Skip to main content
Top
Published in: Cancer and Metastasis Reviews 1-2/2013

01-06-2013

Animal models of leukemia: any closer to the real thing?

Authors: Guerry J. Cook, Timothy S. Pardee

Published in: Cancer and Metastasis Reviews | Issue 1-2/2013

Login to get access

Abstract

Animal models have been invaluable in the efforts to better understand and ultimately treat patients suffering from leukemia. While important insights have been gleaned from these models, limitations must be acknowledged. In this review, we will highlight the various animal models of leukemia and describe their contributions to the improved understanding and treatment of these cancers.
Literature
1.
go back to reference Siegel, R., Ward, E., Brawley, O., & Jemal, A. (2011). Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA: A Cancer Journal for Clinicians, 61, 212–236.CrossRef Siegel, R., Ward, E., Brawley, O., & Jemal, A. (2011). Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA: A Cancer Journal for Clinicians, 61, 212–236.CrossRef
2.
go back to reference Gilliland, D.G., Jordan, C.T., Felix, C.A. (2004). The molecular basis of leukemia. Hematology/the Education Program of the American Society of Hematology, 80–97. Gilliland, D.G., Jordan, C.T., Felix, C.A. (2004). The molecular basis of leukemia. Hematology/the Education Program of the American Society of Hematology, 80–97.
3.
go back to reference Licht, J.D., & Sternberg, D.W. (2005). The molecular pathology of acute myeloid leukemia. Hematology/the Education Program of the American Society of Hematology, 137–142. Licht, J.D., & Sternberg, D.W. (2005). The molecular pathology of acute myeloid leukemia. Hematology/the Education Program of the American Society of Hematology, 137–142.
4.
go back to reference Lowenberg, B. (2008). Acute myeloid leukemia: the challenge of capturing disease variety. Hematology / the Education Program of the American Society of Hematology, 2008, 1–11.CrossRef Lowenberg, B. (2008). Acute myeloid leukemia: the challenge of capturing disease variety. Hematology / the Education Program of the American Society of Hematology, 2008, 1–11.CrossRef
5.
go back to reference Dohner, H., Estey, E. H., Amadori, S., et al. (2010). Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood, 115, 453–474.PubMedCrossRef Dohner, H., Estey, E. H., Amadori, S., et al. (2010). Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood, 115, 453–474.PubMedCrossRef
6.
go back to reference Nervi, B., Ramirez, P., Rettig, M. P., et al. (2009). Chemosensitization of acute myeloid leukemia (AML) following mobilization by the CXCR4 antagonist AMD3100. Blood, 113, 6206–6214.PubMedCrossRef Nervi, B., Ramirez, P., Rettig, M. P., et al. (2009). Chemosensitization of acute myeloid leukemia (AML) following mobilization by the CXCR4 antagonist AMD3100. Blood, 113, 6206–6214.PubMedCrossRef
7.
go back to reference Jaiswal, S., Jamieson, C. H., Pang, W. W., et al. (2009). CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell, 138, 271–285.PubMedCrossRef Jaiswal, S., Jamieson, C. H., Pang, W. W., et al. (2009). CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell, 138, 271–285.PubMedCrossRef
8.
go back to reference Majeti, R., Chao, M. P., Alizadeh, A. A., et al. (2009). CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell, 138, 286–299.PubMedCrossRef Majeti, R., Chao, M. P., Alizadeh, A. A., et al. (2009). CD47 is an adverse prognostic factor and therapeutic antibody target on human acute myeloid leukemia stem cells. Cell, 138, 286–299.PubMedCrossRef
9.
go back to reference Colmone, A., Amorim, M., Pontier, A. L., Wang, S., Jablonski, E., & Sipkins, D. A. (2008). Leukemic cells create bone marrow niches that disrupt the behavior of normal hematopoietic progenitor cells. Science, 322, 1861–1865.PubMedCrossRef Colmone, A., Amorim, M., Pontier, A. L., Wang, S., Jablonski, E., & Sipkins, D. A. (2008). Leukemic cells create bone marrow niches that disrupt the behavior of normal hematopoietic progenitor cells. Science, 322, 1861–1865.PubMedCrossRef
10.
go back to reference Lapidot, T., Sirard, C., Vormoor, J., et al. (1994). A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature, 367, 645–648.PubMedCrossRef Lapidot, T., Sirard, C., Vormoor, J., et al. (1994). A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature, 367, 645–648.PubMedCrossRef
11.
go back to reference Jordan, C. T., Guzman, M. L., & Noble, M. (2006). Cancer stem cells. The New England Journal of Medicine, 355, 1253–1261.PubMedCrossRef Jordan, C. T., Guzman, M. L., & Noble, M. (2006). Cancer stem cells. The New England Journal of Medicine, 355, 1253–1261.PubMedCrossRef
12.
go back to reference Skipper, H. E., & Perry, S. (1970). Kinetics of normal and leukemic leukocyte populations and relevance to chemotherapy. Cancer Research, 30, 1883–1897.PubMed Skipper, H. E., & Perry, S. (1970). Kinetics of normal and leukemic leukocyte populations and relevance to chemotherapy. Cancer Research, 30, 1883–1897.PubMed
13.
go back to reference Law, L. W., Taormina, V., & Boyle, P. J. (1954). Response of acute lymphocytic leukemias to the purine antagonist 6-mercaptopurine. Annals of the New York Academy of Sciences, 60, 244–250.PubMedCrossRef Law, L. W., Taormina, V., & Boyle, P. J. (1954). Response of acute lymphocytic leukemias to the purine antagonist 6-mercaptopurine. Annals of the New York Academy of Sciences, 60, 244–250.PubMedCrossRef
14.
go back to reference McCormack, E., Bruserud, O., & Gjertsen, B. T. (2005). Animal models of acute myelogenous leukaemia—development, application and future perspectives. Leukemia, 19, 687–706.PubMedCrossRef McCormack, E., Bruserud, O., & Gjertsen, B. T. (2005). Animal models of acute myelogenous leukaemia—development, application and future perspectives. Leukemia, 19, 687–706.PubMedCrossRef
15.
go back to reference Skipper, H. E., Schabel, F. M., Jr., & Wilcox, W. S. (1967). Experimental evaluation of potential anticancer agents. XXI. Scheduling of arabinosylcytosine to take advantage of its S-phase specificity against leukemia cells. Cancer Chemotherapy Reports, 51, 125–165. Skipper, H. E., Schabel, F. M., Jr., & Wilcox, W. S. (1967). Experimental evaluation of potential anticancer agents. XXI. Scheduling of arabinosylcytosine to take advantage of its S-phase specificity against leukemia cells. Cancer Chemotherapy Reports, 51, 125–165.
16.
go back to reference Friend, C. (1957). Cell-free transmission in adult Swiss mice of a disease having the character of a leukemia. The Journal of Experimental Medicine, 105, 307–318.PubMedCrossRef Friend, C. (1957). Cell-free transmission in adult Swiss mice of a disease having the character of a leukemia. The Journal of Experimental Medicine, 105, 307–318.PubMedCrossRef
17.
go back to reference Linemeyer, D. L., Menke, J. G., Ruscetti, S. K., Evans, L. H., & Scolnick, E. M. (1982). Envelope gene sequences which encode the gp52 protein of spleen focus-forming virus are required for the induction of erythroid cell proliferation. Journal of Virology, 43, 223–233.PubMed Linemeyer, D. L., Menke, J. G., Ruscetti, S. K., Evans, L. H., & Scolnick, E. M. (1982). Envelope gene sequences which encode the gp52 protein of spleen focus-forming virus are required for the induction of erythroid cell proliferation. Journal of Virology, 43, 223–233.PubMed
18.
go back to reference Wolff, L., & Ruscetti, S. (1985). Malignant transformation of erythroid cells in vivo by introduction of a nonreplicating retrovirus vector. Science, 228, 1549–1552.PubMedCrossRef Wolff, L., & Ruscetti, S. (1985). Malignant transformation of erythroid cells in vivo by introduction of a nonreplicating retrovirus vector. Science, 228, 1549–1552.PubMedCrossRef
19.
go back to reference Back, J., Dierich, A., Bronn, C., Kastner, P., & Chan, S. (2004). PU.1 determines the self-renewal capacity of erythroid progenitor cells. Blood, 103, 3615–3623.PubMedCrossRef Back, J., Dierich, A., Bronn, C., Kastner, P., & Chan, S. (2004). PU.1 determines the self-renewal capacity of erythroid progenitor cells. Blood, 103, 3615–3623.PubMedCrossRef
20.
go back to reference Erkeland, S. J., Valkhof, M., Heijmans-Antonissen, C., et al. (2004). Large-scale identification of disease genes involved in acute myeloid leukemia. Journal of Virology, 78, 1971–1980.PubMedCrossRef Erkeland, S. J., Valkhof, M., Heijmans-Antonissen, C., et al. (2004). Large-scale identification of disease genes involved in acute myeloid leukemia. Journal of Virology, 78, 1971–1980.PubMedCrossRef
21.
go back to reference Caudell, D., Harper, D. P., Novak, R. L., et al. (2010). Retroviral insertional mutagenesis identifies Zeb2 activation as a novel leukemogenic collaborating event in CALM-AF10 transgenic mice. Blood, 115, 1194–1203.PubMedCrossRef Caudell, D., Harper, D. P., Novak, R. L., et al. (2010). Retroviral insertional mutagenesis identifies Zeb2 activation as a novel leukemogenic collaborating event in CALM-AF10 transgenic mice. Blood, 115, 1194–1203.PubMedCrossRef
22.
go back to reference Slape, C., Hartung, H., Lin, Y. W., Bies, J., Wolff, L., & Aplan, P. D. (2007). Retroviral insertional mutagenesis identifies genes that collaborate with NUP98-HOXD13 during leukemic transformation. Cancer Research, 67, 5148–5155.PubMedCrossRef Slape, C., Hartung, H., Lin, Y. W., Bies, J., Wolff, L., & Aplan, P. D. (2007). Retroviral insertional mutagenesis identifies genes that collaborate with NUP98-HOXD13 during leukemic transformation. Cancer Research, 67, 5148–5155.PubMedCrossRef
23.
go back to reference Skipper, H. E., Schabel, F. M., Jr., Trader, M. W., & Laster, W. R., Jr. (1969). Response to therapy of spontaneous, first passage, and long passage lines of AK leukemia. Cancer Chemotherapy Reports, 53, 345–366. Skipper, H. E., Schabel, F. M., Jr., Trader, M. W., & Laster, W. R., Jr. (1969). Response to therapy of spontaneous, first passage, and long passage lines of AK leukemia. Cancer Chemotherapy Reports, 53, 345–366.
24.
go back to reference Vassiliou, G. S., Cooper, J. L., Rad, R., et al. (2011). Mutant nucleophosmin and cooperating pathways drive leukemia initiation and progression in mice. Nature Genetics, 43, 470–475.PubMedCrossRef Vassiliou, G. S., Cooper, J. L., Rad, R., et al. (2011). Mutant nucleophosmin and cooperating pathways drive leukemia initiation and progression in mice. Nature Genetics, 43, 470–475.PubMedCrossRef
25.
go back to reference Collier, L. S., Adams, D. J., Hackett, C. S., et al. (2009). Whole-body sleeping beauty mutagenesis can cause penetrant leukemia/lymphoma and rare high-grade glioma without associated embryonic lethality. Cancer Research, 69, 8429–8437.PubMedCrossRef Collier, L. S., Adams, D. J., Hackett, C. S., et al. (2009). Whole-body sleeping beauty mutagenesis can cause penetrant leukemia/lymphoma and rare high-grade glioma without associated embryonic lethality. Cancer Research, 69, 8429–8437.PubMedCrossRef
26.
go back to reference Heyer, J., Kwong, L. N., Lowe, S. W., & Chin, L. (2010). Non-germline genetically engineered mouse models for translational cancer research. Nature Reviews. Cancer, 10, 470–480.PubMedCrossRef Heyer, J., Kwong, L. N., Lowe, S. W., & Chin, L. (2010). Non-germline genetically engineered mouse models for translational cancer research. Nature Reviews. Cancer, 10, 470–480.PubMedCrossRef
27.
go back to reference Early, E., Moore, M. A., Kakizuka, A., et al. (1996). Transgenic expression of PML/RARalpha impairs myelopoiesis. Proceedings of the National Academy of Sciences of the United States of America, 93, 7900–7904.PubMedCrossRef Early, E., Moore, M. A., Kakizuka, A., et al. (1996). Transgenic expression of PML/RARalpha impairs myelopoiesis. Proceedings of the National Academy of Sciences of the United States of America, 93, 7900–7904.PubMedCrossRef
28.
go back to reference Brown, D., Kogan, S., Lagasse, E., et al. (1997). A PMLRARalpha transgene initiates murine acute promyelocytic leukemia. Proceedings of the National Academy of Sciences of the United States of America, 94, 2551–2556.PubMedCrossRef Brown, D., Kogan, S., Lagasse, E., et al. (1997). A PMLRARalpha transgene initiates murine acute promyelocytic leukemia. Proceedings of the National Academy of Sciences of the United States of America, 94, 2551–2556.PubMedCrossRef
29.
go back to reference Grisolano, J. L., Wesselschmidt, R. L., Pelicci, P. G., & Ley, T. J. (1997). Altered myeloid development and acute leukemia in transgenic mice expressing PML-RAR alpha under control of cathepsin G regulatory sequences. Blood, 89, 376–387.PubMed Grisolano, J. L., Wesselschmidt, R. L., Pelicci, P. G., & Ley, T. J. (1997). Altered myeloid development and acute leukemia in transgenic mice expressing PML-RAR alpha under control of cathepsin G regulatory sequences. Blood, 89, 376–387.PubMed
30.
go back to reference He, L. Z., Guidez, F., Tribioli, C., et al. (1998). Distinct interactions of PML-RARalpha and PLZF-RARalpha with co-repressors determine differential responses to RA in APL. Nature Genetics, 18, 126–135.PubMedCrossRef He, L. Z., Guidez, F., Tribioli, C., et al. (1998). Distinct interactions of PML-RARalpha and PLZF-RARalpha with co-repressors determine differential responses to RA in APL. Nature Genetics, 18, 126–135.PubMedCrossRef
31.
go back to reference Zuber, J., Radtke, I., Pardee, T. S., et al. (2009). Mouse models of human AML accurately predict chemotherapy response. Genes & Development, 23, 877–889.CrossRef Zuber, J., Radtke, I., Pardee, T. S., et al. (2009). Mouse models of human AML accurately predict chemotherapy response. Genes & Development, 23, 877–889.CrossRef
32.
go back to reference Grimwade, D., Walker, H., Oliver, F., et al. (1998). The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children’s Leukaemia Working Parties. Blood, 92, 2322–2333.PubMed Grimwade, D., Walker, H., Oliver, F., et al. (1998). The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children’s Leukaemia Working Parties. Blood, 92, 2322–2333.PubMed
33.
go back to reference Okuda, T., Cai, Z., Yang, S., et al. (1998). Expression of a knocked-in AML1-ETO leukemia gene inhibits the establishment of normal definitive hematopoiesis and directly generates dysplastic hematopoietic progenitors. Blood, 91, 3134–3143.PubMed Okuda, T., Cai, Z., Yang, S., et al. (1998). Expression of a knocked-in AML1-ETO leukemia gene inhibits the establishment of normal definitive hematopoiesis and directly generates dysplastic hematopoietic progenitors. Blood, 91, 3134–3143.PubMed
34.
go back to reference Rhoades, K. L., Hetherington, C. J., Harakawa, N., et al. (2000). Analysis of the role of AML1-ETO in leukemogenesis, using an inducible transgenic mouse model. Blood, 96, 2108–2115.PubMed Rhoades, K. L., Hetherington, C. J., Harakawa, N., et al. (2000). Analysis of the role of AML1-ETO in leukemogenesis, using an inducible transgenic mouse model. Blood, 96, 2108–2115.PubMed
35.
go back to reference Yuan, Y., Zhou, L., Miyamoto, T., et al. (2001). AML1-ETO expression is directly involved in the development of acute myeloid leukemia in the presence of additional mutations. Proceedings of the National Academy of Sciences of the United States of America, 98, 10398–10403.PubMedCrossRef Yuan, Y., Zhou, L., Miyamoto, T., et al. (2001). AML1-ETO expression is directly involved in the development of acute myeloid leukemia in the presence of additional mutations. Proceedings of the National Academy of Sciences of the United States of America, 98, 10398–10403.PubMedCrossRef
36.
go back to reference Dash, A. B., Williams, I. R., Kutok, J. L., et al. (2002). A murine model of CML blast crisis induced by cooperation between BCR/ABL and NUP98/HOXA9. Proceedings of the National Academy of Sciences of the United States of America, 99, 7622–7627.PubMedCrossRef Dash, A. B., Williams, I. R., Kutok, J. L., et al. (2002). A murine model of CML blast crisis induced by cooperation between BCR/ABL and NUP98/HOXA9. Proceedings of the National Academy of Sciences of the United States of America, 99, 7622–7627.PubMedCrossRef
37.
go back to reference Grisolano, J. L., O’Neal, J., Cain, J., & Tomasson, M. H. (2003). An activated receptor tyrosine kinase, TEL/PDGFbetaR, cooperates with AML1/ETO to induce acute myeloid leukemia in mice. Proceedings of the National Academy of Sciences of the United States of America, 100, 9506–9511.PubMedCrossRef Grisolano, J. L., O’Neal, J., Cain, J., & Tomasson, M. H. (2003). An activated receptor tyrosine kinase, TEL/PDGFbetaR, cooperates with AML1/ETO to induce acute myeloid leukemia in mice. Proceedings of the National Academy of Sciences of the United States of America, 100, 9506–9511.PubMedCrossRef
38.
go back to reference Lavau, C., Du, C., Thirman, M., & Zeleznik-Le, N. (2000). Chromatin-related properties of CBP fused to MLL generate a myelodysplastic-like syndrome that evolves into myeloid leukemia. EMBO Journal, 19, 4655–4664.PubMedCrossRef Lavau, C., Du, C., Thirman, M., & Zeleznik-Le, N. (2000). Chromatin-related properties of CBP fused to MLL generate a myelodysplastic-like syndrome that evolves into myeloid leukemia. EMBO Journal, 19, 4655–4664.PubMedCrossRef
39.
go back to reference Look, A. T. (1997). Oncogenic transcription factors in the human acute leukemias. Science, 278, 1059–1064.PubMedCrossRef Look, A. T. (1997). Oncogenic transcription factors in the human acute leukemias. Science, 278, 1059–1064.PubMedCrossRef
40.
go back to reference Daser, A., & Rabbitts, T. H. (2004). Extending the repertoire of the mixed-lineage leukemia gene MLL in leukemogenesis. Genes & Development, 18, 965–974.CrossRef Daser, A., & Rabbitts, T. H. (2004). Extending the repertoire of the mixed-lineage leukemia gene MLL in leukemogenesis. Genes & Development, 18, 965–974.CrossRef
41.
go back to reference Corral, J., Lavenir, I., Impey, H., et al. (1996). An Mll-AF9 fusion gene made by homologous recombination causes acute leukemia in chimeric mice: a method to create fusion oncogenes. Cell, 85, 853–861.PubMedCrossRef Corral, J., Lavenir, I., Impey, H., et al. (1996). An Mll-AF9 fusion gene made by homologous recombination causes acute leukemia in chimeric mice: a method to create fusion oncogenes. Cell, 85, 853–861.PubMedCrossRef
42.
go back to reference Strissel, P. L., Strick, R., Tomek, R. J., Roe, B. A., Rowley, J. D., & Zeleznik-Le, N. J. (2000). DNA structural properties of AF9 are similar to MLL and could act as recombination hot spots resulting in MLL/AF9 translocations and leukemogenesis. Human Molecular Genetics, 9, 1671–1679.PubMedCrossRef Strissel, P. L., Strick, R., Tomek, R. J., Roe, B. A., Rowley, J. D., & Zeleznik-Le, N. J. (2000). DNA structural properties of AF9 are similar to MLL and could act as recombination hot spots resulting in MLL/AF9 translocations and leukemogenesis. Human Molecular Genetics, 9, 1671–1679.PubMedCrossRef
43.
go back to reference Collins, E. C., Pannell, R., Simpson, E. M., Forster, A., & Rabbitts, T. H. (2000). Inter-chromosomal recombination of Mll and Af9 genes mediated by cre-loxP in mouse development. EMBO Reports, 1, 127–132.PubMedCrossRef Collins, E. C., Pannell, R., Simpson, E. M., Forster, A., & Rabbitts, T. H. (2000). Inter-chromosomal recombination of Mll and Af9 genes mediated by cre-loxP in mouse development. EMBO Reports, 1, 127–132.PubMedCrossRef
44.
go back to reference Forster, A., Pannell, R., Drynan, L. F., et al. (2003). Engineering de novo reciprocal chromosomal translocations associated with Mll to replicate primary events of human cancer. Cancer Cell, 3, 449–458.PubMedCrossRef Forster, A., Pannell, R., Drynan, L. F., et al. (2003). Engineering de novo reciprocal chromosomal translocations associated with Mll to replicate primary events of human cancer. Cancer Cell, 3, 449–458.PubMedCrossRef
45.
go back to reference Stirewalt, D. L., & Radich, J. P. (2003). The role of FLT3 in haematopoietic malignancies. Nature Reviews. Cancer, 3, 650–665.PubMedCrossRef Stirewalt, D. L., & Radich, J. P. (2003). The role of FLT3 in haematopoietic malignancies. Nature Reviews. Cancer, 3, 650–665.PubMedCrossRef
46.
go back to reference Li, L., Piloto, O., Nguyen, H. B., et al. (2008). Knock-in of an internal tandem duplication mutation into murine FLT3 confers myeloproliferative disease in a mouse model. Blood, 111, 3849–3858.PubMedCrossRef Li, L., Piloto, O., Nguyen, H. B., et al. (2008). Knock-in of an internal tandem duplication mutation into murine FLT3 confers myeloproliferative disease in a mouse model. Blood, 111, 3849–3858.PubMedCrossRef
47.
go back to reference Greenblatt, S., Li, L., Slape, C., et al. (2012). Knock-in of a FLT3/ITD mutation cooperates with a NUP98-HOXD13 fusion to generate acute myeloid leukemia in a mouse model. Blood. Greenblatt, S., Li, L., Slape, C., et al. (2012). Knock-in of a FLT3/ITD mutation cooperates with a NUP98-HOXD13 fusion to generate acute myeloid leukemia in a mouse model. Blood.
48.
go back to reference Chan, I. T., & Gilliland, D. G. (2004). Oncogenic K-ras in mouse models of myeloproliferative disease and acute myeloid leukemia. Cell Cycle, 3, 536–537.PubMedCrossRef Chan, I. T., & Gilliland, D. G. (2004). Oncogenic K-ras in mouse models of myeloproliferative disease and acute myeloid leukemia. Cell Cycle, 3, 536–537.PubMedCrossRef
49.
go back to reference MacKenzie, K. L., Dolnikov, A., Millington, M., Shounan, Y., & Symonds, G. (1999). Mutant N-ras induces myeloproliferative disorders and apoptosis in bone marrow repopulated mice. Blood, 93, 2043–2056.PubMed MacKenzie, K. L., Dolnikov, A., Millington, M., Shounan, Y., & Symonds, G. (1999). Mutant N-ras induces myeloproliferative disorders and apoptosis in bone marrow repopulated mice. Blood, 93, 2043–2056.PubMed
50.
go back to reference Martelli, A. M., Nyakern, M., Tabellini, G., et al. (2006). Phosphoinositide 3-kinase/Akt signaling pathway and its therapeutical implications for human acute myeloid leukemia. Leukemia, 20, 911–928.PubMedCrossRef Martelli, A. M., Nyakern, M., Tabellini, G., et al. (2006). Phosphoinositide 3-kinase/Akt signaling pathway and its therapeutical implications for human acute myeloid leukemia. Leukemia, 20, 911–928.PubMedCrossRef
51.
go back to reference Yu, H., Li, Y., Gao, C., et al. (2010). Relevant mouse model for human monocytic leukemia through Cre/lox-controlled myeloid-specific deletion of PTEN. Leukemia, 24, 1077–1080.PubMedCrossRef Yu, H., Li, Y., Gao, C., et al. (2010). Relevant mouse model for human monocytic leukemia through Cre/lox-controlled myeloid-specific deletion of PTEN. Leukemia, 24, 1077–1080.PubMedCrossRef
52.
go back to reference Cutts, B. A., Sjogren, A. K., Andersson, K. M., et al. (2009). Nf1 deficiency cooperates with oncogenic K-RAS to induce acute myeloid leukemia in mice. Blood, 114, 3629–3632.PubMedCrossRef Cutts, B. A., Sjogren, A. K., Andersson, K. M., et al. (2009). Nf1 deficiency cooperates with oncogenic K-RAS to induce acute myeloid leukemia in mice. Blood, 114, 3629–3632.PubMedCrossRef
53.
go back to reference de Guzman, C. G., Warren, A. J., Zhang, Z., et al. (2002). Hematopoietic stem cell expansion and distinct myeloid developmental abnormalities in a murine model of the AML1-ETO translocation. Molecular and Cellular Biology, 22, 5506–5517.PubMedCrossRef de Guzman, C. G., Warren, A. J., Zhang, Z., et al. (2002). Hematopoietic stem cell expansion and distinct myeloid developmental abnormalities in a murine model of the AML1-ETO translocation. Molecular and Cellular Biology, 22, 5506–5517.PubMedCrossRef
54.
go back to reference Pardee, T. S., Zuber, J., & Lowe, S. W. (2011). Flt3-ITD alters chemotherapy response in vitro and in vivo in a p53-dependent manner. Experimental Hematology, 39, 473–485 e474.PubMedCrossRef Pardee, T. S., Zuber, J., & Lowe, S. W. (2011). Flt3-ITD alters chemotherapy response in vitro and in vivo in a p53-dependent manner. Experimental Hematology, 39, 473–485 e474.PubMedCrossRef
55.
go back to reference Bruserud, O., Tore, G. B., Brustugun, O. T., et al. (1995). Effects of interleukin 10 on blast cells derived from patients with acute myelogenous leukemia. Leukemia, 9, 1910–1920.PubMed Bruserud, O., Tore, G. B., Brustugun, O. T., et al. (1995). Effects of interleukin 10 on blast cells derived from patients with acute myelogenous leukemia. Leukemia, 9, 1910–1920.PubMed
56.
go back to reference Bruserud, O., Gjertsen, B. T., & von Volkman, H. L. (2000). In vitro culture of human acute myelogenous leukemia (AML) cells in serum-free media: studies of native AML blasts and AML cell lines. Journal of Hematotherapy & Stem Cell Research, 9, 923–932.CrossRef Bruserud, O., Gjertsen, B. T., & von Volkman, H. L. (2000). In vitro culture of human acute myelogenous leukemia (AML) cells in serum-free media: studies of native AML blasts and AML cell lines. Journal of Hematotherapy & Stem Cell Research, 9, 923–932.CrossRef
57.
go back to reference Nara, N., & Miyamoto, T. (1982). Direct and serial transplantation of human acute myeloid leukaemia into nude mice. British Journal of Cancer, 45, 778–782.PubMedCrossRef Nara, N., & Miyamoto, T. (1982). Direct and serial transplantation of human acute myeloid leukaemia into nude mice. British Journal of Cancer, 45, 778–782.PubMedCrossRef
58.
go back to reference Sawyers, C. L., Gishizky, M. L., Quan, S., Golde, D. W., & Witte, O. N. (1992). Propagation of human blastic myeloid leukemias in the SCID mouse. Blood, 79, 2089–2098.PubMed Sawyers, C. L., Gishizky, M. L., Quan, S., Golde, D. W., & Witte, O. N. (1992). Propagation of human blastic myeloid leukemias in the SCID mouse. Blood, 79, 2089–2098.PubMed
59.
go back to reference Ailles, L. E., Gerhard, B., Kawagoe, H., & Hogge, D. E. (1999). Growth characteristics of acute myelogenous leukemia progenitors that initiate malignant hematopoiesis in nonobese diabetic/severe combined immunodeficient mice. Blood, 94, 1761–1772.PubMed Ailles, L. E., Gerhard, B., Kawagoe, H., & Hogge, D. E. (1999). Growth characteristics of acute myelogenous leukemia progenitors that initiate malignant hematopoiesis in nonobese diabetic/severe combined immunodeficient mice. Blood, 94, 1761–1772.PubMed
60.
go back to reference Wunderlich, M., Chou, F. S., Link, K. A., et al. (2010). AML xenograft efficiency is significantly improved in NOD/SCID-IL2RG mice constitutively expressing human SCF, GM-CSF and IL-3. Leukemia, 24, 1785–1788.PubMedCrossRef Wunderlich, M., Chou, F. S., Link, K. A., et al. (2010). AML xenograft efficiency is significantly improved in NOD/SCID-IL2RG mice constitutively expressing human SCF, GM-CSF and IL-3. Leukemia, 24, 1785–1788.PubMedCrossRef
61.
go back to reference Svejda, J., Kossey, P., Hlavayova, E., & Svec, F. (1958). Histological picture of the transplantable rat leukaemia induced by x-irradiation and methylcholanthrene. Neoplasma, 5, 123–131.PubMed Svejda, J., Kossey, P., Hlavayova, E., & Svec, F. (1958). Histological picture of the transplantable rat leukaemia induced by x-irradiation and methylcholanthrene. Neoplasma, 5, 123–131.PubMed
62.
go back to reference Moriuchi, T., Oikawa, T., Kodama, T., Yamaguchi, H., & Kobayashi, H. (1983). Establishment and characterization of a transplantable rat myelomonocytic leukemia. Cancer Research, 43, 5478–5483.PubMed Moriuchi, T., Oikawa, T., Kodama, T., Yamaguchi, H., & Kobayashi, H. (1983). Establishment and characterization of a transplantable rat myelomonocytic leukemia. Cancer Research, 43, 5478–5483.PubMed
63.
go back to reference Ivankovic, S., & Zeller, W. J. (1974). [Leukemia L 5222 of the rat strain BD IX. An ethylnitrosourea-induced monocytic-myeloic transplantable form for cytochemical and chemotherapeutic studies]. Blut, 28, 288–292.PubMedCrossRef Ivankovic, S., & Zeller, W. J. (1974). [Leukemia L 5222 of the rat strain BD IX. An ethylnitrosourea-induced monocytic-myeloic transplantable form for cytochemical and chemotherapeutic studies]. Blut, 28, 288–292.PubMedCrossRef
64.
go back to reference Pearson, J. W., Chaparas, S. D., Torgersen, J. A., Perk, K., Chirigos, M. A., & Sher, N. A. (1974). The effect of drug therapy against a histologically defined rat leukemia. Cancer Research, 34, 355–361.PubMed Pearson, J. W., Chaparas, S. D., Torgersen, J. A., Perk, K., Chirigos, M. A., & Sher, N. A. (1974). The effect of drug therapy against a histologically defined rat leukemia. Cancer Research, 34, 355–361.PubMed
65.
go back to reference Zeller, W. J., Ivankovic, S., & Schmahl, D. (1975). Chemotherapy of the transplantable acute leukemia L5222 in rats. Cancer Research, 35, 1168–1174.PubMed Zeller, W. J., Ivankovic, S., & Schmahl, D. (1975). Chemotherapy of the transplantable acute leukemia L5222 in rats. Cancer Research, 35, 1168–1174.PubMed
66.
go back to reference Hagenbeek, A., & Martens, A. C. (1983). Efficacy of high-dose cyclophosphamide in combination with total-body irradiation in the treatment of acute myelocytic leukemia: studies in a relevant rat model. Cancer Research, 43, 408–412.PubMed Hagenbeek, A., & Martens, A. C. (1983). Efficacy of high-dose cyclophosphamide in combination with total-body irradiation in the treatment of acute myelocytic leukemia: studies in a relevant rat model. Cancer Research, 43, 408–412.PubMed
67.
go back to reference Hagenbeek, A., & Martens, A. C. (1980). The pathogenesis of a rat model for human acute myelocytic leukemia. Haematologica, 65, 293–308.PubMed Hagenbeek, A., & Martens, A. C. (1980). The pathogenesis of a rat model for human acute myelocytic leukemia. Haematologica, 65, 293–308.PubMed
68.
go back to reference van Bekkum, D. W., van Oosterom, P., & Dicke, K. A. (1976). In vitro colony formation of transplantable rat leukemias in comparison with human acute myeloid leukemia. Cancer Research, 36, 941–946.PubMed van Bekkum, D. W., van Oosterom, P., & Dicke, K. A. (1976). In vitro colony formation of transplantable rat leukemias in comparison with human acute myeloid leukemia. Cancer Research, 36, 941–946.PubMed
69.
go back to reference Martens, A. C., van Bekkum, D. W., & Hagenbeek, A. (1990). Minimal residual disease in leukemia: studies in an animal model for acute myelocytic leukemia (BNML). International Journal of Cell Cloning, 8, 27–38.PubMedCrossRef Martens, A. C., van Bekkum, D. W., & Hagenbeek, A. (1990). Minimal residual disease in leukemia: studies in an animal model for acute myelocytic leukemia (BNML). International Journal of Cell Cloning, 8, 27–38.PubMedCrossRef
70.
go back to reference Pruvot, B., Jacquel, A., Droin, N., et al. (2011). Leukemic cell xenograft in zebrafish embryo for investigating drug efficacy. Haematologica, 96, 612–616.PubMedCrossRef Pruvot, B., Jacquel, A., Droin, N., et al. (2011). Leukemic cell xenograft in zebrafish embryo for investigating drug efficacy. Haematologica, 96, 612–616.PubMedCrossRef
71.
go back to reference Corkery, D. P., Dellaire, G., & Berman, J. N. (2011). Leukaemia xenotransplantation in zebrafish–chemotherapy response assay in vivo. British Journal of Haematology, 153, 786–789.PubMedCrossRef Corkery, D. P., Dellaire, G., & Berman, J. N. (2011). Leukaemia xenotransplantation in zebrafish–chemotherapy response assay in vivo. British Journal of Haematology, 153, 786–789.PubMedCrossRef
72.
go back to reference Osman, D., Gobert, V., Ponthan, F., Heidenreich, O., Haenlin, M., & Waltzer, L. (2009). A Drosophila model identifies calpains as modulators of the human leukemogenic fusion protein AML1-ETO. Proceedings of the National Academy of Sciences of the United States of America, 106, 12043–12048.PubMedCrossRef Osman, D., Gobert, V., Ponthan, F., Heidenreich, O., Haenlin, M., & Waltzer, L. (2009). A Drosophila model identifies calpains as modulators of the human leukemogenic fusion protein AML1-ETO. Proceedings of the National Academy of Sciences of the United States of America, 106, 12043–12048.PubMedCrossRef
73.
go back to reference Hunger, S.P., Lu, X., Devidas, M., et al. (2012). Improved Survival for Children and Adolescents With Acute Lymphoblastic Leukemia Between 1990 and 2005: A Report From the Children’s Oncology Group. Journal of Clinical Oncology. Hunger, S.P., Lu, X., Devidas, M., et al. (2012). Improved Survival for Children and Adolescents With Acute Lymphoblastic Leukemia Between 1990 and 2005: A Report From the Children’s Oncology Group. Journal of Clinical Oncology.
74.
go back to reference Pear, W. S., Aster, J. C., Scott, M. L., et al. (1996). Exclusive development of T cell neoplasms in mice transplanted with bone marrow expressing activated Notch alleles. The Journal of Experimental Medicine, 183, 2283–2291.PubMedCrossRef Pear, W. S., Aster, J. C., Scott, M. L., et al. (1996). Exclusive development of T cell neoplasms in mice transplanted with bone marrow expressing activated Notch alleles. The Journal of Experimental Medicine, 183, 2283–2291.PubMedCrossRef
75.
go back to reference Heisterkamp, N., Jenster, G., ten Hoeve, J., Zovich, D., Pattengale, P. K., & Groffen, J. (1990). Acute leukaemia in bcr/abl transgenic mice. Nature, 344, 251–253.PubMedCrossRef Heisterkamp, N., Jenster, G., ten Hoeve, J., Zovich, D., Pattengale, P. K., & Groffen, J. (1990). Acute leukaemia in bcr/abl transgenic mice. Nature, 344, 251–253.PubMedCrossRef
76.
go back to reference Law, L. W., Dunn, T. B., et al. (1949). Observations on the effect of a folic-acid antagonist on transplantable lymphoid leukemias in mice. Journal of the National Cancer Institute, 10, 179–192.PubMed Law, L. W., Dunn, T. B., et al. (1949). Observations on the effect of a folic-acid antagonist on transplantable lymphoid leukemias in mice. Journal of the National Cancer Institute, 10, 179–192.PubMed
77.
go back to reference Trainer, D. L., & Wheelock, E. F. (1984). Characterization of L5178Y cell phenotypes isolated during progression of the tumor-dormant state in DBA2 mice. Cancer Research, 44, 2897–2906.PubMed Trainer, D. L., & Wheelock, E. F. (1984). Characterization of L5178Y cell phenotypes isolated during progression of the tumor-dormant state in DBA2 mice. Cancer Research, 44, 2897–2906.PubMed
78.
go back to reference Nishimura, T., Muto, K., & Tanaka, N. (1978). Drug sensitivity of an adriamycin-resistant mutant subline of mouse lymphoblastoma L5178Y cells. Journal of Antibiotics (Tokyo), 31, 493–495.CrossRef Nishimura, T., Muto, K., & Tanaka, N. (1978). Drug sensitivity of an adriamycin-resistant mutant subline of mouse lymphoblastoma L5178Y cells. Journal of Antibiotics (Tokyo), 31, 493–495.CrossRef
79.
go back to reference Nishimura, T., Suzuki, H., Muto, K., & Tanaka, N. (1979). Mechanism of adriamycin resistance in a subline of mouse lymphoblastoma L5178Y cells. Journal of Antibiotics (Tokyo), 32, 518–522.CrossRef Nishimura, T., Suzuki, H., Muto, K., & Tanaka, N. (1979). Mechanism of adriamycin resistance in a subline of mouse lymphoblastoma L5178Y cells. Journal of Antibiotics (Tokyo), 32, 518–522.CrossRef
80.
go back to reference Cloyd, M. W., Hartley, J. W., & Rowe, W. P. (1980). Lymphomagenicity of recombinant mink cell focus-inducing murine leukemia viruses. The Journal of Experimental Medicine, 151, 542–552.PubMedCrossRef Cloyd, M. W., Hartley, J. W., & Rowe, W. P. (1980). Lymphomagenicity of recombinant mink cell focus-inducing murine leukemia viruses. The Journal of Experimental Medicine, 151, 542–552.PubMedCrossRef
81.
go back to reference Yun, J. P., Behan, J. W., Heisterkamp, N., et al. (2010). Diet-induced obesity accelerates acute lymphoblastic leukemia progression in two murine models. Cancer Prevention Research (Philadelphia, Pa.), 3, 1259–1264.CrossRef Yun, J. P., Behan, J. W., Heisterkamp, N., et al. (2010). Diet-induced obesity accelerates acute lymphoblastic leukemia progression in two murine models. Cancer Prevention Research (Philadelphia, Pa.), 3, 1259–1264.CrossRef
82.
go back to reference Weiser, K. C., Liu, B., Hansen, G. M., et al. (2007). Retroviral insertions in the VISION database identify molecular pathways in mouse lymphoid leukemia and lymphoma. Mammalian Genome, 18, 709–722.PubMedCrossRef Weiser, K. C., Liu, B., Hansen, G. M., et al. (2007). Retroviral insertions in the VISION database identify molecular pathways in mouse lymphoid leukemia and lymphoma. Mammalian Genome, 18, 709–722.PubMedCrossRef
83.
go back to reference Dettman, E. J., Simko, S. J., Ayanga, B., et al. (2011). Prdm14 initiates lymphoblastic leukemia after expanding a population of cells resembling common lymphoid progenitors. Oncogene, 30, 2859–2873.PubMedCrossRef Dettman, E. J., Simko, S. J., Ayanga, B., et al. (2011). Prdm14 initiates lymphoblastic leukemia after expanding a population of cells resembling common lymphoid progenitors. Oncogene, 30, 2859–2873.PubMedCrossRef
84.
go back to reference Groffen, J., Voncken, J. W., Kaartinen, V., Morris, C., & Heisterkamp, N. (1993). Ph-positive leukemia: a transgenic mouse model. Leukemia & Lymphoma, 11(Suppl 1), 19–24.CrossRef Groffen, J., Voncken, J. W., Kaartinen, V., Morris, C., & Heisterkamp, N. (1993). Ph-positive leukemia: a transgenic mouse model. Leukemia & Lymphoma, 11(Suppl 1), 19–24.CrossRef
85.
go back to reference Reichert, A., Heisterkamp, N., Daley, G. Q., & Groffen, J. (2001). Treatment of Bcr/Abl-positive acute lymphoblastic leukemia in P190 transgenic mice with the farnesyl transferase inhibitor SCH66336. Blood, 97, 1399–1403.PubMedCrossRef Reichert, A., Heisterkamp, N., Daley, G. Q., & Groffen, J. (2001). Treatment of Bcr/Abl-positive acute lymphoblastic leukemia in P190 transgenic mice with the farnesyl transferase inhibitor SCH66336. Blood, 97, 1399–1403.PubMedCrossRef
86.
go back to reference Kaur, P., Feldhahn, N., Zhang, B., et al. (2007). Nilotinib treatment in mouse models of P190 Bcr/Abl lymphoblastic leukemia. Molecular Cancer, 6, 67.PubMedCrossRef Kaur, P., Feldhahn, N., Zhang, B., et al. (2007). Nilotinib treatment in mouse models of P190 Bcr/Abl lymphoblastic leukemia. Molecular Cancer, 6, 67.PubMedCrossRef
87.
go back to reference Chen, W., Li, Q., Hudson, W. A., Kumar, A., Kirchhof, N., & Kersey, J. H. (2006). A murine Mll-AF4 knock-in model results in lymphoid and myeloid deregulation and hematologic malignancy. Blood, 108, 669–677.PubMedCrossRef Chen, W., Li, Q., Hudson, W. A., Kumar, A., Kirchhof, N., & Kersey, J. H. (2006). A murine Mll-AF4 knock-in model results in lymphoid and myeloid deregulation and hematologic malignancy. Blood, 108, 669–677.PubMedCrossRef
88.
go back to reference Metzler, M., Forster, A., Pannell, R., et al. (2006). A conditional model of MLL-AF4 B-cell tumourigenesis using invertor technology. Oncogene, 25, 3093–3103.PubMedCrossRef Metzler, M., Forster, A., Pannell, R., et al. (2006). A conditional model of MLL-AF4 B-cell tumourigenesis using invertor technology. Oncogene, 25, 3093–3103.PubMedCrossRef
89.
go back to reference Tamai, H., Miyake, K., Takatori, M., et al. (2011). Activated K-Ras protein accelerates human MLL/AF4-induced leukemo-lymphomogenicity in a transgenic mouse model. Leukemia, 25, 888–891.PubMedCrossRef Tamai, H., Miyake, K., Takatori, M., et al. (2011). Activated K-Ras protein accelerates human MLL/AF4-induced leukemo-lymphomogenicity in a transgenic mouse model. Leukemia, 25, 888–891.PubMedCrossRef
90.
go back to reference Harris, A. W., Pinkert, C. A., Crawford, M., Langdon, W. Y., Brinster, R. L., & Adams, J. M. (1988). The E mu-myc transgenic mouse. A model for high-incidence spontaneous lymphoma and leukemia of early B cells. The Journal of Experimental Medicine, 167, 353–371.PubMedCrossRef Harris, A. W., Pinkert, C. A., Crawford, M., Langdon, W. Y., Brinster, R. L., & Adams, J. M. (1988). The E mu-myc transgenic mouse. A model for high-incidence spontaneous lymphoma and leukemia of early B cells. The Journal of Experimental Medicine, 167, 353–371.PubMedCrossRef
91.
go back to reference Schmitt, C. A., McCurrach, M. E., de Stanchina, E., Wallace-Brodeur, R. R., & Lowe, S. W. (1999). INK4a/ARF mutations accelerate lymphomagenesis and promote chemoresistance by disabling p53. Genes & Development, 13, 2670–2677.CrossRef Schmitt, C. A., McCurrach, M. E., de Stanchina, E., Wallace-Brodeur, R. R., & Lowe, S. W. (1999). INK4a/ARF mutations accelerate lymphomagenesis and promote chemoresistance by disabling p53. Genes & Development, 13, 2670–2677.CrossRef
92.
go back to reference Schmitt, C. A., Fridman, J. S., Yang, M., et al. (2002). A senescence program controlled by p53 and p16INK4a contributes to the outcome of cancer therapy. Cell, 109, 335–346.PubMedCrossRef Schmitt, C. A., Fridman, J. S., Yang, M., et al. (2002). A senescence program controlled by p53 and p16INK4a contributes to the outcome of cancer therapy. Cell, 109, 335–346.PubMedCrossRef
93.
go back to reference Grabher, C., von Boehmer, H., & Look, A. T. (2006). Notch 1 activation in the molecular pathogenesis of T-cell acute lymphoblastic leukaemia. Nature Reviews. Cancer, 6, 347–359.PubMedCrossRef Grabher, C., von Boehmer, H., & Look, A. T. (2006). Notch 1 activation in the molecular pathogenesis of T-cell acute lymphoblastic leukaemia. Nature Reviews. Cancer, 6, 347–359.PubMedCrossRef
94.
go back to reference Ellisen, L. W., Bird, J., West, D. C., et al. (1991). TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell, 66, 649–661.PubMedCrossRef Ellisen, L. W., Bird, J., West, D. C., et al. (1991). TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell, 66, 649–661.PubMedCrossRef
95.
go back to reference Weng, A. P., Ferrando, A. A., Lee, W., et al. (2004). Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science, 306, 269–271.PubMedCrossRef Weng, A. P., Ferrando, A. A., Lee, W., et al. (2004). Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science, 306, 269–271.PubMedCrossRef
96.
go back to reference Deftos, M. L., Huang, E., Ojala, E. W., Forbush, K. A., & Bevan, M. J. (2000). Notch1 signaling promotes the maturation of CD4 and CD8 SP thymocytes. Immunity, 13, 73–84.PubMedCrossRef Deftos, M. L., Huang, E., Ojala, E. W., Forbush, K. A., & Bevan, M. J. (2000). Notch1 signaling promotes the maturation of CD4 and CD8 SP thymocytes. Immunity, 13, 73–84.PubMedCrossRef
97.
go back to reference Fowlkes, B. J., & Robey, E. A. (2002). A reassessment of the effect of activated Notch1 on CD4 and CD8 T cell development. Journal of Immunology, 169, 1817–1821. Fowlkes, B. J., & Robey, E. A. (2002). A reassessment of the effect of activated Notch1 on CD4 and CD8 T cell development. Journal of Immunology, 169, 1817–1821.
98.
go back to reference Priceputu, E., Bouallaga, I., Zhang, Y., et al. (2006). Structurally distinct ligand-binding or ligand-independent Notch1 mutants are leukemogenic but affect thymocyte development, apoptosis, and metastasis differently. Journal of Immunology, 177, 2153–2166. Priceputu, E., Bouallaga, I., Zhang, Y., et al. (2006). Structurally distinct ligand-binding or ligand-independent Notch1 mutants are leukemogenic but affect thymocyte development, apoptosis, and metastasis differently. Journal of Immunology, 177, 2153–2166.
99.
go back to reference Berquam-Vrieze, K. E., Swing, D. A., Tessarollo, L., & Dupuy, A. J. (2012). Characterization of transgenic mice expressing cancer-associated variants of human NOTCH1. Genesis, 50, 112–118.PubMedCrossRef Berquam-Vrieze, K. E., Swing, D. A., Tessarollo, L., & Dupuy, A. J. (2012). Characterization of transgenic mice expressing cancer-associated variants of human NOTCH1. Genesis, 50, 112–118.PubMedCrossRef
100.
go back to reference Boulos, N., Mulder, H. L., Calabrese, C. R., et al. (2011). Chemotherapeutic agents circumvent emergence of dasatinib-resistant BCR-ABL kinase mutations in a precise mouse model of Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood, 117, 3585–3595.PubMedCrossRef Boulos, N., Mulder, H. L., Calabrese, C. R., et al. (2011). Chemotherapeutic agents circumvent emergence of dasatinib-resistant BCR-ABL kinase mutations in a precise mouse model of Philadelphia chromosome-positive acute lymphoblastic leukemia. Blood, 117, 3585–3595.PubMedCrossRef
101.
go back to reference Duy, C., Hurtz, C., Shojaee, S., et al. (2011). BCL6 enables Ph+ acute lymphoblastic leukaemia cells to survive BCR-ABL1 kinase inhibition. Nature, 473, 384–388.PubMedCrossRef Duy, C., Hurtz, C., Shojaee, S., et al. (2011). BCL6 enables Ph+ acute lymphoblastic leukaemia cells to survive BCR-ABL1 kinase inhibition. Nature, 473, 384–388.PubMedCrossRef
102.
go back to reference Wang, P. Y., Young, F., Chen, C. Y., et al. (2008). The biologic properties of leukemias arising from BCR/ABL-mediated transformation vary as a function of developmental origin and activity of the p19ARF gene. Blood, 112, 4184–4192.PubMedCrossRef Wang, P. Y., Young, F., Chen, C. Y., et al. (2008). The biologic properties of leukemias arising from BCR/ABL-mediated transformation vary as a function of developmental origin and activity of the p19ARF gene. Blood, 112, 4184–4192.PubMedCrossRef
103.
go back to reference Barabe, F., Kennedy, J. A., Hope, K. J., & Dick, J. E. (2007). Modeling the initiation and progression of human acute leukemia in mice. Science, 316, 600–604.PubMedCrossRef Barabe, F., Kennedy, J. A., Hope, K. J., & Dick, J. E. (2007). Modeling the initiation and progression of human acute leukemia in mice. Science, 316, 600–604.PubMedCrossRef
104.
go back to reference Wei, J., Wunderlich, M., Fox, C., et al. (2008). Microenvironment determines lineage fate in a human model of MLL-AF9 leukemia. Cancer Cell, 13, 483–495.PubMedCrossRef Wei, J., Wunderlich, M., Fox, C., et al. (2008). Microenvironment determines lineage fate in a human model of MLL-AF9 leukemia. Cancer Cell, 13, 483–495.PubMedCrossRef
105.
go back to reference le Viseur, C., Hotfilder, M., Bomken, S., et al. (2008). In childhood acute lymphoblastic leukemia, blasts at different stages of immunophenotypic maturation have stem cell properties. Cancer Cell, 14, 47–58.PubMedCrossRef le Viseur, C., Hotfilder, M., Bomken, S., et al. (2008). In childhood acute lymphoblastic leukemia, blasts at different stages of immunophenotypic maturation have stem cell properties. Cancer Cell, 14, 47–58.PubMedCrossRef
106.
go back to reference Chiu, P. P., Jiang, H., & Dick, J. E. (2010). Leukemia-initiating cells in human T-lymphoblastic leukemia exhibit glucocorticoid resistance. Blood, 116, 5268–5279.PubMedCrossRef Chiu, P. P., Jiang, H., & Dick, J. E. (2010). Leukemia-initiating cells in human T-lymphoblastic leukemia exhibit glucocorticoid resistance. Blood, 116, 5268–5279.PubMedCrossRef
107.
go back to reference Otova, B., Sladka, M., Panczak, A., & Marinov, I. (1997). Biological characteristics of spontaneous transplantable T-cell lymphomas in inbred Sprague–Dawley/Cub rats. Transplantation Proceedings, 29, 1754–1755.PubMedCrossRef Otova, B., Sladka, M., Panczak, A., & Marinov, I. (1997). Biological characteristics of spontaneous transplantable T-cell lymphomas in inbred Sprague–Dawley/Cub rats. Transplantation Proceedings, 29, 1754–1755.PubMedCrossRef
108.
go back to reference Otova, B., Vaclavikova, R., Danielova, V., et al. (2006). Effects of paclitaxel, docetaxel and their combinations on subcutaneous lymphomas in inbred Sprague–Dawley/Cub rats. European Journal of Pharmaceutical Sciences, 29, 442–450.PubMedCrossRef Otova, B., Vaclavikova, R., Danielova, V., et al. (2006). Effects of paclitaxel, docetaxel and their combinations on subcutaneous lymphomas in inbred Sprague–Dawley/Cub rats. European Journal of Pharmaceutical Sciences, 29, 442–450.PubMedCrossRef
109.
go back to reference Congdon, C. C., & Lorenz, E. (1954). Leukemia in guinea-pigs. American Journal of Pathology, 30, 337–359.PubMed Congdon, C. C., & Lorenz, E. (1954). Leukemia in guinea-pigs. American Journal of Pathology, 30, 337–359.PubMed
110.
go back to reference Sabaawy, H. E., Azuma, M., Embree, L. J., Tsai, H. J., Starost, M. F., & Hickstein, D. D. (2006). TEL-AML1 transgenic zebrafish model of precursor B cell acute lymphoblastic leukemia. Proceedings of the National Academy of Sciences of the United States of America, 103, 15166–15171.PubMedCrossRef Sabaawy, H. E., Azuma, M., Embree, L. J., Tsai, H. J., Starost, M. F., & Hickstein, D. D. (2006). TEL-AML1 transgenic zebrafish model of precursor B cell acute lymphoblastic leukemia. Proceedings of the National Academy of Sciences of the United States of America, 103, 15166–15171.PubMedCrossRef
111.
go back to reference Frazer, J. K., Meeker, N. D., Rudner, L., et al. (2009). Heritable T-cell malignancy models established in a zebrafish phenotypic screen. Leukemia, 23, 1825–1835.PubMedCrossRef Frazer, J. K., Meeker, N. D., Rudner, L., et al. (2009). Heritable T-cell malignancy models established in a zebrafish phenotypic screen. Leukemia, 23, 1825–1835.PubMedCrossRef
112.
go back to reference Langenau, D. M., Traver, D., Ferrando, A. A., et al. (2003). Myc-induced T cell leukemia in transgenic zebrafish. Science, 299, 887–890.PubMedCrossRef Langenau, D. M., Traver, D., Ferrando, A. A., et al. (2003). Myc-induced T cell leukemia in transgenic zebrafish. Science, 299, 887–890.PubMedCrossRef
113.
go back to reference Feng, H., Langenau, D. M., Madge, J. A., et al. (2007). Heat-shock induction of T-cell lymphoma/leukaemia in conditional Cre/lox-regulated transgenic zebrafish. British Journal of Haematology, 138, 169–175.PubMedCrossRef Feng, H., Langenau, D. M., Madge, J. A., et al. (2007). Heat-shock induction of T-cell lymphoma/leukaemia in conditional Cre/lox-regulated transgenic zebrafish. British Journal of Haematology, 138, 169–175.PubMedCrossRef
114.
go back to reference Feng, H., Stachura, D. L., White, R. M., et al. (2010). T-lymphoblastic lymphoma cells express high levels of BCL2, S1P1, and ICAM1, leading to a blockade of tumor cell intravasation. Cancer Cell, 18, 353–366.PubMedCrossRef Feng, H., Stachura, D. L., White, R. M., et al. (2010). T-lymphoblastic lymphoma cells express high levels of BCL2, S1P1, and ICAM1, leading to a blockade of tumor cell intravasation. Cancer Cell, 18, 353–366.PubMedCrossRef
115.
go back to reference Nowell, P. C., & Hungerford, D. A. (1962). Chromosome studies in human leukemia. IV. Myeloproliferative syndrome and other atypical myeloid disorders. Journal of the National Cancer Institute, 29, 911–931.PubMed Nowell, P. C., & Hungerford, D. A. (1962). Chromosome studies in human leukemia. IV. Myeloproliferative syndrome and other atypical myeloid disorders. Journal of the National Cancer Institute, 29, 911–931.PubMed
116.
go back to reference Goldman, J.M., (2009). Initial treatment for patients with CML. Hematology/the Education Program of the American Society of Hematology, 453–460. Goldman, J.M., (2009). Initial treatment for patients with CML. Hematology/the Education Program of the American Society of Hematology, 453–460.
117.
go back to reference Daley, G. Q., Van Etten, R. A., & Baltimore, D. (1990). Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science, 247, 824–830.PubMedCrossRef Daley, G. Q., Van Etten, R. A., & Baltimore, D. (1990). Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science, 247, 824–830.PubMedCrossRef
118.
go back to reference Li, S., Ilaria, R. L., Jr., Million, R. P., Daley, G. Q., & Van Etten, R. A. (1999). The P190, P210, and P230 forms of the BCR/ABL oncogene induce a similar chronic myeloid leukemia-like syndrome in mice but have different lymphoid leukemogenic activity. The Journal of Experimental Medicine, 189, 1399–1412.PubMedCrossRef Li, S., Ilaria, R. L., Jr., Million, R. P., Daley, G. Q., & Van Etten, R. A. (1999). The P190, P210, and P230 forms of the BCR/ABL oncogene induce a similar chronic myeloid leukemia-like syndrome in mice but have different lymphoid leukemogenic activity. The Journal of Experimental Medicine, 189, 1399–1412.PubMedCrossRef
119.
go back to reference Zhang, H., Li, H., Xi, H. S., & Li, S. (2012). HIF1alpha is required for survival maintenance of chronic myeloid leukemia stem cells. Blood, 119, 2595–2607.PubMedCrossRef Zhang, H., Li, H., Xi, H. S., & Li, S. (2012). HIF1alpha is required for survival maintenance of chronic myeloid leukemia stem cells. Blood, 119, 2595–2607.PubMedCrossRef
120.
go back to reference Huettner, C. S., Koschmieder, S., Iwasaki, H., et al. (2003). Inducible expression of BCR/ABL using human CD34 regulatory elements results in a megakaryocytic myeloproliferative syndrome. Blood, 102, 3363–3370.PubMedCrossRef Huettner, C. S., Koschmieder, S., Iwasaki, H., et al. (2003). Inducible expression of BCR/ABL using human CD34 regulatory elements results in a megakaryocytic myeloproliferative syndrome. Blood, 102, 3363–3370.PubMedCrossRef
121.
go back to reference Huettner, C. S., Zhang, P., Van Etten, R. A., & Tenen, D. G. (2000). Reversibility of acute B-cell leukaemia induced by BCR-ABL1. Nature Genetics, 24, 57–60.PubMedCrossRef Huettner, C. S., Zhang, P., Van Etten, R. A., & Tenen, D. G. (2000). Reversibility of acute B-cell leukaemia induced by BCR-ABL1. Nature Genetics, 24, 57–60.PubMedCrossRef
122.
go back to reference Chu, S., McDonald, T., Lin, A., et al. (2011). Persistence of leukemia stem cells in chronic myelogenous leukemia patients in prolonged remission with imatinib treatment. Blood, 118, 5565–5572.PubMedCrossRef Chu, S., McDonald, T., Lin, A., et al. (2011). Persistence of leukemia stem cells in chronic myelogenous leukemia patients in prolonged remission with imatinib treatment. Blood, 118, 5565–5572.PubMedCrossRef
123.
go back to reference Lozzio, B. B., Lozzi, C. B., & Machado, E. (1976). Human myelogenous (Ph+) leukemia cell line: transplantation into athymic mice. Journal of the National Cancer Institute, 56, 627–629.PubMed Lozzio, B. B., Lozzi, C. B., & Machado, E. (1976). Human myelogenous (Ph+) leukemia cell line: transplantation into athymic mice. Journal of the National Cancer Institute, 56, 627–629.PubMed
124.
go back to reference Skorski, T., Nieborowska-Skorska, M., Nicolaides, N. C., et al. (1994). Suppression of Philadelphia1 leukemia cell growth in mice by BCR-ABL antisense oligodeoxynucleotide. Proceedings of the National Academy of Sciences of the United States of America, 91, 4504–4508.PubMedCrossRef Skorski, T., Nieborowska-Skorska, M., Nicolaides, N. C., et al. (1994). Suppression of Philadelphia1 leukemia cell growth in mice by BCR-ABL antisense oligodeoxynucleotide. Proceedings of the National Academy of Sciences of the United States of America, 91, 4504–4508.PubMedCrossRef
125.
go back to reference Dazzi, F., Hasserjian, R., Gordon, M. Y., et al. (2000). Normal and chronic phase CML hematopoietic cells repopulate NOD/SCID bone marrow with different kinetics and cell lineage representation. The Hematology Journal, 1, 307–315.PubMedCrossRef Dazzi, F., Hasserjian, R., Gordon, M. Y., et al. (2000). Normal and chronic phase CML hematopoietic cells repopulate NOD/SCID bone marrow with different kinetics and cell lineage representation. The Hematology Journal, 1, 307–315.PubMedCrossRef
126.
go back to reference Dohner, H., Stilgenbauer, S., Benner, A., et al. (2000). Genomic aberrations and survival in chronic lymphocytic leukemia. The New England Journal of Medicine, 343, 1910–1916.PubMedCrossRef Dohner, H., Stilgenbauer, S., Benner, A., et al. (2000). Genomic aberrations and survival in chronic lymphocytic leukemia. The New England Journal of Medicine, 343, 1910–1916.PubMedCrossRef
127.
go back to reference Phillips, J. A., Mehta, K., Fernandez, C., & Raveche, E. S. (1992). The NZB mouse as a model for chronic lymphocytic leukemia. Cancer Research, 52, 437–443.PubMed Phillips, J. A., Mehta, K., Fernandez, C., & Raveche, E. S. (1992). The NZB mouse as a model for chronic lymphocytic leukemia. Cancer Research, 52, 437–443.PubMed
128.
go back to reference Raveche, E. S., Salerno, E., Scaglione, B. J., et al. (2007). Abnormal microRNA-16 locus with synteny to human 13q14 linked to CLL in NZB mice. Blood, 109, 5079–5086.PubMedCrossRef Raveche, E. S., Salerno, E., Scaglione, B. J., et al. (2007). Abnormal microRNA-16 locus with synteny to human 13q14 linked to CLL in NZB mice. Blood, 109, 5079–5086.PubMedCrossRef
129.
go back to reference Narducci, M. G., Pescarmona, E., Lazzeri, C., et al. (2000). Regulation of TCL1 expression in B- and T-cell lymphomas and reactive lymphoid tissues. Cancer Research, 60, 2095–2100.PubMed Narducci, M. G., Pescarmona, E., Lazzeri, C., et al. (2000). Regulation of TCL1 expression in B- and T-cell lymphomas and reactive lymphoid tissues. Cancer Research, 60, 2095–2100.PubMed
130.
go back to reference Bichi, R., Shinton, S. A., Martin, E. S., et al. (2002). Human chronic lymphocytic leukemia modeled in mouse by targeted TCL1 expression. Proceedings of the National Academy of Sciences of the United States of America, 99, 6955–6960.PubMedCrossRef Bichi, R., Shinton, S. A., Martin, E. S., et al. (2002). Human chronic lymphocytic leukemia modeled in mouse by targeted TCL1 expression. Proceedings of the National Academy of Sciences of the United States of America, 99, 6955–6960.PubMedCrossRef
131.
go back to reference Aguilar-Santelises, M., Rottenberg, M. E., Lewin, N., Mellstedt, H., & Jondal, M. (1996). Bcl-2, Bax and p53 expression in B-CLL in relation to in vitro survival and clinical progression. International Journal of Cancer, 69, 114–119.CrossRef Aguilar-Santelises, M., Rottenberg, M. E., Lewin, N., Mellstedt, H., & Jondal, M. (1996). Bcl-2, Bax and p53 expression in B-CLL in relation to in vitro survival and clinical progression. International Journal of Cancer, 69, 114–119.CrossRef
132.
go back to reference Munzert, G., Kirchner, D., Stobbe, H., et al. (2002). Tumor necrosis factor receptor-associated factor 1 gene overexpression in B-cell chronic lymphocytic leukemia: analysis of NF-kappa B/Rel-regulated inhibitors of apoptosis. Blood, 100, 3749–3756.PubMedCrossRef Munzert, G., Kirchner, D., Stobbe, H., et al. (2002). Tumor necrosis factor receptor-associated factor 1 gene overexpression in B-cell chronic lymphocytic leukemia: analysis of NF-kappa B/Rel-regulated inhibitors of apoptosis. Blood, 100, 3749–3756.PubMedCrossRef
133.
go back to reference Zapata, J. M., Krajewska, M., Morse, H. C., 3rd, Choi, Y., & Reed, J. C. (2004). TNF receptor-associated factor (TRAF) domain and Bcl-2 cooperate to induce small B cell lymphoma/chronic lymphocytic leukemia in transgenic mice. Proceedings of the National Academy of Sciences of the United States of America, 101, 16600–16605.PubMedCrossRef Zapata, J. M., Krajewska, M., Morse, H. C., 3rd, Choi, Y., & Reed, J. C. (2004). TNF receptor-associated factor (TRAF) domain and Bcl-2 cooperate to induce small B cell lymphoma/chronic lymphocytic leukemia in transgenic mice. Proceedings of the National Academy of Sciences of the United States of America, 101, 16600–16605.PubMedCrossRef
134.
go back to reference Mohammad, R. M., Mohamed, A. N., Hamdan, M. Y., et al. (1996). Establishment of a human B-CLL xenograft model: utility as a preclinical therapeutic model. Leukemia, 10, 130–137.PubMed Mohammad, R. M., Mohamed, A. N., Hamdan, M. Y., et al. (1996). Establishment of a human B-CLL xenograft model: utility as a preclinical therapeutic model. Leukemia, 10, 130–137.PubMed
135.
go back to reference Mohammad, R. M., Limvarapuss, C., Hamdy, N., et al. (1999). Treatment of a de novo fludarabine resistant-CLL xenograft model with bryostatin 1 followed by fludarabine. International Journal of Oncology, 14, 945–950.PubMed Mohammad, R. M., Limvarapuss, C., Hamdy, N., et al. (1999). Treatment of a de novo fludarabine resistant-CLL xenograft model with bryostatin 1 followed by fludarabine. International Journal of Oncology, 14, 945–950.PubMed
136.
go back to reference Loisel, S., Ster, K. L., Quintin-Roue, I., et al. (2005). Establishment of a novel human B-CLL-like xenograft model in nude mouse. Leukemia Research, 29, 1347–1352.PubMedCrossRef Loisel, S., Ster, K. L., Quintin-Roue, I., et al. (2005). Establishment of a novel human B-CLL-like xenograft model in nude mouse. Leukemia Research, 29, 1347–1352.PubMedCrossRef
137.
go back to reference Durig, J., Ebeling, P., Grabellus, F., et al. (2007). A novel nonobese diabetic/severe combined immunodeficient xenograft model for chronic lymphocytic leukemia reflects important clinical characteristics of the disease. Cancer Research, 67, 8653–8661.PubMedCrossRef Durig, J., Ebeling, P., Grabellus, F., et al. (2007). A novel nonobese diabetic/severe combined immunodeficient xenograft model for chronic lymphocytic leukemia reflects important clinical characteristics of the disease. Cancer Research, 67, 8653–8661.PubMedCrossRef
138.
go back to reference Aydin, S., Grabellus, F., Eisele, L., et al. (2011). Investigating the role of CD38 and functionally related molecular risk factors in the CLL NOD/SCID xenograft model. European Journal of Haematology, 87, 10–19.PubMedCrossRef Aydin, S., Grabellus, F., Eisele, L., et al. (2011). Investigating the role of CD38 and functionally related molecular risk factors in the CLL NOD/SCID xenograft model. European Journal of Haematology, 87, 10–19.PubMedCrossRef
Metadata
Title
Animal models of leukemia: any closer to the real thing?
Authors
Guerry J. Cook
Timothy S. Pardee
Publication date
01-06-2013
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 1-2/2013
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-012-9405-5

Other articles of this Issue 1-2/2013

Cancer and Metastasis Reviews 1-2/2013 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine