Skip to main content
Top
Published in: Cancer and Metastasis Reviews 1/2014

Open Access 01-03-2014 | NON-THEMATIC REVIEW

Calories, carbohydrates, and cancer therapy with radiation: exploiting the five R’s through dietary manipulation

Authors: Rainer J. Klement, Colin E. Champ

Published in: Cancer and Metastasis Reviews | Issue 1/2014

Login to get access

Abstract

Aggressive tumors typically demonstrate a high glycolytic rate, which results in resistance to radiation therapy and cancer progression via several molecular and physiologic mechanisms. Intriguingly, many of these mechanisms utilize the same molecular pathways that are altered through calorie and/or carbohydrate restriction. Furthermore, poorer prognosis in cancer patients who display a glycolytic phenotype characterized by metabolic alterations, such as obesity and diabetes, is now well established, providing another link between metabolic pathways and cancer progression. We review the possible roles for calorie restriction (CR) and very low carbohydrate ketogenic diets (KDs) in modulating the five R’s of radiotherapy to improve the therapeutic window between tumor control and normal tissue complication probability. Important mechanisms we discuss include (1) improved DNA repair in normal, but not tumor cells; (2) inhibition of tumor cell repopulation through modulation of the PI3K–Akt–mTORC1 pathway downstream of insulin and IGF1; (3) redistribution of normal cells into more radioresistant phases of the cell cycle; (4) normalization of the tumor vasculature by targeting hypoxia-inducible factor-1α downstream of the PI3K–Akt–mTOR pathway; (5) increasing the intrinsic radioresistance of normal cells through ketone bodies but decreasing that of tumor cells by targeting glycolysis. These mechanisms are discussed in the framework of animal and human studies, taking into account the commonalities and differences between CR and KDs. We conclude that CR and KDs may act synergistically with radiation therapy for the treatment of cancer patients and provide some guidelines for implementing these dietary interventions into clinical practice.
Literature
1.
go back to reference Meijer, T. W. H., Kaanders, J. H. A. M., Span, P. N., & Bussink, J. (2012). Targeting hypoxia, HIF-1, and tumor glucose metabolism to improve radiotherapy efficacy. Clinical Cancer Research, 18, 5585–5594.PubMed Meijer, T. W. H., Kaanders, J. H. A. M., Span, P. N., & Bussink, J. (2012). Targeting hypoxia, HIF-1, and tumor glucose metabolism to improve radiotherapy efficacy. Clinical Cancer Research, 18, 5585–5594.PubMed
2.
go back to reference Hirschhaeuser, F., Sattler, U. G. A., & Mueller-Klieser, W. (2011). Lactate: a metabolic key player in cancer. Cancer Research, 71, 6921–6925.PubMed Hirschhaeuser, F., Sattler, U. G. A., & Mueller-Klieser, W. (2011). Lactate: a metabolic key player in cancer. Cancer Research, 71, 6921–6925.PubMed
3.
go back to reference Pitroda, S. P., Wakim, B. T., Sood, R. F., Beveridge, M. G., Beckett, M. A., Macdermed, D. M., et al. (2009). STAT1-dependent expression of energy metabolic pathways links tumour growth and radioresistance to the Warburg effect. BMC Medicine, 7, 68.PubMedCentralPubMed Pitroda, S. P., Wakim, B. T., Sood, R. F., Beveridge, M. G., Beckett, M. A., Macdermed, D. M., et al. (2009). STAT1-dependent expression of energy metabolic pathways links tumour growth and radioresistance to the Warburg effect. BMC Medicine, 7, 68.PubMedCentralPubMed
4.
go back to reference Warburg, O. (1925). Über den Stoffwechsel der Carcinomzelle. Klinische Wochenschrift, 4, 534–536. Warburg, O. (1925). Über den Stoffwechsel der Carcinomzelle. Klinische Wochenschrift, 4, 534–536.
5.
go back to reference Warburg, O., Wind, F., Negelein, E. (1926). Über den Stoffwechsel der Tumoren im Körper. Klinische Wochenschrift, 5, 828–832. Warburg, O., Wind, F., Negelein, E. (1926). Über den Stoffwechsel der Tumoren im Körper. Klinische Wochenschrift, 5, 828–832.
6.
go back to reference Yuneva, M. (2008). Finding an “Achilles’ heel” of cancer: the role of glucose and glutamine metabolism in the survival of transformed cells. Cell Cycle, 7, 2083–2089.PubMed Yuneva, M. (2008). Finding an “Achilles’ heel” of cancer: the role of glucose and glutamine metabolism in the survival of transformed cells. Cell Cycle, 7, 2083–2089.PubMed
7.
go back to reference Choi, N. C., Fischman, A. J., Niemierko, A., Ryu, J. S., Lynch, T., Wain, J., et al. (2002). Dose–response relationship between probability of pathologic tumor control and glucose metabolic rate measured with FDG PET after preoperative chemoradiotherapy in locally advanced non-small-cell lung cancer. International Journal of Radiation Oncology, Biology, and Physics, 54, 1024–1035. Choi, N. C., Fischman, A. J., Niemierko, A., Ryu, J. S., Lynch, T., Wain, J., et al. (2002). Dose–response relationship between probability of pathologic tumor control and glucose metabolic rate measured with FDG PET after preoperative chemoradiotherapy in locally advanced non-small-cell lung cancer. International Journal of Radiation Oncology, Biology, and Physics, 54, 1024–1035.
8.
go back to reference Kunkel, M., Reichert, T. E., Benz, P., Lehr, H.-A., Jeong, J.-H., Wieand, S., et al. (2003). Overexpression of Glut-1 and increased glucose metabolism in tumors are associated with a poor prognosis in patients with oral squamous cell carcinoma. Cancer, 97, 1015–1024.PubMed Kunkel, M., Reichert, T. E., Benz, P., Lehr, H.-A., Jeong, J.-H., Wieand, S., et al. (2003). Overexpression of Glut-1 and increased glucose metabolism in tumors are associated with a poor prognosis in patients with oral squamous cell carcinoma. Cancer, 97, 1015–1024.PubMed
9.
go back to reference Kubicek, G. J., Champ, C., Fogh, S., Wang, F., Reddy, E., Intenzo, C., et al. (2010). FDG-PET staging and importance of lymph node SUV in head and neck cancer. Head & Neck Oncology, 2, 19. Kubicek, G. J., Champ, C., Fogh, S., Wang, F., Reddy, E., Intenzo, C., et al. (2010). FDG-PET staging and importance of lymph node SUV in head and neck cancer. Head & Neck Oncology, 2, 19.
10.
go back to reference Bentzen, S. M., & Gregoire, V. (2011). Molecular imaging-based dose painting: a novel paradigm for radiation therapy prescription. Seminars in Radiation Oncology, 21, 101–110.PubMedCentralPubMed Bentzen, S. M., & Gregoire, V. (2011). Molecular imaging-based dose painting: a novel paradigm for radiation therapy prescription. Seminars in Radiation Oncology, 21, 101–110.PubMedCentralPubMed
11.
go back to reference Crabtree, H. G., & Cramer, W. (1933). The action of radium on cancer cells. II—some factors determining the susceptibility of cancer cells to radium. Proceedings of the Royal Society of London Ser B, Contain Pap a Biol Character, 113, 238–250. Crabtree, H. G., & Cramer, W. (1933). The action of radium on cancer cells. II—some factors determining the susceptibility of cancer cells to radium. Proceedings of the Royal Society of London Ser B, Contain Pap a Biol Character, 113, 238–250.
13.
go back to reference Djiogue, S., Kamdje, A. H. N., Vecchio, L., Kipanyula, M. J., Farahna, M., Aldebasi, Y., et al. (2013). Insulin resistance and cancer: the role of insulin and IGFs. Endocrine-Related Cancer, 20, R1–R17.PubMed Djiogue, S., Kamdje, A. H. N., Vecchio, L., Kipanyula, M. J., Farahna, M., Aldebasi, Y., et al. (2013). Insulin resistance and cancer: the role of insulin and IGFs. Endocrine-Related Cancer, 20, R1–R17.PubMed
14.
go back to reference Dwarakanath, B. S., Singh, D., Banerji, A. K., Sarin, R., Venkataramana, N. K., Jalali, R., et al. (2009). Clinical studies for improving radiotherapy with 2-deoxy-d-glucose: present status and future prospects. Journal of Cancer Research Theraphy, 5, 21–26. Dwarakanath, B. S., Singh, D., Banerji, A. K., Sarin, R., Venkataramana, N. K., Jalali, R., et al. (2009). Clinical studies for improving radiotherapy with 2-deoxy-d-glucose: present status and future prospects. Journal of Cancer Research Theraphy, 5, 21–26.
15.
go back to reference El Mjiyad, N., Caro-Maldonado, A., Ramirez-Peinado, S., & Muñoz-Pinedo, C. (2011). Sugar-free approaches to cancer cell killing. Oncogene, 30, 253–264.PubMed El Mjiyad, N., Caro-Maldonado, A., Ramirez-Peinado, S., & Muñoz-Pinedo, C. (2011). Sugar-free approaches to cancer cell killing. Oncogene, 30, 253–264.PubMed
16.
go back to reference Zhao, Y., Butler, E. B., & Tan, M. (2013). Targeting cellular metabolism to improve cancer therapeutics. Cell Death & Disease, 4, e532. Zhao, Y., Butler, E. B., & Tan, M. (2013). Targeting cellular metabolism to improve cancer therapeutics. Cell Death & Disease, 4, e532.
17.
go back to reference Seyfried, T. N., Kiebish, M., Mukherjee, P., & Marsh, J. (2008). Targeting energy metabolism in brain cancer with calorically restricted ketogenic diets. Epilepsia, 49(Suppl 8), 114–116.PubMed Seyfried, T. N., Kiebish, M., Mukherjee, P., & Marsh, J. (2008). Targeting energy metabolism in brain cancer with calorically restricted ketogenic diets. Epilepsia, 49(Suppl 8), 114–116.PubMed
19.
go back to reference Champ, C. E., Baserga, R., Mishra, M. V., Jin, L., Sotgia, F., Lisanti, M. P., et al. (2013). Nutrient restriction and radiation therapy for cancer treatment: when less is more. The Oncologist, 18, 97–103.PubMedCentralPubMed Champ, C. E., Baserga, R., Mishra, M. V., Jin, L., Sotgia, F., Lisanti, M. P., et al. (2013). Nutrient restriction and radiation therapy for cancer treatment: when less is more. The Oncologist, 18, 97–103.PubMedCentralPubMed
20.
go back to reference Fontana, L., Partridge, L., & Longo, V. D. (2013). Extending healthy lifespan—from yeast to humans. Science, 328, 321–326. Fontana, L., Partridge, L., & Longo, V. D. (2013). Extending healthy lifespan—from yeast to humans. Science, 328, 321–326.
21.
go back to reference Saleh, A. D., Simone, B. A., Savage, J., Sano, Y., Jin, L., Champ, C., et al. (2013). Caloric restriction augments radiation efficacy in breast cancer. Cell Cycle, 12, 1955–1963.PubMedCentralPubMed Saleh, A. D., Simone, B. A., Savage, J., Sano, Y., Jin, L., Champ, C., et al. (2013). Caloric restriction augments radiation efficacy in breast cancer. Cell Cycle, 12, 1955–1963.PubMedCentralPubMed
22.
go back to reference Klement, R. J., & Kämmerer, U. (2011). Is there a role for carbohydrate restriction in the treatment and prevention of cancer? Nutrition and Metabolism, 8, 75.PubMedCentralPubMed Klement, R. J., & Kämmerer, U. (2011). Is there a role for carbohydrate restriction in the treatment and prevention of cancer? Nutrition and Metabolism, 8, 75.PubMedCentralPubMed
23.
go back to reference Mahoney, L. B., Denny, C. A., & Seyfried, T. N. (2006). Calorie restriction in C57BL/6J mice mimics therapeutic fasting in humans. Lipids in Health and Disease, 5, 13.PubMedCentralPubMed Mahoney, L. B., Denny, C. A., & Seyfried, T. N. (2006). Calorie restriction in C57BL/6J mice mimics therapeutic fasting in humans. Lipids in Health and Disease, 5, 13.PubMedCentralPubMed
24.
go back to reference Smith, W. J., Underwood, L. E., & Clemmons, D. R. (1995). Effects of caloric or protein restriction on insulin-like growth factor-1 (IGF-1) and IGF-binding proteins in children and adults. Journal of Clinical Endocrinology and Metabolism, 80, 443–449.PubMed Smith, W. J., Underwood, L. E., & Clemmons, D. R. (1995). Effects of caloric or protein restriction on insulin-like growth factor-1 (IGF-1) and IGF-binding proteins in children and adults. Journal of Clinical Endocrinology and Metabolism, 80, 443–449.PubMed
25.
go back to reference Fontana, L., Weiss, E. P., Villareal, D. T., Klein, S., & Holloszy, O. (2009). Long-term effects of calorie or protein restriction on serum IGF-1 and IGFBP-3 concentrations in humans. Aging Cell, 7, 681–687. Fontana, L., Weiss, E. P., Villareal, D. T., Klein, S., & Holloszy, O. (2009). Long-term effects of calorie or protein restriction on serum IGF-1 and IGFBP-3 concentrations in humans. Aging Cell, 7, 681–687.
26.
go back to reference Fraser, D. A., Thoen, J., Bondhus, S., Haugen, M., Reseland, J. E., Djoseland, O., et al. (2000). Reduction in serum leptin and IGF-1 but preserved T-lymphocyte numbers and activation after a ketogenic diet in rheumatoid arthritis patients. Clinical and Experimental Rheumatology, 18, 209–214.PubMed Fraser, D. A., Thoen, J., Bondhus, S., Haugen, M., Reseland, J. E., Djoseland, O., et al. (2000). Reduction in serum leptin and IGF-1 but preserved T-lymphocyte numbers and activation after a ketogenic diet in rheumatoid arthritis patients. Clinical and Experimental Rheumatology, 18, 209–214.PubMed
27.
go back to reference Volek, J. S., Sharman, M. J., Love, D. M., Avery, N. G., Gómez, A. L., Scheett, T. P., et al. (2002). Body composition and hormonal responses to a carbohydrate-restricted diet. Metabolism, 51, 864–870.PubMed Volek, J. S., Sharman, M. J., Love, D. M., Avery, N. G., Gómez, A. L., Scheett, T. P., et al. (2002). Body composition and hormonal responses to a carbohydrate-restricted diet. Metabolism, 51, 864–870.PubMed
28.
go back to reference Klein, S., & Wolfe, R. R. (1992). Carbohydrate restriction regulates the adaptive response to fasting. American Journal of Physiology, 262, E631–E636.PubMed Klein, S., & Wolfe, R. R. (1992). Carbohydrate restriction regulates the adaptive response to fasting. American Journal of Physiology, 262, E631–E636.PubMed
29.
go back to reference Wilder, R. M. (1921). The effect of ketonemia on the course of epilepsy. Mayo Clinic Bulletin, 2, 307. Wilder, R. M. (1921). The effect of ketonemia on the course of epilepsy. Mayo Clinic Bulletin, 2, 307.
30.
go back to reference Westman, E. C., Mavropoulos, J., Yancy, W. S., & Volek, J. S. (2003). A review of low-carbohydrate ketogenic diets. Current Atherosclerosis Reports, 5, 476–483.PubMed Westman, E. C., Mavropoulos, J., Yancy, W. S., & Volek, J. S. (2003). A review of low-carbohydrate ketogenic diets. Current Atherosclerosis Reports, 5, 476–483.PubMed
32.
go back to reference Cullingford, T. E. (2004). The ketogenic diet; fatty acids, fatty acid-activated receptors and neurological disorders. Prostaglandins, Leukotrienes and Essential Fatty Acids, 70, 253–264. Cullingford, T. E. (2004). The ketogenic diet; fatty acids, fatty acid-activated receptors and neurological disorders. Prostaglandins, Leukotrienes and Essential Fatty Acids, 70, 253–264.
33.
go back to reference Rajaram, S., Baylink, D. J., & Mohan, S. (1997). Insulin-like growth factor-binding proteins in serum and other biological fluids: regulation and functions. Endocrine Reviews, 18, 801–831.PubMed Rajaram, S., Baylink, D. J., & Mohan, S. (1997). Insulin-like growth factor-binding proteins in serum and other biological fluids: regulation and functions. Endocrine Reviews, 18, 801–831.PubMed
34.
go back to reference Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144, 646–674.PubMed Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144, 646–674.PubMed
35.
go back to reference Sengupta, S., Peterson, T. R., Laplante, M., Oh, S., & Sabatini, D. M. (2010). mTORC1 controls fasting-induced ketogenesis and its modulation by aging. Nature, 468, 1100–1104.PubMed Sengupta, S., Peterson, T. R., Laplante, M., Oh, S., & Sabatini, D. M. (2010). mTORC1 controls fasting-induced ketogenesis and its modulation by aging. Nature, 468, 1100–1104.PubMed
36.
go back to reference Cantó, C., Gerhart-hines, Z., Feige, J. N., Lagouge, M., Milne, J. C., Elliott, P. J., et al. (2009). AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature, 458, 1056–1060.PubMedCentralPubMed Cantó, C., Gerhart-hines, Z., Feige, J. N., Lagouge, M., Milne, J. C., Elliott, P. J., et al. (2009). AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature, 458, 1056–1060.PubMedCentralPubMed
37.
go back to reference Kitada, M., Kume, S., Takeda-Watanabe, A., Tsuda, S., Kanasaki, K., & Koya, D. (1830). Calorie restriction in overweight males ameliorates obesity-related metabolic alterations and cellular adaptations through anti-aging effects, possibly including AMPK and SIRT1 activation. Biochimica et Biophysica Acta, 2013, 4820–4827. Kitada, M., Kume, S., Takeda-Watanabe, A., Tsuda, S., Kanasaki, K., & Koya, D. (1830). Calorie restriction in overweight males ameliorates obesity-related metabolic alterations and cellular adaptations through anti-aging effects, possibly including AMPK and SIRT1 activation. Biochimica et Biophysica Acta, 2013, 4820–4827.
38.
go back to reference Draznin, B., Wang, C., Adochio, R., Leitner, J. W., & Cornier, M.-A. (2012). Effect of dietary macronutrient composition on AMPK and SIRT1 expression and activity in human skeletal muscle. Hormone and Metabolic Research, 44, 650–655.PubMed Draznin, B., Wang, C., Adochio, R., Leitner, J. W., & Cornier, M.-A. (2012). Effect of dietary macronutrient composition on AMPK and SIRT1 expression and activity in human skeletal muscle. Hormone and Metabolic Research, 44, 650–655.PubMed
39.
go back to reference Bergouignan, A., Gozansky, W. S., Barry, D. W., Leitner, W., MacLean, P. S., Hill, J. O., et al. (2012). Increasing dietary fat elicits similar changes in fat oxidation and markers of muscle oxidative capacity in lean and obese humans. PLoS ONE, 7, e30164. Bergouignan, A., Gozansky, W. S., Barry, D. W., Leitner, W., MacLean, P. S., Hill, J. O., et al. (2012). Increasing dietary fat elicits similar changes in fat oxidation and markers of muscle oxidative capacity in lean and obese humans. PLoS ONE, 7, e30164.
40.
go back to reference Hardie, D. G. (2011). Sensing of energy and nutrients by AMP-activated protein kinase. American Journal of Clinical Nutrition, 93(suppl), 891S–896S.PubMed Hardie, D. G. (2011). Sensing of energy and nutrients by AMP-activated protein kinase. American Journal of Clinical Nutrition, 93(suppl), 891S–896S.PubMed
41.
go back to reference McDaniel, S. S., Rensing, N. R., Thio, L. L., Yamada, K. A., & Wong, M. (2011). The ketogenic diet inhibits the mammalian target of rapamycin (mTOR) pathway. Epilepsia, 52, e7–e11.PubMedCentralPubMed McDaniel, S. S., Rensing, N. R., Thio, L. L., Yamada, K. A., & Wong, M. (2011). The ketogenic diet inhibits the mammalian target of rapamycin (mTOR) pathway. Epilepsia, 52, e7–e11.PubMedCentralPubMed
42.
go back to reference Moore, T., Beltran, L., Carbajal, S., Strom, S., Traag, J., Hursting, S. D., et al. (2008). Dietary energy balance modulates signaling through the Akt/mammalian target of rapamycin pathways in multiple epithelial tissues. Cancer Prevention Research, 1, 65–76.PubMed Moore, T., Beltran, L., Carbajal, S., Strom, S., Traag, J., Hursting, S. D., et al. (2008). Dietary energy balance modulates signaling through the Akt/mammalian target of rapamycin pathways in multiple epithelial tissues. Cancer Prevention Research, 1, 65–76.PubMed
43.
go back to reference Steel, G. G., McMillan, T. J., & Peacock, J. H. (1989). The 5Rs of radiobiology. International Journal of Radiation Biology, 56, 1045–1048.PubMed Steel, G. G., McMillan, T. J., & Peacock, J. H. (1989). The 5Rs of radiobiology. International Journal of Radiation Biology, 56, 1045–1048.PubMed
44.
go back to reference Safdie, F., Brandhorst, S., Wei, M., Wang, W., Lee, C., Hwang, S., et al. (2012). Fasting enhances the response of glioma to chemo- and radiotherapy. PLoS ONE, 7, e44603.PubMedCentralPubMed Safdie, F., Brandhorst, S., Wei, M., Wang, W., Lee, C., Hwang, S., et al. (2012). Fasting enhances the response of glioma to chemo- and radiotherapy. PLoS ONE, 7, e44603.PubMedCentralPubMed
45.
go back to reference Abdelwahab, M. G., Fenton, K. E., Preul, M. C., Rho, J. M., Lynch, A., Stafford, P., et al. (2012). The ketogenic diet is an effective adjuvant to radiation therapy for the treatment of malignant glioma. PLoS ONE, 7, e36197.PubMedCentralPubMed Abdelwahab, M. G., Fenton, K. E., Preul, M. C., Rho, J. M., Lynch, A., Stafford, P., et al. (2012). The ketogenic diet is an effective adjuvant to radiation therapy for the treatment of malignant glioma. PLoS ONE, 7, e36197.PubMedCentralPubMed
46.
go back to reference Allen, B. G., Bhatia, S. K., Buatti, J. M., Cancer, C., Published, R., & June, O. (2013). Ketogenic diets enhance oxidative stress and radio-chemo-therapy responses in lung cancer xenografts. Clinical Cancer Research, 19, 3905–3913.PubMed Allen, B. G., Bhatia, S. K., Buatti, J. M., Cancer, C., Published, R., & June, O. (2013). Ketogenic diets enhance oxidative stress and radio-chemo-therapy responses in lung cancer xenografts. Clinical Cancer Research, 19, 3905–3913.PubMed
47.
go back to reference Raffaghello, L., Lee, C., Safdie, F. M., Wei, M., Madia, F., Bianchi, G., et al. (2008). Starvation-dependent differential stress resistance protects normal but not cancer cells against high-dose chemotherapy. Proceedings of the National Academy of Sciences, 105, 8215–8220. Raffaghello, L., Lee, C., Safdie, F. M., Wei, M., Madia, F., Bianchi, G., et al. (2008). Starvation-dependent differential stress resistance protects normal but not cancer cells against high-dose chemotherapy. Proceedings of the National Academy of Sciences, 105, 8215–8220.
48.
go back to reference Safdie, F. M., Dorff, T., Quinn, D., Fontana, L., Wei, M., Lee, C., et al. (2009). Fasting and cancer treatment in humans: a case series report. Aging (Albany NY), 1, 988–1007. Safdie, F. M., Dorff, T., Quinn, D., Fontana, L., Wei, M., Lee, C., et al. (2009). Fasting and cancer treatment in humans: a case series report. Aging (Albany NY), 1, 988–1007.
49.
go back to reference Raffaghello, L., Safdie, F., Bianchi, G., Dorff, T., Fontana, L., & Longo, V. D. (2010). Fasting and differential chemotherapy protection in patients. Cell Cycle, 9, 4474–4476.PubMedCentralPubMed Raffaghello, L., Safdie, F., Bianchi, G., Dorff, T., Fontana, L., & Longo, V. D. (2010). Fasting and differential chemotherapy protection in patients. Cell Cycle, 9, 4474–4476.PubMedCentralPubMed
50.
go back to reference Lee, C., Safdie, F. M., Raffaghello, L., Wei, M., Madia, F., Parrella, E., et al. (2010). Reduced levels of IGF-I mediate differential protection of normal and cancer cells in response to fasting and improve chemotherapeutic index. Cancer Research, 70, 1564–1572. Lee, C., Safdie, F. M., Raffaghello, L., Wei, M., Madia, F., Parrella, E., et al. (2010). Reduced levels of IGF-I mediate differential protection of normal and cancer cells in response to fasting and improve chemotherapeutic index. Cancer Research, 70, 1564–1572.
51.
go back to reference Lee, C, Raffaghello, L, Brandhorst, S, Safdie, FM, Bianchi, G, Martin-Montalvo, A, et al. (2012) Fasting cycles retard growth of tumors and sensitize a range of cancer cell types to chemotherapy. Science Translational Medicine, 4:124ra27. Lee, C, Raffaghello, L, Brandhorst, S, Safdie, FM, Bianchi, G, Martin-Montalvo, A, et al. (2012) Fasting cycles retard growth of tumors and sensitize a range of cancer cell types to chemotherapy. Science Translational Medicine, 4:124ra27.
52.
go back to reference Heydari, A. R., Unnikrishnan, A., Lucente, L. V., & Richardson, A. (2007). Caloric restriction and genomic stability. Nucleic Acids Research, 35, 7485–7496.PubMedCentralPubMed Heydari, A. R., Unnikrishnan, A., Lucente, L. V., & Richardson, A. (2007). Caloric restriction and genomic stability. Nucleic Acids Research, 35, 7485–7496.PubMedCentralPubMed
53.
go back to reference Frankenberg-Schwager, M., Frankenberg, D., & Harbich, R. (1985). Potentially lethal damage, sublethal damage and DNA double strand breaks. Radiation Protection Dosimetry, 13, 171–174. Frankenberg-Schwager, M., Frankenberg, D., & Harbich, R. (1985). Potentially lethal damage, sublethal damage and DNA double strand breaks. Radiation Protection Dosimetry, 13, 171–174.
54.
go back to reference Olive, P. (1998). The role of DNA single- and double-strand breaks in cell killing by ionizing radiation. Radiation Research, 150, S42–S51.PubMed Olive, P. (1998). The role of DNA single- and double-strand breaks in cell killing by ionizing radiation. Radiation Research, 150, S42–S51.PubMed
55.
go back to reference Lee, J.-E., Heo, J.-I., Park, S.-H., Kim, J.-H., Kho, Y.-J., Kang, H.-J., et al. (2011). Calorie restriction (CR) reduces age-dependent decline of non-homologous end joining (NHEJ) activity in rat tissues. Experimental Gerontology, 46, 891–896.PubMed Lee, J.-E., Heo, J.-I., Park, S.-H., Kim, J.-H., Kho, Y.-J., Kang, H.-J., et al. (2011). Calorie restriction (CR) reduces age-dependent decline of non-homologous end joining (NHEJ) activity in rat tissues. Experimental Gerontology, 46, 891–896.PubMed
56.
go back to reference Um JH, Kim SJ, Kim DW, Ha MY, Jang JH, Kim DW, et al. Tissue-specific changes of DNA repair protein Ku and mtHSP70 in aging rats and their retardation by caloric restriction. Mechanisms of Aging and Development, 124, 967–975. Um JH, Kim SJ, Kim DW, Ha MY, Jang JH, Kim DW, et al. Tissue-specific changes of DNA repair protein Ku and mtHSP70 in aging rats and their retardation by caloric restriction. Mechanisms of Aging and Development, 124, 967–975.
57.
go back to reference Yamaza, H., Komatsu, T., Wakita, S., Kijogi, C., Park, S., Hayashi, H., et al. (2010). FoxO1 is involved in the antineoplastic effect of calorie restriction. Aging Cell, 9, 372–382.PubMed Yamaza, H., Komatsu, T., Wakita, S., Kijogi, C., Park, S., Hayashi, H., et al. (2010). FoxO1 is involved in the antineoplastic effect of calorie restriction. Aging Cell, 9, 372–382.PubMed
58.
go back to reference Jeong, J., Juhn, K., Lee, H., Kim, S., Min, B., Lee, K., et al. (2007). SIRT1 promotes DNA repair activity and deacetylation of Ku70. Experimental and Molecular Medicine, 39, 8–13.PubMed Jeong, J., Juhn, K., Lee, H., Kim, S., Min, B., Lee, K., et al. (2007). SIRT1 promotes DNA repair activity and deacetylation of Ku70. Experimental and Molecular Medicine, 39, 8–13.PubMed
59.
go back to reference Kalaany, N. Y., & Sabatini, D. M. (2009). Tumours with PI3K activation are resistant to dietary restriction. Nature, 458, 725–731.PubMedCentralPubMed Kalaany, N. Y., & Sabatini, D. M. (2009). Tumours with PI3K activation are resistant to dietary restriction. Nature, 458, 725–731.PubMedCentralPubMed
60.
go back to reference Chen, H., Ma, Z., Vanderwaal, R. P., Feng, Z., Gonzalez-Suarez, I., Wang, S., et al. (2011). The mTOR inhibitor rapamycin suppresses DNA double-strand break repair. Radiation Research, 175, 214–224.PubMed Chen, H., Ma, Z., Vanderwaal, R. P., Feng, Z., Gonzalez-Suarez, I., Wang, S., et al. (2011). The mTOR inhibitor rapamycin suppresses DNA double-strand break repair. Radiation Research, 175, 214–224.PubMed
61.
go back to reference Jiang, W., Zhu, Z., & Thompson, H. J. (2008). Dietary energy restriction modulates the activity of AMP-activated protein kinase, Akt, and mammalian target of rapamycin in mammary carcinomas, mammary gland, and liver. Cancer Research, 68, 5492–5499.PubMedCentralPubMed Jiang, W., Zhu, Z., & Thompson, H. J. (2008). Dietary energy restriction modulates the activity of AMP-activated protein kinase, Akt, and mammalian target of rapamycin in mammary carcinomas, mammary gland, and liver. Cancer Research, 68, 5492–5499.PubMedCentralPubMed
62.
go back to reference Song, C. W., Lee, H., Dings, R. P. M., Williams, B., Powers, J., Santos, T. D., et al. (2012). Metformin kills and radiosensitizes cancer cells and preferentially kills cancer stem cells. Scientific Reports, 2, 362. Song, C. W., Lee, H., Dings, R. P. M., Williams, B., Powers, J., Santos, T. D., et al. (2012). Metformin kills and radiosensitizes cancer cells and preferentially kills cancer stem cells. Scientific Reports, 2, 362.
63.
go back to reference Chi, A., Tome, W. A., Fowler, J., Komaki, R., Nguyen, N. P., Mehta, M. P., et al. (2011). Stereotactic body radiation therapy in non-small-cell lung cancer. American Journal of Clinical Oncology, 34, 432–441.PubMed Chi, A., Tome, W. A., Fowler, J., Komaki, R., Nguyen, N. P., Mehta, M. P., et al. (2011). Stereotactic body radiation therapy in non-small-cell lung cancer. American Journal of Clinical Oncology, 34, 432–441.PubMed
64.
go back to reference Armpilia, C. I., Dale, R. G., & Jones, B. (2004). Determination of the optimum dose per fraction in fractionated radiotherapy when there is delayed onset of tumour repopulation during treatment. British Journal of Radiology, 77, 765–767.PubMed Armpilia, C. I., Dale, R. G., & Jones, B. (2004). Determination of the optimum dose per fraction in fractionated radiotherapy when there is delayed onset of tumour repopulation during treatment. British Journal of Radiology, 77, 765–767.PubMed
65.
go back to reference Fowler, J. F., Tomé, W. A., Fenwick, J. D., & Mehta, M. P. (2004). A challenge to traditional radiation oncology. International Journal of Radiation Oncology, Biology, and Physics, 60, 1241–1256. Fowler, J. F., Tomé, W. A., Fenwick, J. D., & Mehta, M. P. (2004). A challenge to traditional radiation oncology. International Journal of Radiation Oncology, Biology, and Physics, 60, 1241–1256.
66.
go back to reference Fine, E. J., Segal-Isaacson, C. J., Feinman, R. D., Herszkopf, S., Romano, M. C., Tomuta, N., et al. (2012). Targeting insulin inhibition as a metabolic therapy in advanced cancer: a pilot safety and feasibility dietary trial in 10 patients. Nutrition, 28, 1028–1035.PubMed Fine, E. J., Segal-Isaacson, C. J., Feinman, R. D., Herszkopf, S., Romano, M. C., Tomuta, N., et al. (2012). Targeting insulin inhibition as a metabolic therapy in advanced cancer: a pilot safety and feasibility dietary trial in 10 patients. Nutrition, 28, 1028–1035.PubMed
67.
go back to reference Nogueira, L. M., Lavigne, J. A., Chandramouli, G. V. R., Lui, H., Barrett, J. C., & Hurstling, S. D. (2012). Dose-dependent effects of calorie restriction on gene expression, metabolism, and tumor progression are partially mediated by insulin-like growth factor-1. Cancer Medicine, 1, 275–288.PubMedCentralPubMed Nogueira, L. M., Lavigne, J. A., Chandramouli, G. V. R., Lui, H., Barrett, J. C., & Hurstling, S. D. (2012). Dose-dependent effects of calorie restriction on gene expression, metabolism, and tumor progression are partially mediated by insulin-like growth factor-1. Cancer Medicine, 1, 275–288.PubMedCentralPubMed
68.
go back to reference Chu-Shore, C. J., & Thiele, E. A. (2010). Tumor growth in patients with tuberous sclerosis complex on the ketogenic diet. Brain and Development, 32, 318–322. Chu-Shore, C. J., & Thiele, E. A. (2010). Tumor growth in patients with tuberous sclerosis complex on the ketogenic diet. Brain and Development, 32, 318–322.
69.
go back to reference Rossi-Fanelli, F., Franchi, F., Mulieri, M., Cangiano, C., Cascino, A., Ceci, F., et al. (1991). Effect of energy substrate manipulation on tumor cell proliferation in parenterally fed cancer patients. Clinical Nutrition, 10, 228–232.PubMed Rossi-Fanelli, F., Franchi, F., Mulieri, M., Cangiano, C., Cascino, A., Ceci, F., et al. (1991). Effect of energy substrate manipulation on tumor cell proliferation in parenterally fed cancer patients. Clinical Nutrition, 10, 228–232.PubMed
70.
go back to reference Zuccoli, G., Marcello, N., Pisanello, A., Servadei, F., Vaccaro, S., Mukherjee, P., et al. (2010). Metabolic management of glioblastoma multiforme using standard therapy together with a restricted ketogenic diet: case report. Nutrition and Metabolism, 7, 33.PubMedCentralPubMed Zuccoli, G., Marcello, N., Pisanello, A., Servadei, F., Vaccaro, S., Mukherjee, P., et al. (2010). Metabolic management of glioblastoma multiforme using standard therapy together with a restricted ketogenic diet: case report. Nutrition and Metabolism, 7, 33.PubMedCentralPubMed
71.
go back to reference Demetrakopoulos, G., Linn, B., & Amos, H. (1978). Rapid loss of ATP by tumor cells deprived of glucose: contrast to normal cells. Biochemical and Biophysical Research Communications, 82, 787–794.PubMed Demetrakopoulos, G., Linn, B., & Amos, H. (1978). Rapid loss of ATP by tumor cells deprived of glucose: contrast to normal cells. Biochemical and Biophysical Research Communications, 82, 787–794.PubMed
72.
go back to reference Shim, H., Chun, Y. S., Lewis, B. C., & Dang, C. V. (1998). A unique glucose-dependent apoptotic pathway induced by c-Myc. Proceedings of the National Academy of Sciences, 95, 1511–1516. Shim, H., Chun, Y. S., Lewis, B. C., & Dang, C. V. (1998). A unique glucose-dependent apoptotic pathway induced by c-Myc. Proceedings of the National Academy of Sciences, 95, 1511–1516.
73.
go back to reference Aykin-Burns, N., Ahmad, I. M., Zhu, Y., Oberley, L. W., & Spitz, D. R. (2009). Increased levels of superoxide and H2O2 mediate the differential susceptibility of cancer cells versus normal cells to glucose deprivation. Biochemical Journal, 418, 29–37.PubMedCentralPubMed Aykin-Burns, N., Ahmad, I. M., Zhu, Y., Oberley, L. W., & Spitz, D. R. (2009). Increased levels of superoxide and H2O2 mediate the differential susceptibility of cancer cells versus normal cells to glucose deprivation. Biochemical Journal, 418, 29–37.PubMedCentralPubMed
74.
go back to reference Li, Y., Liu, L., & Tollefsbol, T. O. (2010). Glucose restriction can extend normal cell lifespan and impair precancerous cell growth through epigenetic control of hTERT and p16 expression. FASEB Journal, 24, 1442–1453.PubMedCentralPubMed Li, Y., Liu, L., & Tollefsbol, T. O. (2010). Glucose restriction can extend normal cell lifespan and impair precancerous cell growth through epigenetic control of hTERT and p16 expression. FASEB Journal, 24, 1442–1453.PubMedCentralPubMed
75.
go back to reference Priebe, A., Tan, L., Wahl, H., Kueck, A., He, G., Kwok, R., et al. (2011). Glucose deprivation activates AMPK and induces cell death through modulation of Akt in ovarian cancer cells. Gynecologic Oncology, 122, 389–395.PubMed Priebe, A., Tan, L., Wahl, H., Kueck, A., He, G., Kwok, R., et al. (2011). Glucose deprivation activates AMPK and induces cell death through modulation of Akt in ovarian cancer cells. Gynecologic Oncology, 122, 389–395.PubMed
76.
go back to reference Graham, N. A., Tahmasian, M., Kohli, B., Komisopoulou, E., Zhu, M., & Vivanco, I. (2012). Glucose deprivation activates a metabolic and signaling amplification loop leading to cell death. Molecular Systems Biology, 8, 589.PubMedCentralPubMed Graham, N. A., Tahmasian, M., Kohli, B., Komisopoulou, E., Zhu, M., & Vivanco, I. (2012). Glucose deprivation activates a metabolic and signaling amplification loop leading to cell death. Molecular Systems Biology, 8, 589.PubMedCentralPubMed
77.
go back to reference Fine, E. J., Miller, A., Quadros, E. V., Sequeira, J. M., & Feinman, R. D. (2009). Acetoacetate reduces growth and ATP concentration in cancer cell lines which over-express uncoupling protein 2. Cancer Cell International, 9, 14.PubMedCentralPubMed Fine, E. J., Miller, A., Quadros, E. V., Sequeira, J. M., & Feinman, R. D. (2009). Acetoacetate reduces growth and ATP concentration in cancer cell lines which over-express uncoupling protein 2. Cancer Cell International, 9, 14.PubMedCentralPubMed
78.
go back to reference Nebeling, L., Miraldi, F., Shurin, S., & Lerner, E. (1995). Effects of a ketogenic diet on tumor metabolism and nuritional status in pediatric oncology patients: two case reports. Journal of the American College of Nutrition, 14, 202–208.PubMed Nebeling, L., Miraldi, F., Shurin, S., & Lerner, E. (1995). Effects of a ketogenic diet on tumor metabolism and nuritional status in pediatric oncology patients: two case reports. Journal of the American College of Nutrition, 14, 202–208.PubMed
79.
go back to reference Liang, J., & Slingerland, J. M. (2003). Multiple roles of the PI3K/PKB (Akt) pathway in cell cycle progression. Cell Cycle, 2, 339–345.PubMed Liang, J., & Slingerland, J. M. (2003). Multiple roles of the PI3K/PKB (Akt) pathway in cell cycle progression. Cell Cycle, 2, 339–345.PubMed
80.
go back to reference Kandel, E. S., Skeen, J., Majewski, N., Di Cristofano, A., Pandolfi, P. P., Claudine, S., et al. (2002). Activation of Akt/protein kinase B overcomes a G2/M cell cycle checkpoint induced by DNA damage. Molecular and Cellular Biology, 22, 7831–7841.PubMedCentralPubMed Kandel, E. S., Skeen, J., Majewski, N., Di Cristofano, A., Pandolfi, P. P., Claudine, S., et al. (2002). Activation of Akt/protein kinase B overcomes a G2/M cell cycle checkpoint induced by DNA damage. Molecular and Cellular Biology, 22, 7831–7841.PubMedCentralPubMed
81.
go back to reference Liang, Y., Liu, J., & Feng, Z. (2013). The regulation of cellular metabolism by tumor suppressor p53. Cell & Bioscience, 3, 9. Liang, Y., Liu, J., & Feng, Z. (2013). The regulation of cellular metabolism by tumor suppressor p53. Cell & Bioscience, 3, 9.
82.
go back to reference Apontes, P., Leontieva, O. V., Demidenko, Z. N., Li, F., & Blagosklonny, M. V. (2011). Exploring long-term protection of normal human fibroblasts and epithelial cells from chemotherapy in cell culture. Oncotarget, 2, 222–233.PubMedCentralPubMed Apontes, P., Leontieva, O. V., Demidenko, Z. N., Li, F., & Blagosklonny, M. V. (2011). Exploring long-term protection of normal human fibroblasts and epithelial cells from chemotherapy in cell culture. Oncotarget, 2, 222–233.PubMedCentralPubMed
83.
go back to reference Li, Y., & Tollefsbol, T. O. (2011). p16 INK4a suppression by glucose restriction contributes to human cellular lifespan extension through SIRT1-mediated epigenetic and genetic mechanisms. PLoS ONE, 6, e17421.PubMedCentralPubMed Li, Y., & Tollefsbol, T. O. (2011). p16 INK4a suppression by glucose restriction contributes to human cellular lifespan extension through SIRT1-mediated epigenetic and genetic mechanisms. PLoS ONE, 6, e17421.PubMedCentralPubMed
84.
85.
go back to reference Harada, H., Itasaka, S., Kizaka-Kondoh, S., Shibuya, K., Morinibu, A., Shinomiya, K., et al. (2009). The Akt/mTOR pathway assures the synthesis of HIF-1α protein in a glucose- and reoxygenation-dependent manner in irradiated tumors. Journal of Biological Chemistry, 284, 5332–5342.PubMed Harada, H., Itasaka, S., Kizaka-Kondoh, S., Shibuya, K., Morinibu, A., Shinomiya, K., et al. (2009). The Akt/mTOR pathway assures the synthesis of HIF-1α protein in a glucose- and reoxygenation-dependent manner in irradiated tumors. Journal of Biological Chemistry, 284, 5332–5342.PubMed
86.
go back to reference Goel, S., Duda, D. G., Xu, L., Munn, L. L., Boucher, Y., Fukumura, D., et al. (2011). Normalization of the vasculature for treatment of cancer and other diseases. Physiological Reviews, 91, 1071–1121.PubMedCentralPubMed Goel, S., Duda, D. G., Xu, L., Munn, L. L., Boucher, Y., Fukumura, D., et al. (2011). Normalization of the vasculature for treatment of cancer and other diseases. Physiological Reviews, 91, 1071–1121.PubMedCentralPubMed
87.
go back to reference Mukherjee, P., Sotnikov, A. V., Mangian, H. J., Zhou, J., Visek, W. J., & Clinton, S. K. (1999). Energy intake and prostate tumor growth, angiogenesis, and vascular endothelial growth factor expression. Journal of the National Cancer Institute, 91, 512–523.PubMed Mukherjee, P., Sotnikov, A. V., Mangian, H. J., Zhou, J., Visek, W. J., & Clinton, S. K. (1999). Energy intake and prostate tumor growth, angiogenesis, and vascular endothelial growth factor expression. Journal of the National Cancer Institute, 91, 512–523.PubMed
88.
go back to reference Mukherjee, P., Abate, L. E., & Seyfried, T. N. (2004). Antiangiogenic and proapoptotic effects of dietary restriction on experimental mouse and human brain tumors antiangiogenic and proapoptotic effects of dietary restriction on experimental mouse and human brain tumors. Clinical Cancer Research, 10, 5622–5629.PubMed Mukherjee, P., Abate, L. E., & Seyfried, T. N. (2004). Antiangiogenic and proapoptotic effects of dietary restriction on experimental mouse and human brain tumors antiangiogenic and proapoptotic effects of dietary restriction on experimental mouse and human brain tumors. Clinical Cancer Research, 10, 5622–5629.PubMed
89.
go back to reference Urits, I., Mukherjee, P., Meidenbauer, J., & Seyfried, T. N. (2012). Dietary restriction promotes vessel maturation in a mouse astrocytoma. Journal of Oncology, 2012, 264039.PubMedCentralPubMed Urits, I., Mukherjee, P., Meidenbauer, J., & Seyfried, T. N. (2012). Dietary restriction promotes vessel maturation in a mouse astrocytoma. Journal of Oncology, 2012, 264039.PubMedCentralPubMed
90.
go back to reference Bennett, M., Feldmeier, J., Smee, R., & Milross, C. (2012). Hyperbaric oxygenation for tumour sensitisation to radiotherapy. Cochrane Database of Systematic Reviews, 4, CD005007.PubMed Bennett, M., Feldmeier, J., Smee, R., & Milross, C. (2012). Hyperbaric oxygenation for tumour sensitisation to radiotherapy. Cochrane Database of Systematic Reviews, 4, CD005007.PubMed
91.
go back to reference Poff, A. M., Ari, C., Seyfried, T. N., & Agostino, D. P. D. (2013). The ketogenic diet and hyperbaric oxygen therapy prolong survival in mice with systemic metastatic cancer. PLoS ONE, 8, e65522.PubMedCentralPubMed Poff, A. M., Ari, C., Seyfried, T. N., & Agostino, D. P. D. (2013). The ketogenic diet and hyperbaric oxygen therapy prolong survival in mice with systemic metastatic cancer. PLoS ONE, 8, e65522.PubMedCentralPubMed
92.
go back to reference Veech, R. L., Chance, B., Kashiwaya, Y., Lardy, H. A., & Cahill, G. F. (2001). Ketone bodies, potential therapeutic uses. IUBMB Life, 51, 241–247.PubMed Veech, R. L., Chance, B., Kashiwaya, Y., Lardy, H. A., & Cahill, G. F. (2001). Ketone bodies, potential therapeutic uses. IUBMB Life, 51, 241–247.PubMed
93.
go back to reference Veech, R. L. (2004). The therapeutic implications of ketone bodies: the effects of ketone bodies in pathological conditions: ketosis, ketogenic diet, redox states, insulin resistance, and mitochondrial metabolism. Prostaglandins, Leukotrienes and Essential Fatty Acids, 70, 309–319. Veech, R. L. (2004). The therapeutic implications of ketone bodies: the effects of ketone bodies in pathological conditions: ketosis, ketogenic diet, redox states, insulin resistance, and mitochondrial metabolism. Prostaglandins, Leukotrienes and Essential Fatty Acids, 70, 309–319.
94.
go back to reference Shimazu, T., Hirschey, M. D., Newman, J., He, W., Shirakawa, K., Le Moan, N., et al. (2013). Suppression of oxidative stress by β-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science, 339, 211–214.PubMedCentralPubMed Shimazu, T., Hirschey, M. D., Newman, J., He, W., Shirakawa, K., Le Moan, N., et al. (2013). Suppression of oxidative stress by β-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science, 339, 211–214.PubMedCentralPubMed
95.
go back to reference Tisdale, M. J., & Brennan, R. A. (1983). Loss of acetoacetate coenzyme A transferase activity in tumours of peripheral tissues. British Journal of Cancer, 47, 293–297.PubMedCentralPubMed Tisdale, M. J., & Brennan, R. A. (1983). Loss of acetoacetate coenzyme A transferase activity in tumours of peripheral tissues. British Journal of Cancer, 47, 293–297.PubMedCentralPubMed
96.
go back to reference Skinner, R., Trujillo, A., Ma, X., & Beierle, E. A. (2009). Ketone bodies inhibit the viability of human neuroblastoma cells. Journal of Pediatric Surgery, 44, 212–216.PubMed Skinner, R., Trujillo, A., Ma, X., & Beierle, E. A. (2009). Ketone bodies inhibit the viability of human neuroblastoma cells. Journal of Pediatric Surgery, 44, 212–216.PubMed
97.
go back to reference Maurer, G. D., Brucker, D. P., Bähr, O., Harter, P. N., Hattingen, E., Walenta, S., et al. (2011). Differential utilization of ketone bodies by neurons and glioma cell lines: a rationale for ketogenic diet as experimental glioma therapy. BMC Cancer, 11, 315.PubMedCentralPubMed Maurer, G. D., Brucker, D. P., Bähr, O., Harter, P. N., Hattingen, E., Walenta, S., et al. (2011). Differential utilization of ketone bodies by neurons and glioma cell lines: a rationale for ketogenic diet as experimental glioma therapy. BMC Cancer, 11, 315.PubMedCentralPubMed
98.
go back to reference Chang, H. T., Olson, L. K., & Schwartz, K. A. (2013). Ketolytic and glycolytic enzymatic expression profiles in malignant gliomas: implication for ketogenic diet therapy. Nutrition and Metabolism, 10, 47.PubMedCentralPubMed Chang, H. T., Olson, L. K., & Schwartz, K. A. (2013). Ketolytic and glycolytic enzymatic expression profiles in malignant gliomas: implication for ketogenic diet therapy. Nutrition and Metabolism, 10, 47.PubMedCentralPubMed
99.
go back to reference Sattler, U. G. A., Meyer, S. S., Quennet, V., Hoerner, C., Knoerzer, H., Fabian, C., et al. (2010). Glycolytic metabolism and tumour response to fractionated irradiation. Radiotherapy and Oncology, 94, 102–109.PubMed Sattler, U. G. A., Meyer, S. S., Quennet, V., Hoerner, C., Knoerzer, H., Fabian, C., et al. (2010). Glycolytic metabolism and tumour response to fractionated irradiation. Radiotherapy and Oncology, 94, 102–109.PubMed
100.
go back to reference Vlashi, E., Lagadec, C., Vergnes, L., Matsutani, T., Masui, K., & Poulou, M. (2011). Metabolic state of glioma stem cells and nontumorigenic cells. Proceedings of the National Academy of Sciences, 108, 16062–16067. Vlashi, E., Lagadec, C., Vergnes, L., Matsutani, T., Masui, K., & Poulou, M. (2011). Metabolic state of glioma stem cells and nontumorigenic cells. Proceedings of the National Academy of Sciences, 108, 16062–16067.
101.
go back to reference Stanley, K. E. (1980). Prognostic factors for survival in patients with inoperable lung cancer. Journal of the National Cancer Institute, 65, 25–32.PubMed Stanley, K. E. (1980). Prognostic factors for survival in patients with inoperable lung cancer. Journal of the National Cancer Institute, 65, 25–32.PubMed
102.
go back to reference Ligibel, J. A., & Goodwin, P. J. (2012). NEW and RENEW: building the case for weight loss in breast cancer. Journal of Clinical Oncology, 30, 2294–2296.PubMed Ligibel, J. A., & Goodwin, P. J. (2012). NEW and RENEW: building the case for weight loss in breast cancer. Journal of Clinical Oncology, 30, 2294–2296.PubMed
103.
go back to reference Champ, C. E., Volek, J. S., Siglin, J., Jin, L., & Simone, N. L. (2012). Weight gain, metabolic syndrome, and breast cancer recurrence: are dietary recommendations supported by the data? International Journal of Breast Cancer, 2012, 506868.PubMedCentralPubMed Champ, C. E., Volek, J. S., Siglin, J., Jin, L., & Simone, N. L. (2012). Weight gain, metabolic syndrome, and breast cancer recurrence: are dietary recommendations supported by the data? International Journal of Breast Cancer, 2012, 506868.PubMedCentralPubMed
104.
go back to reference Fontana, L., Partridge, L., & Longo, V. D. (2010). Extending healthy life span—from yeast to humans. Science, 328, 321–326.PubMedCentralPubMed Fontana, L., Partridge, L., & Longo, V. D. (2010). Extending healthy life span—from yeast to humans. Science, 328, 321–326.PubMedCentralPubMed
105.
go back to reference Reed, M. J., Penn, P. E., Li, Y., Birnbaum, R., Vernon, R. B., Johnson, T. S., et al. (1996). Enhanced cell proliferation and biosynthesis mediate improved wound repair in refed, caloric-restricted mice. Mechanisms of Ageing and Development, 89, 21–43.PubMed Reed, M. J., Penn, P. E., Li, Y., Birnbaum, R., Vernon, R. B., Johnson, T. S., et al. (1996). Enhanced cell proliferation and biosynthesis mediate improved wound repair in refed, caloric-restricted mice. Mechanisms of Ageing and Development, 89, 21–43.PubMed
106.
go back to reference Kalm, L. M., & Semba, R. D. (2005). They starved so that others be better fed: remembering Ancel Keys and the Minnesota Experiment. Journal of Nutrition, 135, 1347–1352.PubMed Kalm, L. M., & Semba, R. D. (2005). They starved so that others be better fed: remembering Ancel Keys and the Minnesota Experiment. Journal of Nutrition, 135, 1347–1352.PubMed
107.
go back to reference Simone, B. A., Champ, C. E., Rosenberg, A. L., Berger, A. C., Anne, R. P., Monti, D. A., et al. (2013). Selectively starving cancer cells through dietary manipulation: methods and clinical implications. Future Oncology, 9, 959–976.PubMed Simone, B. A., Champ, C. E., Rosenberg, A. L., Berger, A. C., Anne, R. P., Monti, D. A., et al. (2013). Selectively starving cancer cells through dietary manipulation: methods and clinical implications. Future Oncology, 9, 959–976.PubMed
108.
go back to reference Beck, S. A., & Tisdale, M. J. (1989). Nitrogen excretion in cancer cachexia and its modification by a high fat diet in mice. Cancer Research, 49, 3800–3804.PubMed Beck, S. A., & Tisdale, M. J. (1989). Nitrogen excretion in cancer cachexia and its modification by a high fat diet in mice. Cancer Research, 49, 3800–3804.PubMed
109.
go back to reference Barber, M. D., McMillan, D. C., Preston, T., Ross, J. A., & Fearon, K. C. (2000). Metabolic response to feeding in weight-losing pancreatic cancer patients and its modulation by a fish-oil-enriched nutritional supplement. Clinical Science, 98, 389–399.PubMed Barber, M. D., McMillan, D. C., Preston, T., Ross, J. A., & Fearon, K. C. (2000). Metabolic response to feeding in weight-losing pancreatic cancer patients and its modulation by a fish-oil-enriched nutritional supplement. Clinical Science, 98, 389–399.PubMed
110.
go back to reference Breitkreutz, R., Tesdal, K., Jentschura, D., Haas, O., Leweling, H., & Holm, E. (2005). Effects of a high-fat diet on body composition in cancer patients receiving chemotherapy: a randomized controlled study. Wiener Klinische Wochenschrift, 117, 685–692.PubMed Breitkreutz, R., Tesdal, K., Jentschura, D., Haas, O., Leweling, H., & Holm, E. (2005). Effects of a high-fat diet on body composition in cancer patients receiving chemotherapy: a randomized controlled study. Wiener Klinische Wochenschrift, 117, 685–692.PubMed
111.
go back to reference Klement, RJ, Frobel, T, Albers, T, Fikenzer, S, Prinzhausen, J (2013) A pilot case study on the impact of a self-prescribed ketogenic diet on biochemical parameters and running performance in healthy and physically active individuals. Nutrition and Medicine, 1(1). Klement, RJ, Frobel, T, Albers, T, Fikenzer, S, Prinzhausen, J (2013) A pilot case study on the impact of a self-prescribed ketogenic diet on biochemical parameters and running performance in healthy and physically active individuals. Nutrition and Medicine, 1(1).
112.
go back to reference Gupta, D., Lammersfeld, C. A., Burrows, J. L., Dahlk, S. L., Vashi, P. G., Grutsch, J. F., et al. (2004). Bioelectrical impedance phase angle in clinical practice: implications for prognosis in advanced colorectal cancer. American Journal of Clinical Nutrition, 80, 1634–1638.PubMed Gupta, D., Lammersfeld, C. A., Burrows, J. L., Dahlk, S. L., Vashi, P. G., Grutsch, J. F., et al. (2004). Bioelectrical impedance phase angle in clinical practice: implications for prognosis in advanced colorectal cancer. American Journal of Clinical Nutrition, 80, 1634–1638.PubMed
113.
go back to reference Gupta, D., Lammersfeld, C. A., Vashi, P. G., King, J., Dahlk, S. L., Grutsch, J. F., et al. (2008). Bioelectrical impedance phase angle as a prognostic indicator in breast cancer. BMC Cancer, 8, 249.PubMedCentralPubMed Gupta, D., Lammersfeld, C. A., Vashi, P. G., King, J., Dahlk, S. L., Grutsch, J. F., et al. (2008). Bioelectrical impedance phase angle as a prognostic indicator in breast cancer. BMC Cancer, 8, 249.PubMedCentralPubMed
114.
go back to reference Hite, A. H., Berkowitz, V. G., & Berkowitz, K. (2011). Low-carbohydrate diet review: shifting the paradigm. Nutrition in Clinical Practice, 26, 300–308.PubMed Hite, A. H., Berkowitz, V. G., & Berkowitz, K. (2011). Low-carbohydrate diet review: shifting the paradigm. Nutrition in Clinical Practice, 26, 300–308.PubMed
Metadata
Title
Calories, carbohydrates, and cancer therapy with radiation: exploiting the five R’s through dietary manipulation
Authors
Rainer J. Klement
Colin E. Champ
Publication date
01-03-2014
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 1/2014
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-014-9495-3

Other articles of this Issue 1/2014

Cancer and Metastasis Reviews 1/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine