, I., Dietz, K., Lehnert, P., et al. (2018). Genetic alterations driving metastatic colony formation are acquired outside of the primary tumour in melanoma. Nature Communications, 9(1), 595.PubMedPubMedCentralCrossRef Werner-Klein, M., Scheitler, S., Hoffmann, M., Hodak, I., Dietz, K., Lehnert, P., et al. (2018). Genetic alterations driving metastatic colony formation are acquired outside of the primary tumour in melanoma. Nature Communications, 9(1), 595.PubMedPubMedCentralCrossRef
70.
go back to reference Werner-Klein, M., Grujovic, A., Irlbeck, C., Obradovic, M., Hoffmann, M., Koerkel-Qu, H., et al. (2020). Interleukin-6 trans-signaling is a candidate mechanism to drive progression of human DCCs during clinical latency. Nature Communications, 11(1), 4977–18701.PubMedPubMedCentralCrossRef Werner-Klein, M., Grujovic, A., Irlbeck, C., Obradovic, M., Hoffmann, M., Koerkel-Qu, H., et al. (2020). Interleukin-6 trans-signaling is a candidate mechanism to drive progression of human DCCs during clinical latency. Nature Communications, 11(1), 4977–18701.PubMedPubMedCentralCrossRef
72.
go back to reference Aguirre-Ghiso, J. A., Estrada, Y., Liu, D., & Ossowski, L. (2003). ERK(MAPK) activity as a determinant of tumor growth and dormancy; regulation by p38(SAPK). Cancer Research, 63(7), 1684–1695.PubMed Aguirre-Ghiso, J. A., Estrada, Y., Liu, D., & Ossowski, L. (2003). ERK(MAPK) activity as a determinant of tumor growth and dormancy; regulation by p38(SAPK). Cancer Research, 63(7), 1684–1695.PubMed
73.
go back to reference Yanagisawa, M., Huveldt, D., Kreinest, P., Lohse, C. M., Cheville, J. C., Parker, A. S., Copland, J. A., & Anastasiadis, P. Z. (2008). A p120 catenin isoform switch affects Rho activity, induces tumor cell invasion, and predicts metastatic disease. Journal of Biological Chemistry, 283(26), 18344–18354.PubMedPubMedCentralCrossRef Yanagisawa, M., Huveldt, D., Kreinest, P., Lohse, C. M., Cheville, J. C., Parker, A. S., Copland, J. A., & Anastasiadis, P. Z. (2008). A p120 catenin isoform switch affects Rho activity, induces tumor cell invasion, and predicts metastatic disease. Journal of Biological Chemistry, 283(26), 18344–18354.PubMedPubMedCentralCrossRef
74.
go back to reference Yumoto, K., Eber, M. R., Berry, J. E., Taichman, R. S., & Shiozawa, Y. (2014). Molecular pathways: Niches in metastatic dormancy. Clinical Cancer Research, 20(13), 3384–3389.PubMedPubMedCentralCrossRef Yumoto, K., Eber, M. R., Berry, J. E., Taichman, R. S., & Shiozawa, Y. (2014). Molecular pathways: Niches in metastatic dormancy. Clinical Cancer Research, 20(13), 3384–3389.PubMedPubMedCentralCrossRef
75.
go back to reference Adam, A. P., George, A., Schewe, D., Bragado, P., Iglesias, B. V., Ranganathan, A. C., Kourtidis, A., Conklin, D. S., & Aguirre-Ghiso, J. A. (2009). Computational identification of a p38SAPK-regulated transcription factor network required for tumor cell quiescence. Cancer Research, 69(14), 5664–5672.PubMedPubMedCentralCrossRef Adam, A. P., George, A., Schewe, D., Bragado, P., Iglesias, B. V., Ranganathan, A. C., Kourtidis, A., Conklin, D. S., & Aguirre-Ghiso, J. A. (2009). Computational identification of a p38SAPK-regulated transcription factor network required for tumor cell quiescence. Cancer Research, 69(14), 5664–5672.PubMedPubMedCentralCrossRef
76.
go back to reference Yang, X., Wu, J. S., Li, M., Zhang, W. L., Gao, X. L., Wang, H. F., et al. (2021). Inhibition of DEC2 is necessary for exiting cell dormancy in salivary adenoid cystic carcinoma. Journal of Experimental Clinical Cancer Research, 40(1), 169–01956.PubMedPubMedCentralCrossRef Yang, X., Wu, J. S., Li, M., Zhang, W. L., Gao, X. L., Wang, H. F., et al. (2021). Inhibition of DEC2 is necessary for exiting cell dormancy in salivary adenoid cystic carcinoma. Journal of Experimental Clinical Cancer Research, 40(1), 169–01956.PubMedPubMedCentralCrossRef
77.
go back to reference McGrath, J. E., Panzica, L., Ransom, R., Withers, H. G., & Gelman, I. H. (2019). Identification of genes regulating breast cancer dormancy in 3D bone endosteal niche cultures. Molecular Cancer Research, 17(4), 1541–7786.CrossRef McGrath, J. E., Panzica, L., Ransom, R., Withers, H. G., & Gelman, I. H. (2019). Identification of genes regulating breast cancer dormancy in 3D bone endosteal niche cultures. Molecular Cancer Research, 17(4), 1541–7786.CrossRef
78.
go back to reference Guereño, M., Delgado, P. M., Lugones, A. C., Cercato, M., Todaro, L., Urtreger, A., & Peters, M. G. (2020). Glypican-3 (GPC3) inhibits metastasis development promoting dormancy in breast cancer cells by p38 MAPK pathway activation. European Journal of Cell Biology, 99(6), 151096.PubMedCrossRef Guereño, M., Delgado, P. M., Lugones, A. C., Cercato, M., Todaro, L., Urtreger, A., & Peters, M. G. (2020). Glypican-3 (GPC3) inhibits metastasis development promoting dormancy in breast cancer cells by p38 MAPK pathway activation. European Journal of Cell Biology, 99(6), 151096.PubMedCrossRef
79.
go back to reference Schewe, D. M., & Aguirre-Ghiso, J. A. (2008). ATF6alpha-Rheb-mTOR signaling promotes survival of dormant tumor cells in vivo. Proceedings of the National Academy of Sciences, USA, 105(30), 10519–10524.CrossRef Schewe, D. M., & Aguirre-Ghiso, J. A. (2008). ATF6alpha-Rheb-mTOR signaling promotes survival of dormant tumor cells in vivo. Proceedings of the National Academy of Sciences, USA, 105(30), 10519–10524.CrossRef
80.
go back to reference Yamaguchi, M. (2005). Role of regucalcin in maintaining cell homeostasis and function (review). International Journal of Molecular Medicine, 15(3), 371–389.PubMed Yamaguchi, M. (2005). Role of regucalcin in maintaining cell homeostasis and function (review). International Journal of Molecular Medicine, 15(3), 371–389.PubMed
81.
go back to reference Sharma, S., Pei, X., Xing, F., Wu, S. Y., Wu, K., Tyagi, A., Zhao, D., Deshpande, R., Ruiz, M. G., Singh, R., Lyu, F., & Watabe, K. (2020). Regucalcin promotes dormancy of prostate cancer. Oncogene, 40(5), 1012–1026.PubMedPubMedCentralCrossRef Sharma, S., Pei, X., Xing, F., Wu, S. Y., Wu, K., Tyagi, A., Zhao, D., Deshpande, R., Ruiz, M. G., Singh, R., Lyu, F., & Watabe, K. (2020). Regucalcin promotes dormancy of prostate cancer. Oncogene, 40(5), 1012–1026.PubMedPubMedCentralCrossRef
82.
go back to reference Horak, C. E., Lee, J. H., Marshall, J. C., Shreeve, S. M., & Steeg, P. S. (2008). The role of metastasis suppressor genes in metastatic dormancy. APMIS., 116(7–8), 586–601.PubMedPubMedCentralCrossRef Horak, C. E., Lee, J. H., Marshall, J. C., Shreeve, S. M., & Steeg, P. S. (2008). The role of metastasis suppressor genes in metastatic dormancy. APMIS., 116(7–8), 586–601.PubMedPubMedCentralCrossRef
83.
go back to reference Gelman, I. H. (2012). Suppression of tumor and metastasis progression through the scaffolding functions of SSeCKS/Gravin/AKAP12. Cancer Metastasis Review, 31(3–4), 493–500.CrossRef Gelman, I. H. (2012). Suppression of tumor and metastasis progression through the scaffolding functions of SSeCKS/Gravin/AKAP12. Cancer Metastasis Review, 31(3–4), 493–500.CrossRef
84.
go back to reference Kim, R. S., Avivar-Valderas, A., Estrada, Y., Bragado, P., Sosa, M. S., Aguirre-Ghiso, J. A., & Segall, J. E. (2012). Dormancy signatures and metastasis in estrogen receptor positive and negative breast cancer. PLoS ONE, 7(4), e35569.PubMedPubMedCentralCrossRef Kim, R. S., Avivar-Valderas, A., Estrada, Y., Bragado, P., Sosa, M. S., Aguirre-Ghiso, J. A., & Segall, J. E. (2012). Dormancy signatures and metastasis in estrogen receptor positive and negative breast cancer. PLoS ONE, 7(4), e35569.PubMedPubMedCentralCrossRef
85.
go back to reference Lawson, D. A., Bhakta, N. R., Kessenbrock, K., Prummel, K. D., Yu, Y., Takai, K., Zhou, A., Eyob, H., Balakrishnan, S., Wang, C. Y., Yaswen, P., Goga, A., & Werb, Z. (2015). Single-cell analysis reveals a stem-cell program in human metastatic breast cancer cells. Nature, 526(7571), 131–135.PubMedPubMedCentralCrossRef Lawson, D. A., Bhakta, N. R., Kessenbrock, K., Prummel, K. D., Yu, Y., Takai, K., Zhou, A., Eyob, H., Balakrishnan, S., Wang, C. Y., Yaswen, P., Goga, A., & Werb, Z. (2015). Single-cell analysis reveals a stem-cell program in human metastatic breast cancer cells. Nature, 526(7571), 131–135.PubMedPubMedCentralCrossRef
86.
go back to reference Gao, H., Chakraborty, G., Lee-Lim, A. P., Mavrakis, K. J., Wendel, H. G., & Giancotti, F. G. (2014). Forward genetic screens in mice uncover mediators and suppressors of metastatic reactivation. Proceedings of the National Academy of Sciences, U.S.A, 111(46), 16532–16537.CrossRef Gao, H., Chakraborty, G., Lee-Lim, A. P., Mavrakis, K. J., Wendel, H. G., & Giancotti, F. G. (2014). Forward genetic screens in mice uncover mediators and suppressors of metastatic reactivation. Proceedings of the National Academy of Sciences, U.S.A, 111(46), 16532–16537.CrossRef
87.
go back to reference Dudgeon, C., Harris, C. R., Chen, Y., Ghaddar, B., Sharma, A., Shah, M. M., Roberts, A. I., Casabianca, A., Collisson, E. A., Balachandran, V. P., Vertino, P. M., De, S., & Carpizo, D. R. (2020). A novel model of pancreatic cancer dormancy reveals mechanistic insights and a dormancy gene signature with human relevance. BioRxiv. https://doi.org/10.1101/2020.04.13.037374CrossRef Dudgeon, C., Harris, C. R., Chen, Y., Ghaddar, B., Sharma, A., Shah, M. M., Roberts, A. I., Casabianca, A., Collisson, E. A., Balachandran, V. P., Vertino, P. M., De, S., & Carpizo, D. R. (2020). A novel model of pancreatic cancer dormancy reveals mechanistic insights and a dormancy gene signature with human relevance. BioRxiv. https://​doi.​org/​10.​1101/​2020.​04.​13.​037374CrossRef
88.
go back to reference Uzuner, D., Akkoç, Y., Peker, N., Pir, P., Gözüaçik, D., & Çakir, T. (2021). Transcriptional landscape of cellular networks reveal interactions driving the dormancy mechanisms in cancer. Science Reports, 11(1), 15806–94005.CrossRef Uzuner, D., Akkoç, Y., Peker, N., Pir, P., Gözüaçik, D., & Çakir, T. (2021). Transcriptional landscape of cellular networks reveal interactions driving the dormancy mechanisms in cancer. Science Reports, 11(1), 15806–94005.CrossRef
89.
go back to reference Quayle, L. A., Spicer, A., Ottewell, P. D., & Holen, I. (2021). Transcriptomic profiling reveals novel candidate genes and signalling programs in breast cancer quiescence and dormancy. Cancers (Basel), 13(16), 3922.PubMedCrossRef Quayle, L. A., Spicer, A., Ottewell, P. D., & Holen, I. (2021). Transcriptomic profiling reveals novel candidate genes and signalling programs in breast cancer quiescence and dormancy. Cancers (Basel), 13(16), 3922.PubMedCrossRef
90.
go back to reference Ren, Q., Khoo, W. H., Corr, A. P., Phan, T. G., Croucher, P. I., & Stewart, S. A. (2022). Gene expression predicts dormant metastatic breast cancer cell phenotype. Breast Cancer Research, 24(1), 10.PubMedPubMedCentralCrossRef Ren, Q., Khoo, W. H., Corr, A. P., Phan, T. G., Croucher, P. I., & Stewart, S. A. (2022). Gene expression predicts dormant metastatic breast cancer cell phenotype. Breast Cancer Research, 24(1), 10.PubMedPubMedCentralCrossRef
91.
go back to reference Janghorban, M., Yang, Y., Zhao, N., Hamor, C., Nguyen, T. M., Zhang, X. H., & Rosen, J. M. (2022). Single-Cell analysis unveils the role of the tumor immune microenvironment and notch signaling in dormant minimal residual disease. Cancer Research, 82(5), 885–899.PubMedPubMedCentralCrossRef Janghorban, M., Yang, Y., Zhao, N., Hamor, C., Nguyen, T. M., Zhang, X. H., & Rosen, J. M. (2022). Single-Cell analysis unveils the role of the tumor immune microenvironment and notch signaling in dormant minimal residual disease. Cancer Research, 82(5), 885–899.PubMedPubMedCentralCrossRef
92.
go back to reference Son, J., Lee, J. H., Kim, H. N., Ha, H., & Lee, Z. H. (2010). cAMP-response-element-binding protein positively regulates breast cancer metastasis and subsequent bone destruction. Biochemical and Biophysical Research Communications, 398(2), 309–314.PubMedCrossRef Son, J., Lee, J. H., Kim, H. N., Ha, H., & Lee, Z. H. (2010). cAMP-response-element-binding protein positively regulates breast cancer metastasis and subsequent bone destruction. Biochemical and Biophysical Research Communications, 398(2), 309–314.PubMedCrossRef
93.
go back to reference Johnson, R. W., Sun, Y., Ho, P. W. M., Chan, A. S. M., Johnson, J. A., Pavlos, N. J., Sims, N. A., & Martin, T. J. (2018). Parathyroid hormone-related protein negatively regulates tumor cell dormancy genes in a PTHR1/cyclic AMP-independent manner. Frontiers in Endocrinology (Lausanne), 9, 241.CrossRef Johnson, R. W., Sun, Y., Ho, P. W. M., Chan, A. S. M., Johnson, J. A., Pavlos, N. J., Sims, N. A., & Martin, T. J. (2018). Parathyroid hormone-related protein negatively regulates tumor cell dormancy genes in a PTHR1/cyclic AMP-independent manner. Frontiers in Endocrinology (Lausanne), 9, 241.CrossRef
94.
go back to reference La Belle, F. A., Calhoun, B. C., Sharma, A., Chang, J. C., Almasan, A., & Schiemann, W. P. (2019). Autophagy inhibition elicits emergence from metastatic dormancy by inducing and stabilizing Pfkfb3 expression. Nature Communications, 10(1), 3668–11640.CrossRef La Belle, F. A., Calhoun, B. C., Sharma, A., Chang, J. C., Almasan, A., & Schiemann, W. P. (2019). Autophagy inhibition elicits emergence from metastatic dormancy by inducing and stabilizing Pfkfb3 expression. Nature Communications, 10(1), 3668–11640.CrossRef
95.
go back to reference Blessing, A. M., Santiago-O’Farrill, J. M., Mao, W., Pang, L., Ning, J., Pak, D., et al. (2020). Elimination of dormant, autophagic ovarian cancer cells and xenografts through enhanced sensitivity to anaplastic lymphoma kinase inhibition. Cancer, 126(15), 3579–3592.PubMedCrossRef Blessing, A. M., Santiago-O’Farrill, J. M., Mao, W., Pang, L., Ning, J., Pak, D., et al. (2020). Elimination of dormant, autophagic ovarian cancer cells and xenografts through enhanced sensitivity to anaplastic lymphoma kinase inhibition. Cancer, 126(15), 3579–3592.PubMedCrossRef
96.
go back to reference Onoyama, I., & Nakayama, K. I. (2008). Fbxw7 in cell cycle exit and stem cell maintenance: Insight from gene-targeted mice. Cell Cycle, 7(21), 3307–3313.PubMedCrossRef Onoyama, I., & Nakayama, K. I. (2008). Fbxw7 in cell cycle exit and stem cell maintenance: Insight from gene-targeted mice. Cell Cycle, 7(21), 3307–3313.PubMedCrossRef
97.
go back to reference Iriuchishima, H., Takubo, K., Matsuoka, S., Onoyama, I., Nakayama, K. I., Nojima, Y., & Suda, T. (2011). Ex vivo maintenance of hematopoietic stem cells by quiescence induction through Fbxw7a; overexpression. Blood, 117(8), 2373–2377.PubMedCrossRef Iriuchishima, H., Takubo, K., Matsuoka, S., Onoyama, I., Nakayama, K. I., Nojima, Y., & Suda, T. (2011). Ex vivo maintenance of hematopoietic stem cells by quiescence induction through Fbxw7a; overexpression. Blood, 117(8), 2373–2377.PubMedCrossRef
98.
go back to reference Jiang, J., Zheng, M., Zhang, M., Yang, X., Li, L., Wang, S. S., Wu, J. S., Yu, X. H., Wu, J. B., Pang, X., Tang, Y. J., Tang, Y. L., & Liang, X. H. (2019). PRRX1 regulates cellular phenotype plasticity and dormancy of head and neck squamous cell carcinoma through miR-642b-3p. Neoplasia., 21(2), 216–229.PubMedPubMedCentralCrossRef Jiang, J., Zheng, M., Zhang, M., Yang, X., Li, L., Wang, S. S., Wu, J. S., Yu, X. H., Wu, J. B., Pang, X., Tang, Y. J., Tang, Y. L., & Liang, X. H. (2019). PRRX1 regulates cellular phenotype plasticity and dormancy of head and neck squamous cell carcinoma through miR-642b-3p. Neoplasia., 21(2), 216–229.PubMedPubMedCentralCrossRef
99.
go back to reference Sosa, M. S., Parikh, F., Maia, A. G., Estrada, Y., Bosch, A., Bragado, P., et al. (2015). NR2F1 controls tumour cell dormancy via SOX9- and RARbeta-driven quiescence programmes. Nature Communications, 6, 6170.PubMedCrossRef Sosa, M. S., Parikh, F., Maia, A. G., Estrada, Y., Bosch, A., Bragado, P., et al. (2015). NR2F1 controls tumour cell dormancy via SOX9- and RARbeta-driven quiescence programmes. Nature Communications, 6, 6170.PubMedCrossRef
100.
go back to reference Satcher, R. L., & Zhang, X. H. (2021). Evolving cancer-niche interactions and therapeutic targets during bone metastasis. Nat Rev Cancer, 22(2), 85–101.PubMedCrossRef Satcher, R. L., & Zhang, X. H. (2021). Evolving cancer-niche interactions and therapeutic targets during bone metastasis. Nat Rev Cancer, 22(2), 85–101.PubMedCrossRef
101.
go back to reference Fluegen, G., Avivar-Valderas, A., Wang, Y., Padgen, M. R., Williams, J. K., Nobre, A. R., et al. (2017). Phenotypic heterogeneity of disseminated tumour cells is preset by primary tumour hypoxic microenvironments. Nature Cell Biology, 19(2), 120–132.PubMedPubMedCentralCrossRef Fluegen, G., Avivar-Valderas, A., Wang, Y., Padgen, M. R., Williams, J. K., Nobre, A. R., et al. (2017). Phenotypic heterogeneity of disseminated tumour cells is preset by primary tumour hypoxic microenvironments. Nature Cell Biology, 19(2), 120–132.PubMedPubMedCentralCrossRef
102.
go back to reference Ju, S., Wang, F., Wang, Y., & Ju, S. (2020). CSN8 is a key regulator in hypoxia-induced epithelial-mesenchymal transition and dormancy of colorectal cancer cells. Molecular Cancer, 19(1), 168–01285.PubMedPubMedCentralCrossRef Ju, S., Wang, F., Wang, Y., & Ju, S. (2020). CSN8 is a key regulator in hypoxia-induced epithelial-mesenchymal transition and dormancy of colorectal cancer cells. Molecular Cancer, 19(1), 168–01285.PubMedPubMedCentralCrossRef
103.
go back to reference Wu, R., Roy, A. M., Tokumaru, Y., Gandhi, S., Asaoka, M., Oshi, M., Yan, L., Ishikawa, T., & Takabe, K. (2022). NR2F1, a tumor dormancy marker, is expressed predominantly in cancer-associated fibroblasts and is associated with suppressed breast cancer cell proliferation. Cancers (Basel), 14(12), 2962.PubMedCrossRef Wu, R., Roy, A. M., Tokumaru, Y., Gandhi, S., Asaoka, M., Oshi, M., Yan, L., Ishikawa, T., & Takabe, K. (2022). NR2F1, a tumor dormancy marker, is expressed predominantly in cancer-associated fibroblasts and is associated with suppressed breast cancer cell proliferation. Cancers (Basel), 14(12), 2962.PubMedCrossRef
104.
go back to reference Sanchez, C. A., Yamamoto, T., Kawamura, Y., Hironaka-Mitsuhashi, A., Ono, M., Tsuda, H., Shimomura, A., Tamura, K., Takeshita, F., Ochiya, T., & Yamamoto, Y. (2020). Long non-coding NR2F1-AS1 is associated with tumor recurrence in estrogen receptor-positive breast cancers. Molecular Oncology, 14(9), 2271–2287.CrossRef Sanchez, C. A., Yamamoto, T., Kawamura, Y., Hironaka-Mitsuhashi, A., Ono, M., Tsuda, H., Shimomura, A., Tamura, K., Takeshita, F., Ochiya, T., & Yamamoto, Y. (2020). Long non-coding NR2F1-AS1 is associated with tumor recurrence in estrogen receptor-positive breast cancers. Molecular Oncology, 14(9), 2271–2287.CrossRef
105.
go back to reference Liu, Y., Zhang, P., Wu, Q., Fang, H., Wang, Y., Xiao, Y., Cong, M., Wang, T., He, Y., Ma, C., Tian, P., Liang, Y., Qin, L. X., Yang, Q., Yang, Q., Liao, L., & Hu, G. (2021). Long non-coding RNA NR2F1-AS1 induces breast cancer lung metastatic dormancy by regulating NR2F1 and DNp63. Nature Communications, 12(1), 5232.PubMedPubMedCentralCrossRef Liu, Y., Zhang, P., Wu, Q., Fang, H., Wang, Y., Xiao, Y., Cong, M., Wang, T., He, Y., Ma, C., Tian, P., Liang, Y., Qin, L. X., Yang, Q., Yang, Q., Liao, L., & Hu, G. (2021). Long non-coding RNA NR2F1-AS1 induces breast cancer lung metastatic dormancy by regulating NR2F1 and DNp63. Nature Communications, 12(1), 5232.PubMedPubMedCentralCrossRef
106.
go back to reference Zhu, X., Wang, F., Wu, X., Li, Z., Wang, Z., Ren, X., Zhou, Y., Song, F., Liang, Y., Zeng, Z., Liao, W., Ding, Y., Liao, W., & Liang, L. (2020). FBX8 promotes metastatic dormancy of colorectal cancer in liver. Cell Death and Disease, 11(8), 622–02870.PubMedPubMedCentralCrossRef Zhu, X., Wang, F., Wu, X., Li, Z., Wang, Z., Ren, X., Zhou, Y., Song, F., Liang, Y., Zeng, Z., Liao, W., Ding, Y., Liao, W., & Liang, L. (2020). FBX8 promotes metastatic dormancy of colorectal cancer in liver. Cell Death and Disease, 11(8), 622–02870.PubMedPubMedCentralCrossRef
107.
go back to reference Gooding, A. J., & Schiemann, W. P. (2020). Epithelial-mesenchymal transition programs and cancer stem cell phenotypes: Mediators of breast cancer therapy resistance. Molecular Cancer Research, 18(9), 1257–1270.PubMedCrossRef Gooding, A. J., & Schiemann, W. P. (2020). Epithelial-mesenchymal transition programs and cancer stem cell phenotypes: Mediators of breast cancer therapy resistance. Molecular Cancer Research, 18(9), 1257–1270.PubMedCrossRef
108.
go back to reference Johnson, R. W., Finger, E. C., Olcina, M. M., Vilalta, M., Aguilera, T., Miao, Y., et al. (2016). Induction of LIFR confers a dormancy phenotype in breast cancer cells disseminated to the bone marrow. Nature Cell Biology, 18(10), 1078–1089.PubMedPubMedCentralCrossRef Johnson, R. W., Finger, E. C., Olcina, M. M., Vilalta, M., Aguilera, T., Miao, Y., et al. (2016). Induction of LIFR confers a dormancy phenotype in breast cancer cells disseminated to the bone marrow. Nature Cell Biology, 18(10), 1078–1089.PubMedPubMedCentralCrossRef
109.
go back to reference Clements, M. E., Holtslander, L., Edwards, C., Todd, V., Dooyema, S. D. R., Bullock, K., Bergdorf, K., Zahnow, C. A., Connolly, R. M., & Johnson, R. W. (2021). HDAC inhibitors induce LIFR expression and promote a dormancy phenotype in breast cancer. Oncogene, 40(34), 5314–5324.PubMedPubMedCentralCrossRef Clements, M. E., Holtslander, L., Edwards, C., Todd, V., Dooyema, S. D. R., Bullock, K., Bergdorf, K., Zahnow, C. A., Connolly, R. M., & Johnson, R. W. (2021). HDAC inhibitors induce LIFR expression and promote a dormancy phenotype in breast cancer. Oncogene, 40(34), 5314–5324.PubMedPubMedCentralCrossRef
110.
go back to reference Bragado, P., Estrada, Y., Parikh, F., Krause, S., Capobianco, C., Farina, H. G., Schewe, D. M., & Aguirre-Ghiso, J. A. (2013). TGF-beta2 dictates disseminated tumour cell fate in target organs through TGF-beta-RIII and p38alpha/beta signalling. Nature Cell Biology, 15(11), 1351–1361.PubMedPubMedCentralCrossRef Bragado, P., Estrada, Y., Parikh, F., Krause, S., Capobianco, C., Farina, H. G., Schewe, D. M., & Aguirre-Ghiso, J. A. (2013). TGF-beta2 dictates disseminated tumour cell fate in target organs through TGF-beta-RIII and p38alpha/beta signalling. Nature Cell Biology, 15(11), 1351–1361.PubMedPubMedCentralCrossRef
111.
go back to reference Ribatti, D., Mangialardi, G., & Vacca, A. (2006). Stephen Paget and the ‘seed and soil’ theory of metastatic dissemination. Clinical Experimental Medicine, 6(4), 145–149.PubMedCrossRef Ribatti, D., Mangialardi, G., & Vacca, A. (2006). Stephen Paget and the ‘seed and soil’ theory of metastatic dissemination. Clinical Experimental Medicine, 6(4), 145–149.PubMedCrossRef
112.
go back to reference Ruppender, N., Larson, S., Lakely, B., Kollath, L., Brown, L., Coleman, I., et al. (2015). Cellular adhesion promotes prostate cancer cells escape from dormancy. PLoS ONE, 10(6), e0130565.PubMedPubMedCentralCrossRef Ruppender, N., Larson, S., Lakely, B., Kollath, L., Brown, L., Coleman, I., et al. (2015). Cellular adhesion promotes prostate cancer cells escape from dormancy. PLoS ONE, 10(6), e0130565.PubMedPubMedCentralCrossRef
113.
go back to reference Yumoto, K., Eber, M. R., Wang, J., Cackowski, F. C., Decker, A. M., Lee, E., Nobre, A. R., Aguirre-Ghiso, J. A., Jung, Y., & Taichman, R. S. (2016). Axl is required for TGF-beta2-induced dormancy of prostate cancer cells in the bone marrow. Sci Reports, 6, 36520. Yumoto, K., Eber, M. R., Wang, J., Cackowski, F. C., Decker, A. M., Lee, E., Nobre, A. R., Aguirre-Ghiso, J. A., Jung, Y., & Taichman, R. S. (2016). Axl is required for TGF-beta2-induced dormancy of prostate cancer cells in the bone marrow. Sci Reports, 6, 36520.
114.
go back to reference Burstyn-Cohen, T., & Maimon, A. (2019). TAM receptors, phosphatidylserine, inflammation, and cancer. Cell Communication and Signaling, 17(1), 156–0461.PubMedPubMedCentralCrossRef Burstyn-Cohen, T., & Maimon, A. (2019). TAM receptors, phosphatidylserine, inflammation, and cancer. Cell Communication and Signaling, 17(1), 156–0461.PubMedPubMedCentralCrossRef
115.
go back to reference Axelrod, H. D., Valkenburg, K. C., Amend, S. R., Hicks, J. L., Parsana, P., Torga, G., DeMarzo, A. M., & Pienta, K. J. (2018). AXL is a putative tumor suppressor and dormancy regulator in prostate cancer. Molecular Cancer Research, 17(2), 356–369.PubMedCrossRef Axelrod, H. D., Valkenburg, K. C., Amend, S. R., Hicks, J. L., Parsana, P., Torga, G., DeMarzo, A. M., & Pienta, K. J. (2018). AXL is a putative tumor suppressor and dormancy regulator in prostate cancer. Molecular Cancer Research, 17(2), 356–369.PubMedCrossRef
116.
go back to reference Cackowski, F. C., Eber, M. R., Rhee, J., Decker, A., Yumoto, K., Berry, J. E., Lee, E., Shiozawa, Y., Jung, Y., Aguirre-Ghiso, J. A., & Taichman, R. S. (2016). Mer tyrosine kinase regulates disseminated prostate cancer cellular dormancy. Journal of Cell Biochemistry, 118(4), 891–902.CrossRef Cackowski, F. C., Eber, M. R., Rhee, J., Decker, A., Yumoto, K., Berry, J. E., Lee, E., Shiozawa, Y., Jung, Y., Aguirre-Ghiso, J. A., & Taichman, R. S. (2016). Mer tyrosine kinase regulates disseminated prostate cancer cellular dormancy. Journal of Cell Biochemistry, 118(4), 891–902.CrossRef
117.
go back to reference Kobayashi, A., Okuda, H., Xing, F., Pandey, P. R., Watabe, M., Hirota, S., Pai, S. K., Liu, W., Fukuda, K., Chambers, C., Wilber, A., & Watabe, K. (2011). Bone morphogenetic protein 7 in dormancy and metastasis of prostate cancer stem-like cells in bone. Journal of Experimental Medicine, 208(13), 2641–2655.PubMedPubMedCentralCrossRef Kobayashi, A., Okuda, H., Xing, F., Pandey, P. R., Watabe, M., Hirota, S., Pai, S. K., Liu, W., Fukuda, K., Chambers, C., Wilber, A., & Watabe, K. (2011). Bone morphogenetic protein 7 in dormancy and metastasis of prostate cancer stem-like cells in bone. Journal of Experimental Medicine, 208(13), 2641–2655.PubMedPubMedCentralCrossRef
118.
go back to reference Eckhardt, B. L., Cao, Y., Redfern, A. D., Chi, L. H., Burrows, A. D., Roslan, S., Sloan, E. K., Parker, B. S., Loi, S., Ueno, N. T., Lau, P. K. H., Latham, B., & Anderson, R. L. (2020). Activation of canonical BMP4-SMAD7 signaling suppresses breast cancer metastasis. Cancer Research, 80(6), 1304–1315.PubMedCrossRef Eckhardt, B. L., Cao, Y., Redfern, A. D., Chi, L. H., Burrows, A. D., Roslan, S., Sloan, E. K., Parker, B. S., Loi, S., Ueno, N. T., Lau, P. K. H., Latham, B., & Anderson, R. L. (2020). Activation of canonical BMP4-SMAD7 signaling suppresses breast cancer metastasis. Cancer Research, 80(6), 1304–1315.PubMedCrossRef
119.
go back to reference Nobre, A. R., Risson, E., Singh, D. K., Di Martino, J. S., Cheung, J. F., Wang, J., Johnson, J., Russnes, H. G., Bravo-Cordero, J. J., Birbrair, A., Naume, B., Azhar, M., Frenette, P. S., & Aguirre-Ghiso, J. A. (2021). Bone marrow NG2(+)/Nestin(+) mesenchymal stem cells drive DTC dormancy via TGFb2. Nature Cancer, 2(3), 327–339.PubMedPubMedCentralCrossRef Nobre, A. R., Risson, E., Singh, D. K., Di Martino, J. S., Cheung, J. F., Wang, J., Johnson, J., Russnes, H. G., Bravo-Cordero, J. J., Birbrair, A., Naume, B., Azhar, M., Frenette, P. S., & Aguirre-Ghiso, J. A. (2021). Bone marrow NG2(+)/Nestin(+) mesenchymal stem cells drive DTC dormancy via TGFb2. Nature Cancer, 2(3), 327–339.PubMedPubMedCentralCrossRef
120.
go back to reference Prunier, C., Baker, D., Ten, D. P., & Ritsma, L. (2019). TGF-b family signaling pathways in cellular dormancy. Trends in Cancer, 5(1), 66–78.PubMedCrossRef Prunier, C., Baker, D., Ten, D. P., & Ritsma, L. (2019). TGF-b family signaling pathways in cellular dormancy. Trends in Cancer, 5(1), 66–78.PubMedCrossRef
121.
go back to reference Sharma, S., Xing, F., Liu, Y., Wu, K., Said, N., Pochampally, R., Shiozawa, Y., Lin, H. K., Balaji, K. C., & Watabe, K. (2016). Secreted protein acidic and rich in cysteine (SPARC) mediates metastatic dormancy of prostate cancer in bone. Journal of Biological Chemistry, 291(37), 19351–19363.PubMedPubMedCentralCrossRef Sharma, S., Xing, F., Liu, Y., Wu, K., Said, N., Pochampally, R., Shiozawa, Y., Lin, H. K., Balaji, K. C., & Watabe, K. (2016). Secreted protein acidic and rich in cysteine (SPARC) mediates metastatic dormancy of prostate cancer in bone. Journal of Biological Chemistry, 291(37), 19351–19363.PubMedPubMedCentralCrossRef
122.
go back to reference Cassar, L., Li, H., Pinto, A. R., Nicholls, C., Bayne, S., & Liu, J. P. (2008). Bone morphogenetic protein-7 inhibits telomerase activity, telomere maintenance, and cervical tumor growth. Cancer Research, 68(22), 9157–9166.PubMedCrossRef Cassar, L., Li, H., Pinto, A. R., Nicholls, C., Bayne, S., & Liu, J. P. (2008). Bone morphogenetic protein-7 inhibits telomerase activity, telomere maintenance, and cervical tumor growth. Cancer Research, 68(22), 9157–9166.PubMedCrossRef
123.
go back to reference Nahm, J. H., Yang, W. I., & Yoon, S. O. (2020). Forkhead Box C1 (FOXC1) Expression in stromal cells within the microenvironment of T and NK Cell Lymphomas: Association with tumor dormancy and activation. Cancer Research and Treatments, 52(4), 1273–1282. Nahm, J. H., Yang, W. I., & Yoon, S. O. (2020). Forkhead Box C1 (FOXC1) Expression in stromal cells within the microenvironment of T and NK Cell Lymphomas: Association with tumor dormancy and activation. Cancer Research and Treatments, 52(4), 1273–1282.
124.
go back to reference Zangrossi, M., Romani, P., Chakravarty, P., Ratcliffe, C. D. H., Hooper, S., Dori, M., Forcato, M., Bicciato, S., Dupont, S., Sahai, E., & Montagner, M. (2021). EphB6 regulates TFEB-lysosomal pathway and survival of disseminated indolent breast cancer cells. Cancers (Basel), 13(5), 1079.PubMedCrossRef Zangrossi, M., Romani, P., Chakravarty, P., Ratcliffe, C. D. H., Hooper, S., Dori, M., Forcato, M., Bicciato, S., Dupont, S., Sahai, E., & Montagner, M. (2021). EphB6 regulates TFEB-lysosomal pathway and survival of disseminated indolent breast cancer cells. Cancers (Basel), 13(5), 1079.PubMedCrossRef
125.
go back to reference Visan, K. S., Lobb, R. J., & Moller, A. (2020). The role of exosomes in the promotion of epithelial-to-mesenchymal transition and metastasis. Frontiers in Bioscience (Landmark Ed.), 251022-1057. Visan, K. S., Lobb, R. J., & Moller, A. (2020). The role of exosomes in the promotion of epithelial-to-mesenchymal transition and metastasis. Frontiers in Bioscience (Landmark Ed.), 251022-1057.
126.
go back to reference Attaran, S., & Bissell, M. J. (2021). The role of tumor microenvironment and exosomes in dormancy and relapse. Seminars in Cancer Biology, 78, 35–44.PubMedPubMedCentralCrossRef Attaran, S., & Bissell, M. J. (2021). The role of tumor microenvironment and exosomes in dormancy and relapse. Seminars in Cancer Biology, 78, 35–44.PubMedPubMedCentralCrossRef
127.
go back to reference Ono, M., Kosaka, N., Tominaga, N., Yoshioka, Y., Takeshita, F., Takahashi, R. U., Yoshida, M., Tsuda, H., Tamura, K., & Ochiya, T. (2014). Exosomes from bone marrow mesenchymal stem cells contain a microRNA that promotes dormancy in metastatic breast cancer cells. Science Signaling, 7(332), ra63.PubMedCrossRef Ono, M., Kosaka, N., Tominaga, N., Yoshioka, Y., Takeshita, F., Takahashi, R. U., Yoshida, M., Tsuda, H., Tamura, K., & Ochiya, T. (2014). Exosomes from bone marrow mesenchymal stem cells contain a microRNA that promotes dormancy in metastatic breast cancer cells. Science Signaling, 7(332), ra63.PubMedCrossRef
128.
go back to reference Li, X., Yang, J., Bao, M., Zeng, K., Fu, S., Wang, C., & Ye, L. (2018). Wnt signaling in bone metastasis: Mechanisms and therapeutic opportunities. Life Sciences, 208, 33–45.PubMedCrossRef Li, X., Yang, J., Bao, M., Zeng, K., Fu, S., Wang, C., & Ye, L. (2018). Wnt signaling in bone metastasis: Mechanisms and therapeutic opportunities. Life Sciences, 208, 33–45.PubMedCrossRef
129.
go back to reference Ren, D., Dai, Y., Yang, Q., Zhang, X., Guo, W., Ye, L., Huang, S., Chen, X., Lai, Y., Du, H., Lin, C., Peng, X., & Song, L. (2019). Wnt5a induces and maintains prostate cancer cells dormancy in bone. Journal of Experimental Medicine, 216(2), 428–449.PubMedPubMedCentralCrossRef Ren, D., Dai, Y., Yang, Q., Zhang, X., Guo, W., Ye, L., Huang, S., Chen, X., Lai, Y., Du, H., Lin, C., Peng, X., & Song, L. (2019). Wnt5a induces and maintains prostate cancer cells dormancy in bone. Journal of Experimental Medicine, 216(2), 428–449.PubMedPubMedCentralCrossRef
130.
go back to reference Fane, M. E., Chhabra, Y., Alicea, G. M., Maranto, D. A., Douglass, S. M., Webster, M. R., et al. (2022). Stromal changes in the aged lung induce an emergence from melanoma dormancy. Nature, 606(7913), 396–405.PubMedPubMedCentralCrossRef Fane, M. E., Chhabra, Y., Alicea, G. M., Maranto, D. A., Douglass, S. M., Webster, M. R., et al. (2022). Stromal changes in the aged lung induce an emergence from melanoma dormancy. Nature, 606(7913), 396–405.PubMedPubMedCentralCrossRef
131.
go back to reference Lee, E., Yang, J., Ku, M., Kim, N. H., Park, Y., Park, C. B., Suh, J. S., Park, E. S., Yook, J. I., Mills, G. B., Huh, Y. M., & Cheong, J. H. (2015). Metabolic stress induces a Wnt-dependent cancer stem cell-like state transition. Cell Death and Disease, 6, e1805.PubMedPubMedCentralCrossRef Lee, E., Yang, J., Ku, M., Kim, N. H., Park, Y., Park, C. B., Suh, J. S., Park, E. S., Yook, J. I., Mills, G. B., Huh, Y. M., & Cheong, J. H. (2015). Metabolic stress induces a Wnt-dependent cancer stem cell-like state transition. Cell Death and Disease, 6, e1805.PubMedPubMedCentralCrossRef
132.
go back to reference Bragado, P., Estrada, Y., Parikh, F., Krause, S., Capobianco, C., Farina, H. G., Schewe, D. M., & Aguirre-Ghiso, J. A. (2013). TGF-b dictates disseminated tumour cell fate in target organs through TGF-b-RIII and p38a signalling. Nature Cell Biology, 15(11), 1351–1361.PubMedPubMedCentralCrossRef Bragado, P., Estrada, Y., Parikh, F., Krause, S., Capobianco, C., Farina, H. G., Schewe, D. M., & Aguirre-Ghiso, J. A. (2013). TGF-b dictates disseminated tumour cell fate in target organs through TGF-b-RIII and p38a signalling. Nature Cell Biology, 15(11), 1351–1361.PubMedPubMedCentralCrossRef
133.
go back to reference Hernandez, S., Serrano, A. G., & Solis Soto, L. M. (2022). The role of nerve fibers in the tumor immune microenvironment of solid tumors. Advanced Biology (Weinh), 6(9), e2200046.CrossRef Hernandez, S., Serrano, A. G., & Solis Soto, L. M. (2022). The role of nerve fibers in the tumor immune microenvironment of solid tumors. Advanced Biology (Weinh), 6(9), e2200046.CrossRef
134.
go back to reference Erin, N., Shurin, G. V., Baraldi, J. H., & Shurin, M. R. (2022). Regulation of carcinogenesis by sensory neurons and neuromediators. Cancers (Basel), 14(9), 2333.PubMedCrossRef Erin, N., Shurin, G. V., Baraldi, J. H., & Shurin, M. R. (2022). Regulation of carcinogenesis by sensory neurons and neuromediators. Cancers (Basel), 14(9), 2333.PubMedCrossRef
135.
go back to reference Roda, N., Blandano, G., & Pelicci, P. G. (2021). Blood vessels and peripheral nerves as key players in cancer progression and therapy resistance. Cancers (Basel), 13(17), 4471.PubMedCrossRef Roda, N., Blandano, G., & Pelicci, P. G. (2021). Blood vessels and peripheral nerves as key players in cancer progression and therapy resistance. Cancers (Basel), 13(17), 4471.PubMedCrossRef
136.
go back to reference Mulcrone, P. L., Campbell, J. P., Clément-Demange, L., Anbinder, A. L., Merkel, A. R., Brekken, R. A., Sterling, J. A., & Elefteriou, F. (2017). Skeletal colonization by breast cancer cells is stimulated by an osteoblast and b2AR-dependent neo-angiogenic switch. Journal of Bone Mineral Research, 32(7), 1442–1454.PubMedCrossRef Mulcrone, P. L., Campbell, J. P., Clément-Demange, L., Anbinder, A. L., Merkel, A. R., Brekken, R. A., Sterling, J. A., & Elefteriou, F. (2017). Skeletal colonization by breast cancer cells is stimulated by an osteoblast and b2AR-dependent neo-angiogenic switch. Journal of Bone Mineral Research, 32(7), 1442–1454.PubMedCrossRef
137.
go back to reference Dai, J., Cimino, P. J., Gouin, K. H., III., Grzelak, C. A., Barrett, A., Lim, A. R., et al. (2022). Astrocytic laminin-211 drives disseminated breast tumor cell dormancy in brain. Nature Cancer, 3(1), 25–42.PubMedCrossRef Dai, J., Cimino, P. J., Gouin, K. H., III., Grzelak, C. A., Barrett, A., Lim, A. R., et al. (2022). Astrocytic laminin-211 drives disseminated breast tumor cell dormancy in brain. Nature Cancer, 3(1), 25–42.PubMedCrossRef
138.
go back to reference Ni, B., Li, Q., Zhuang, C., Huang, P., Xia, X., Yang, L., Ma, X., Huang, C., Zhao, W., Tu, L., Shen, Y., Zhu, C., Zhang, Z., Zhao, E., Wang, M., & Cao, H. (2022). The nerve-tumour regulatory axis GDNF-GFRA1 promotes tumour dormancy, imatinib resistance and local recurrence of gastrointestinal stromal tumours by achieving autophagic flux. Cancer Letters, 535, 215639.PubMedCrossRef Ni, B., Li, Q., Zhuang, C., Huang, P., Xia, X., Yang, L., Ma, X., Huang, C., Zhao, W., Tu, L., Shen, Y., Zhu, C., Zhang, Z., Zhao, E., Wang, M., & Cao, H. (2022). The nerve-tumour regulatory axis GDNF-GFRA1 promotes tumour dormancy, imatinib resistance and local recurrence of gastrointestinal stromal tumours by achieving autophagic flux. Cancer Letters, 535, 215639.PubMedCrossRef
139.
go back to reference Touil, Y., Segard, P., Ostyn, P., Begard, S., Aspord, C., El Machhour, M. R., et al. (2016). Melanoma dormancy in a mouse model is linked to GILZ/FOXO3A-dependent quiescence of disseminated stem-like cells. Science Reports, 6, 30405.CrossRef Touil, Y., Segard, P., Ostyn, P., Begard, S., Aspord, C., El Machhour, M. R., et al. (2016). Melanoma dormancy in a mouse model is linked to GILZ/FOXO3A-dependent quiescence of disseminated stem-like cells. Science Reports, 6, 30405.CrossRef
140.
go back to reference Liburkin-Dan, T., Toledano, S., & Neufeld, G. (2022). Lysyl oxidase family enzymes and their role in tumor progression. Internatinal Journal of Molecular Science, 23(11), 6249.CrossRef Liburkin-Dan, T., Toledano, S., & Neufeld, G. (2022). Lysyl oxidase family enzymes and their role in tumor progression. Internatinal Journal of Molecular Science, 23(11), 6249.CrossRef
141.
go back to reference Ferreira, S., Saraiva, N., Rijo, P., & Fernandes, A. S. (2021). LOXL2 inhibitors and breast cancer progression. Antioxidants (Basel), 10(2), 312.PubMedCrossRef Ferreira, S., Saraiva, N., Rijo, P., & Fernandes, A. S. (2021). LOXL2 inhibitors and breast cancer progression. Antioxidants (Basel), 10(2), 312.PubMedCrossRef
142.
go back to reference Weidenfeld, K., Schif-Zuck, S., Abu-Tayeh, H., Kang, K., Kessler, O., Weissmann, M., Neufeld, G., & Barkan, D. (2016). Dormant tumor cells expressing LOXL2 acquire a stem-like phenotype mediating their transition to proliferative growth. Oncotarget, 7(44), 71362–71377.PubMedPubMedCentralCrossRef Weidenfeld, K., Schif-Zuck, S., Abu-Tayeh, H., Kang, K., Kessler, O., Weissmann, M., Neufeld, G., & Barkan, D. (2016). Dormant tumor cells expressing LOXL2 acquire a stem-like phenotype mediating their transition to proliferative growth. Oncotarget, 7(44), 71362–71377.PubMedPubMedCentralCrossRef
143.
go back to reference Aslakson, C. J., & Miller, F. R. (1992). Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. Cancer Research, 52(6), 1399–1405.PubMed Aslakson, C. J., & Miller, F. R. (1992). Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. Cancer Research, 52(6), 1399–1405.PubMed
144.
go back to reference Almog, N., Ma, L., Raychowdhury, R., Schwager, C., Erber, R., Short, S., Hlatky, L., Vajkoczy, P., Huber, P. E., Folkman, J., & Abdollahi, A. (2009). Transcriptional switch of dormant tumors to fast-growing angiogenic phenotype. Cancer Research, 69(3), 836–844.PubMedCrossRef Almog, N., Ma, L., Raychowdhury, R., Schwager, C., Erber, R., Short, S., Hlatky, L., Vajkoczy, P., Huber, P. E., Folkman, J., & Abdollahi, A. (2009). Transcriptional switch of dormant tumors to fast-growing angiogenic phenotype. Cancer Research, 69(3), 836–844.PubMedCrossRef
145.
go back to reference Tiram, G., Segal, E., Krivitsky, A., Shreberk-Hassidim, R., Ferber, S., Ofek, P., et al. (2016). Identification of dormancy-associated MicroRNAs for the design of osteosarcoma-targeted dendritic polyglycerol nanopolyplexes. ACS Nanotechnology, 10(2), 2028–2045. Tiram, G., Segal, E., Krivitsky, A., Shreberk-Hassidim, R., Ferber, S., Ofek, P., et al. (2016). Identification of dormancy-associated MicroRNAs for the design of osteosarcoma-targeted dendritic polyglycerol nanopolyplexes. ACS Nanotechnology, 10(2), 2028–2045.
146.
go back to reference Owen, K. L., Gearing, L. J., Zanker, D. J., Brockwell, N. K., Khoo, W. H., Roden, D. L., et al. (2020). Prostate cancer cell-intrinsic interferon signaling regulates dormancy and metastatic outgrowth in bone. EMBO Reports, 21(6), e50162.PubMedPubMedCentralCrossRef Owen, K. L., Gearing, L. J., Zanker, D. J., Brockwell, N. K., Khoo, W. H., Roden, D. L., et al. (2020). Prostate cancer cell-intrinsic interferon signaling regulates dormancy and metastatic outgrowth in bone. EMBO Reports, 21(6), e50162.PubMedPubMedCentralCrossRef
147.
go back to reference Power, C. A., Pwint, H., Chan, J., Cho, J., Yu, Y., Walsh, W., & Russell, P. J. (2009). A novel model of bone-metastatic prostate cancer in immunocompetent mice. Prostate, 69(15), 1613–1623.PubMedCrossRef Power, C. A., Pwint, H., Chan, J., Cho, J., Yu, Y., Walsh, W., & Russell, P. J. (2009). A novel model of bone-metastatic prostate cancer in immunocompetent mice. Prostate, 69(15), 1613–1623.PubMedCrossRef
148.
go back to reference Wang, X., Yu, J., Yan, J., Peng, K., & Zhou, H. (2022). Single-cell sequencing reveals MYC targeting gene MAD2L1 is associated with prostate cancer bone metastasis tumor dormancy. BMC Urology, 22(1), 37.PubMedPubMedCentralCrossRef Wang, X., Yu, J., Yan, J., Peng, K., & Zhou, H. (2022). Single-cell sequencing reveals MYC targeting gene MAD2L1 is associated with prostate cancer bone metastasis tumor dormancy. BMC Urology, 22(1), 37.PubMedPubMedCentralCrossRef
149.
150.
go back to reference Qin, J. Z., Xin, H., Qi, X. M., & Chen, G. (2022). Isoform-specific and cell/tissue-dependent effects of p38 MAPKs in regulating inflammation and inflammation-associated oncogenesis. Frontiers in Bioscience (Landmark Ed.), 27(1), 31. Qin, J. Z., Xin, H., Qi, X. M., & Chen, G. (2022). Isoform-specific and cell/tissue-dependent effects of p38 MAPKs in regulating inflammation and inflammation-associated oncogenesis. Frontiers in Bioscience (Landmark Ed.), 27(1), 31.
151.
go back to reference Ohkubo, S., Nakahata, N., & Ohizumi, Y. (1996). Thromboxane A2-mediated shape change: Independent of Gq-phospholipase C-Ca2+ pathway in rabbit platelets. British Journal of Pharmacology, 117(6), 1095–1104.PubMedPubMedCentralCrossRef Ohkubo, S., Nakahata, N., & Ohizumi, Y. (1996). Thromboxane A2-mediated shape change: Independent of Gq-phospholipase C-Ca2+ pathway in rabbit platelets. British Journal of Pharmacology, 117(6), 1095–1104.PubMedPubMedCentralCrossRef
152.
go back to reference Janowska, A., Iannone, M., Fidanzi, C., Romanelli, M., Filippi, L., Del, R. M., Martins, M., & Dini, V. (2022). The genetic basis of dormancy and awakening in cutaneous metastatic melanoma. Cancers (Basel), 14(9), 2104.PubMedCrossRef Janowska, A., Iannone, M., Fidanzi, C., Romanelli, M., Filippi, L., Del, R. M., Martins, M., & Dini, V. (2022). The genetic basis of dormancy and awakening in cutaneous metastatic melanoma. Cancers (Basel), 14(9), 2104.PubMedCrossRef
153.
go back to reference Asghar, U., Witkiewicz, A. K., Turner, N. C., & Knudsen, E. S. (2015). The history and future of targeting cyclin-dependent kinases in cancer therapy. Nature Reviews Drug Discovery, 14(2), 130–146.PubMedPubMedCentralCrossRef Asghar, U., Witkiewicz, A. K., Turner, N. C., & Knudsen, E. S. (2015). The history and future of targeting cyclin-dependent kinases in cancer therapy. Nature Reviews Drug Discovery, 14(2), 130–146.PubMedPubMedCentralCrossRef
154.
go back to reference Singh, D. K., Patel, V. G., Oh, W. K., & Aguirre-Ghiso, J. A. (2021). Prostate cancer dormancy and reactivation in bone marrow. Journal of Clinical Medicine, 10(12), 2648.PubMedPubMedCentralCrossRef Singh, D. K., Patel, V. G., Oh, W. K., & Aguirre-Ghiso, J. A. (2021). Prostate cancer dormancy and reactivation in bone marrow. Journal of Clinical Medicine, 10(12), 2648.PubMedPubMedCentralCrossRef
155.
go back to reference Ramamoorthi, G., Kodumudi, K., Gallen, C., Zachariah, N. N., Basu, A., Albert, G., Beyer, A., Snyder, C., Wiener, D., Costa, R. L. B., & Czerniecki, B. J. (2021). Disseminated cancer cells in breast cancer: mechanism of dissemination and dormancy and emerging insights on therapeutic opportunities. Seminars in Cancer Biology, 78, 78–89.PubMedCrossRef Ramamoorthi, G., Kodumudi, K., Gallen, C., Zachariah, N. N., Basu, A., Albert, G., Beyer, A., Snyder, C., Wiener, D., Costa, R. L. B., & Czerniecki, B. J. (2021). Disseminated cancer cells in breast cancer: mechanism of dissemination and dormancy and emerging insights on therapeutic opportunities. Seminars in Cancer Biology, 78, 78–89.PubMedCrossRef
Metadata
Title
The genomic regulation of metastatic dormancy
Author
Irwin H. Gelman
Publication date
05-01-2023
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 1/2023
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-022-10076-w

Other articles of this Issue 1/2023

Cancer and Metastasis Reviews 1/2023 Go to the issue

EditorialNotes

Preface

Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine