Skip to main content
Top
Published in: Cancer and Metastasis Reviews 1-2/2013

01-06-2013

Reconstructing skin cancers using animal models

Authors: Michael D. Gober, Hasan M. Bashir, John T. Seykora

Published in: Cancer and Metastasis Reviews | Issue 1-2/2013

Login to get access

Abstract

The American Cancer Society estimates that skin cancer is the most prevalent of all cancers with over 2 million cases of nonmelanoma skin cancer each year and 75,000 melanoma cases in 2012. Representative animal cancer models are important for understanding the underlying molecular pathogenesis of these cancers and the development of novel targeted anticancer therapeutics. In this review, we will discuss some of the important animal models that have been useful to identify important pathways involved in basal cell carcinoma, squamous cell carcinoma, and melanoma.
Literature
1.
go back to reference Rubin, A. I., Chen, E. H., & Ratner, D. (2005). Basal-cell carcinoma. The New England Journal of Medicine, 353(21), 2262–2269.PubMedCrossRef Rubin, A. I., Chen, E. H., & Ratner, D. (2005). Basal-cell carcinoma. The New England Journal of Medicine, 353(21), 2262–2269.PubMedCrossRef
2.
go back to reference Zhang, M., Qureshi, A. A., Geller, A. C., Frazier, L., Hunter, D. J., & Han, J. (2012). Use of tanning beds and incidence of skin cancer. Journal of Clinical Oncology, 30(14), 1588–1593.PubMedCrossRef Zhang, M., Qureshi, A. A., Geller, A. C., Frazier, L., Hunter, D. J., & Han, J. (2012). Use of tanning beds and incidence of skin cancer. Journal of Clinical Oncology, 30(14), 1588–1593.PubMedCrossRef
3.
go back to reference Howell, J. B., & Caro, M. R. (1959). The basal-cell nevus: its relationship to multiple cutaneous cancers and associated anomalies of development. Archives of Dermatology, 79(1), 67–80.PubMedCrossRef Howell, J. B., & Caro, M. R. (1959). The basal-cell nevus: its relationship to multiple cutaneous cancers and associated anomalies of development. Archives of Dermatology, 79(1), 67–80.PubMedCrossRef
4.
go back to reference Gorlin, R. J., & Goltz, R. W. (1960). Multiple nevoid basal-cell epithelioma, jaw cysts and bifid rib. The New England Journal of Medicine, 262(18), 908–912.PubMedCrossRef Gorlin, R. J., & Goltz, R. W. (1960). Multiple nevoid basal-cell epithelioma, jaw cysts and bifid rib. The New England Journal of Medicine, 262(18), 908–912.PubMedCrossRef
5.
go back to reference Hahn, H., Wicking, C., Zaphiropoulos, P. G., Gailani, M. R., Shanley, S., Chidambaram, A., et al. (1996). Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell, 85(6), 841–851.PubMedCrossRef Hahn, H., Wicking, C., Zaphiropoulos, P. G., Gailani, M. R., Shanley, S., Chidambaram, A., et al. (1996). Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell, 85(6), 841–851.PubMedCrossRef
6.
go back to reference Johnson, R. L., Rothman, A. L., Xie, J., Goodrich, L. V., Bare, J. W., Bonifas, J. M., et al. (1996). Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science, 272(5268), 1668–1671.PubMedCrossRef Johnson, R. L., Rothman, A. L., Xie, J., Goodrich, L. V., Bare, J. W., Bonifas, J. M., et al. (1996). Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science, 272(5268), 1668–1671.PubMedCrossRef
7.
go back to reference Gailani, M. R., Stahle-Backdahl, M., Leffell, D. J., Glyn, M., Zaphiropoulos, P. G., Unden, A. B., et al. (1996). The role of the human homologue of Drosophila patched in sporadic basal cell carcinomas. Nature Genetics, 14(1), 78–81. doi:10.1038/ng0996-78.PubMedCrossRef Gailani, M. R., Stahle-Backdahl, M., Leffell, D. J., Glyn, M., Zaphiropoulos, P. G., Unden, A. B., et al. (1996). The role of the human homologue of Drosophila patched in sporadic basal cell carcinomas. Nature Genetics, 14(1), 78–81. doi:10.​1038/​ng0996-78.PubMedCrossRef
8.
go back to reference Kasper, M., Jaks, V., Hohl, D., & Toftgård, R. (2012). Basal cell carcinoma—molecular biology and potential new therapies. The Journal of Clinical Investigation, 122(2), 455–463.PubMedCrossRef Kasper, M., Jaks, V., Hohl, D., & Toftgård, R. (2012). Basal cell carcinoma—molecular biology and potential new therapies. The Journal of Clinical Investigation, 122(2), 455–463.PubMedCrossRef
9.
go back to reference Hooper, J. E., & Scott, M. P. (1989). The Drosophila patched gene encodes a putative membrane protein required for segmental patterning. Cell, 59(4), 751–765.PubMedCrossRef Hooper, J. E., & Scott, M. P. (1989). The Drosophila patched gene encodes a putative membrane protein required for segmental patterning. Cell, 59(4), 751–765.PubMedCrossRef
10.
go back to reference Lum, L., & Beachy, P. A. (2004). The hedgehog response network: sensors, switches, and routers. Science, 304(5678), 1755–1759.PubMedCrossRef Lum, L., & Beachy, P. A. (2004). The hedgehog response network: sensors, switches, and routers. Science, 304(5678), 1755–1759.PubMedCrossRef
11.
go back to reference Oro, A. E., Higgins, K. M., Hu, Z., Bonifas, J. M., Epstein, E. H., & Scott, M. P. (1997). Basal cell carcinomas in mice overexpressing sonic hedgehog. Science, 276(5313), 817–821.PubMedCrossRef Oro, A. E., Higgins, K. M., Hu, Z., Bonifas, J. M., Epstein, E. H., & Scott, M. P. (1997). Basal cell carcinomas in mice overexpressing sonic hedgehog. Science, 276(5313), 817–821.PubMedCrossRef
12.
go back to reference Xie, J., Murone, M., Luoh, S.-M., Ryan, A., Gu, Q., Zhang, C., et al. (1998). Activating Smoothened mutations in sporadic basal-cell carcinoma. Nature, 391(6662), 90–92. doi:10.1038/34201.PubMedCrossRef Xie, J., Murone, M., Luoh, S.-M., Ryan, A., Gu, Q., Zhang, C., et al. (1998). Activating Smoothened mutations in sporadic basal-cell carcinoma. Nature, 391(6662), 90–92. doi:10.​1038/​34201.PubMedCrossRef
13.
go back to reference Nilsson, M., Undèn, A. B., Krause, D., Malmqwist, U., Raza, K., Zaphiropoulos, P. G., et al. (2000). Induction of basal cell carcinomas and trichoepitheliomas in mice overexpressing GLI-1. Proceedings of the National Academy of Sciences of the United States of America, 97(7), 3438–3443.PubMedCrossRef Nilsson, M., Undèn, A. B., Krause, D., Malmqwist, U., Raza, K., Zaphiropoulos, P. G., et al. (2000). Induction of basal cell carcinomas and trichoepitheliomas in mice overexpressing GLI-1. Proceedings of the National Academy of Sciences of the United States of America, 97(7), 3438–3443.PubMedCrossRef
14.
go back to reference Grachtchouk, M., Mo, R., Yu, S., Zhang, X., Sasaki, H., Hui, C.-c., et al. (2000). Basal cell carcinomas in mice overexpressing Gli2 in skin. Nature Genetics, 24(3), 216–217. doi:10.1038/73417.PubMedCrossRef Grachtchouk, M., Mo, R., Yu, S., Zhang, X., Sasaki, H., Hui, C.-c., et al. (2000). Basal cell carcinomas in mice overexpressing Gli2 in skin. Nature Genetics, 24(3), 216–217. doi:10.​1038/​73417.PubMedCrossRef
15.
go back to reference Aszterbaum, M., Epstein, J., Oro, A., Douglas, V., LeBoit, P. E., Scott, M. P., et al. (1999). Ultraviolet and ionizing radiation enhance the growth of BCCs and trichoblastomas in patched heterozygous knockout mice. Nature Medicine, 5(11), 1285–1291. doi:10.1038/15242.PubMedCrossRef Aszterbaum, M., Epstein, J., Oro, A., Douglas, V., LeBoit, P. E., Scott, M. P., et al. (1999). Ultraviolet and ionizing radiation enhance the growth of BCCs and trichoblastomas in patched heterozygous knockout mice. Nature Medicine, 5(11), 1285–1291. doi:10.​1038/​15242.PubMedCrossRef
16.
go back to reference Grachtchouk, V., Grachtchouk, M., Lowe, L., Johnson, T., Wei, L., Wang, A., et al. (2003). The magnitude of hedgehog signaling activity defines skin tumor phenotype. EMBO Journal, 22(11), 2741–2751. doi:10.1093/emboj/cdg271.PubMedCrossRef Grachtchouk, V., Grachtchouk, M., Lowe, L., Johnson, T., Wei, L., Wang, A., et al. (2003). The magnitude of hedgehog signaling activity defines skin tumor phenotype. EMBO Journal, 22(11), 2741–2751. doi:10.​1093/​emboj/​cdg271.PubMedCrossRef
17.
go back to reference Ramírez, A., Bravo, A., Jorcano, J. L., & Vidal, M. (1994). Sequences 5′ of the bovine keratin 5 gene direct tissue- and cell-type-specific expression of a lacZ gene in the adult and during development. Differentiation, 58(1), 53–64.PubMed Ramírez, A., Bravo, A., Jorcano, J. L., & Vidal, M. (1994). Sequences 5′ of the bovine keratin 5 gene direct tissue- and cell-type-specific expression of a lacZ gene in the adult and during development. Differentiation, 58(1), 53–64.PubMed
18.
go back to reference Youssef, K. K., Van Keymeulen, A., Lapouge, G., Beck, B., Michaux, C., Achouri, Y., et al. (2010). Identification of the cell lineage at the origin of basal cell carcinoma. Nature Cell Biology, 12(3), 299–305. doi:10.1038/ncb2031.PubMed Youssef, K. K., Van Keymeulen, A., Lapouge, G., Beck, B., Michaux, C., Achouri, Y., et al. (2010). Identification of the cell lineage at the origin of basal cell carcinoma. Nature Cell Biology, 12(3), 299–305. doi:10.​1038/​ncb2031.PubMed
19.
go back to reference Wong, S. Y., & Reiter, J. F. (2011). Wounding mobilizes hair follicle stem cells to form tumors. Proceedings of the National Academy of Sciences, 108(10), 4093–4098.CrossRef Wong, S. Y., & Reiter, J. F. (2011). Wounding mobilizes hair follicle stem cells to form tumors. Proceedings of the National Academy of Sciences, 108(10), 4093–4098.CrossRef
20.
go back to reference Kasper, M., Jaks, V., Are, A., Bergström, Å., Schwäger, A., Svärd, J., et al. (2011). Wounding enhances epidermal tumorigenesis by recruiting hair follicle keratinocytes. Proceedings of the National Academy of Sciences, 108(10), 4099–4104.CrossRef Kasper, M., Jaks, V., Are, A., Bergström, Å., Schwäger, A., Svärd, J., et al. (2011). Wounding enhances epidermal tumorigenesis by recruiting hair follicle keratinocytes. Proceedings of the National Academy of Sciences, 108(10), 4099–4104.CrossRef
21.
go back to reference Ratushny, V., Gober, M. D., Hick, R., Ridky, T. W., & Seykora, J. T. (2012). From keratinocyte to cancer: the pathogenesis and modeling of cutaneous squamous cell carcinoma. The Journal of Clinical Investigation, 122(2), 464–472.PubMedCrossRef Ratushny, V., Gober, M. D., Hick, R., Ridky, T. W., & Seykora, J. T. (2012). From keratinocyte to cancer: the pathogenesis and modeling of cutaneous squamous cell carcinoma. The Journal of Clinical Investigation, 122(2), 464–472.PubMedCrossRef
22.
go back to reference Cockerell, C. J. (2000). Histopathology of incipient intraepidermal squamous cell carcinoma (“actinic keratosis”). Journal of the American Academy of Dermatology, 42(1), S11–S17.CrossRef Cockerell, C. J. (2000). Histopathology of incipient intraepidermal squamous cell carcinoma (“actinic keratosis”). Journal of the American Academy of Dermatology, 42(1), S11–S17.CrossRef
23.
go back to reference Marks, R., Rennie, G., & Selwood, T. S. (1988). Malignant transformation of solar keratoses to squamous cell carcinoma. Lancet, 1(8589), 795–797.PubMedCrossRef Marks, R., Rennie, G., & Selwood, T. S. (1988). Malignant transformation of solar keratoses to squamous cell carcinoma. Lancet, 1(8589), 795–797.PubMedCrossRef
24.
go back to reference Criscione, V. D., Weinstock, M. A., Naylor, M. F., Luque, C., Eide, M. J., Bingham, S. F., et al. (2009). Actinic keratoses. Cancer, 115(11), 2523–2530.PubMedCrossRef Criscione, V. D., Weinstock, M. A., Naylor, M. F., Luque, C., Eide, M. J., Bingham, S. F., et al. (2009). Actinic keratoses. Cancer, 115(11), 2523–2530.PubMedCrossRef
25.
go back to reference Ziegler, A., Jonason, A. S., Leffellt, D. J., Simon, J. A., Sharma, H. W., Kimmelman, J., et al. (1994). Sunburn and p53 in the onset of skin cancer. Nature, 372(6508), 773–776. doi:10.1038/372773a0.PubMedCrossRef Ziegler, A., Jonason, A. S., Leffellt, D. J., Simon, J. A., Sharma, H. W., Kimmelman, J., et al. (1994). Sunburn and p53 in the onset of skin cancer. Nature, 372(6508), 773–776. doi:10.​1038/​372773a0.PubMedCrossRef
26.
go back to reference Ortonne, J. P. (2002). From actinic keratosis to squamous cell carcinoma. British Journal of Dermatology, 146, 20–23.PubMedCrossRef Ortonne, J. P. (2002). From actinic keratosis to squamous cell carcinoma. British Journal of Dermatology, 146, 20–23.PubMedCrossRef
27.
go back to reference Nakazawa, H., English, D., Randell, P. L., Nakazawa, K., Martel, N., Armstrong, B. K., et al. (1994). UV and skin cancer: specific p53 gene mutation in normal skin as a biologically relevant exposure measurement. Proceedings of the National Academy of Sciences of the United States of America, 91(1), 360–364.PubMedCrossRef Nakazawa, H., English, D., Randell, P. L., Nakazawa, K., Martel, N., Armstrong, B. K., et al. (1994). UV and skin cancer: specific p53 gene mutation in normal skin as a biologically relevant exposure measurement. Proceedings of the National Academy of Sciences of the United States of America, 91(1), 360–364.PubMedCrossRef
29.
go back to reference Brash, D. E., Rudolph, J. A., Simon, J. A., Lin, A., McKenna, G. J., Baden, H. P., et al. (1991). A role for sunlight in skin cancer: UV-induced p53 mutations in squamous cell carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 88(22), 10124–10128.PubMedCrossRef Brash, D. E., Rudolph, J. A., Simon, J. A., Lin, A., McKenna, G. J., Baden, H. P., et al. (1991). A role for sunlight in skin cancer: UV-induced p53 mutations in squamous cell carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 88(22), 10124–10128.PubMedCrossRef
30.
go back to reference Donehower, L. A., Harvey, M., Slagle, B. L., McArthur, M. J., Montgomery, C. A., Butel, J. S., et al. (1992). Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature, 356(6366), 215–221. doi:10.1038/356215a0.PubMedCrossRef Donehower, L. A., Harvey, M., Slagle, B. L., McArthur, M. J., Montgomery, C. A., Butel, J. S., et al. (1992). Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature, 356(6366), 215–221. doi:10.​1038/​356215a0.PubMedCrossRef
31.
go back to reference Jiang, W., Ananthaswamy, H. N., Muller, H. K., & Kripke, M. L. (1999). p53 protects against skin cancer induction by UV-B radiation. Oncogene, 18(29), 4247. Article.PubMedCrossRef Jiang, W., Ananthaswamy, H. N., Muller, H. K., & Kripke, M. L. (1999). p53 protects against skin cancer induction by UV-B radiation. Oncogene, 18(29), 4247. Article.PubMedCrossRef
32.
go back to reference Matsumoto, T., Jiang, J., Kiguchi, K., Ruffino, L., Carbajal, S., Beltrán, L., et al. (2003). Targeted expression of c-Src in epidermal basal cells leads to enhanced skin tumor promotion, malignant progression, and metastasis. Cancer Research, 63(16), 4819–4828.PubMed Matsumoto, T., Jiang, J., Kiguchi, K., Ruffino, L., Carbajal, S., Beltrán, L., et al. (2003). Targeted expression of c-Src in epidermal basal cells leads to enhanced skin tumor promotion, malignant progression, and metastasis. Cancer Research, 63(16), 4819–4828.PubMed
33.
go back to reference Kiguchi, K., Bol, D., Carbajal, S., Beltrán, L., Moats, S., Chan, K., et al. (2000). Constitutive expression of erbB2 in epidermis of transgenic mice results in epidermal hyperproliferation and spontaneous skin tumor development. Oncogene, 19(37), 4243. Article.PubMedCrossRef Kiguchi, K., Bol, D., Carbajal, S., Beltrán, L., Moats, S., Chan, K., et al. (2000). Constitutive expression of erbB2 in epidermis of transgenic mice results in epidermal hyperproliferation and spontaneous skin tumor development. Oncogene, 19(37), 4243. Article.PubMedCrossRef
34.
go back to reference Zhao, L., Li, W., Marshall, C., Griffin, T., Hanson, M., Hick, R., et al. (2009). Srcasm inhibits Fyn-induced cutaneous carcinogenesis with modulation of Notch1 and p53. Cancer Research, 69(24), 9439–9447.PubMedCrossRef Zhao, L., Li, W., Marshall, C., Griffin, T., Hanson, M., Hick, R., et al. (2009). Srcasm inhibits Fyn-induced cutaneous carcinogenesis with modulation of Notch1 and p53. Cancer Research, 69(24), 9439–9447.PubMedCrossRef
36.
go back to reference Pierceall, W. E., Goldberg, L. H., Tainsky, M. A., Mukhopadhyay, T., & Ananthaswamy, H. N. (1991). Ras gene mutation and amplification in human nonmelanoma skin cancers. Molecular Carcinogenesis, 4(3), 196–202.PubMedCrossRef Pierceall, W. E., Goldberg, L. H., Tainsky, M. A., Mukhopadhyay, T., & Ananthaswamy, H. N. (1991). Ras gene mutation and amplification in human nonmelanoma skin cancers. Molecular Carcinogenesis, 4(3), 196–202.PubMedCrossRef
37.
go back to reference Spencer, J. M., Kahn, S. M., Jiang, W., DeLeo, V. A., & Weinstein, I. B. (1995). Activated ras genes occur in human actinic keratoses, premalignant precursors to squamous cell carcinomas. Archives of Dermatology, 131(7), 796–800.PubMedCrossRef Spencer, J. M., Kahn, S. M., Jiang, W., DeLeo, V. A., & Weinstein, I. B. (1995). Activated ras genes occur in human actinic keratoses, premalignant precursors to squamous cell carcinomas. Archives of Dermatology, 131(7), 796–800.PubMedCrossRef
38.
39.
go back to reference Tarutani, M., Cai, T., Dajee, M., & Khavari, P. A. (2003). Inducible activation of Ras and Raf in adult epidermis. Cancer Research, 63(2), 319–323.PubMed Tarutani, M., Cai, T., Dajee, M., & Khavari, P. A. (2003). Inducible activation of Ras and Raf in adult epidermis. Cancer Research, 63(2), 319–323.PubMed
40.
go back to reference Scholl, F. A., Dumesic, P. A., & Khavari, P. A. (2004). Mek1 alters epidermal growth and differentiation. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. Research Support, U.S. Gov't, P.H.S.]. Cancer Research, 64(17), 6035–6040.PubMedCrossRef Scholl, F. A., Dumesic, P. A., & Khavari, P. A. (2004). Mek1 alters epidermal growth and differentiation. [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. Research Support, U.S. Gov't, P.H.S.]. Cancer Research, 64(17), 6035–6040.PubMedCrossRef
41.
go back to reference Quadros, M. R. D., Peruzzi, F., Kari, C., & Rodeck, U. (2004). Complex regulation of signal transducers and activators of transcription 3 activation in normal and malignant keratinocytes. Cancer Research, 64(11), 3934–3939.PubMedCrossRef Quadros, M. R. D., Peruzzi, F., Kari, C., & Rodeck, U. (2004). Complex regulation of signal transducers and activators of transcription 3 activation in normal and malignant keratinocytes. Cancer Research, 64(11), 3934–3939.PubMedCrossRef
42.
go back to reference Suiqing, C., Min, Z., & Lirong, C. (2005). Overexpression of phosphorylated-STAT3 correlated with the invasion and metastasis of cutaneous squamous cell carcinoma. [Comparative Study Research Support, Non-U.S. Gov't]. Journal of Dermatology, 32(5), 354–360.PubMed Suiqing, C., Min, Z., & Lirong, C. (2005). Overexpression of phosphorylated-STAT3 correlated with the invasion and metastasis of cutaneous squamous cell carcinoma. [Comparative Study Research Support, Non-U.S. Gov't]. Journal of Dermatology, 32(5), 354–360.PubMed
43.
go back to reference Kim, D. J., Angel, J. M., Sano, S., & DiGiovanni, J. (2009). Constitutive activation and targeted disruption of signal transducer and activator of transcription 3 (Stat3) in mouse epidermis reveal its critical role in UVB-induced skin carcinogenesis. Oncogene, 28(7), 950–960.PubMedCrossRef Kim, D. J., Angel, J. M., Sano, S., & DiGiovanni, J. (2009). Constitutive activation and targeted disruption of signal transducer and activator of transcription 3 (Stat3) in mouse epidermis reveal its critical role in UVB-induced skin carcinogenesis. Oncogene, 28(7), 950–960.PubMedCrossRef
44.
go back to reference Chan, K. S., Sano, S., Kataoka, K., Abel, E., Carbajal, S., Beltran, L., et al. (2008). Forced expression of a constitutively active form of Stat3 in mouse epidermis enhances malignant progression of skin tumors induced by two-stage carcinogenesis. Oncogene, 27(8), 1087–1094.PubMedCrossRef Chan, K. S., Sano, S., Kataoka, K., Abel, E., Carbajal, S., Beltran, L., et al. (2008). Forced expression of a constitutively active form of Stat3 in mouse epidermis enhances malignant progression of skin tumors induced by two-stage carcinogenesis. Oncogene, 27(8), 1087–1094.PubMedCrossRef
45.
go back to reference Siegel, R., DeSantis, C., Virgo, K., Stein, K., Mariotto, A., Smith, T., et al. (2012). Cancer treatment and survivorship statistics, 2012. CA: A Cancer Journal for Clinicians, 62, 220–241.CrossRef Siegel, R., DeSantis, C., Virgo, K., Stein, K., Mariotto, A., Smith, T., et al. (2012). Cancer treatment and survivorship statistics, 2012. CA: A Cancer Journal for Clinicians, 62, 220–241.CrossRef
46.
go back to reference Becker, J. C., Houben, R., Schrama, D., Voigt, H., Ugurel, S., & Reisfeld, R. A. (2010). Mouse models for melanoma: a personal perspective. Experimental Dermatology, 19(2), 157–164.PubMedCrossRef Becker, J. C., Houben, R., Schrama, D., Voigt, H., Ugurel, S., & Reisfeld, R. A. (2010). Mouse models for melanoma: a personal perspective. Experimental Dermatology, 19(2), 157–164.PubMedCrossRef
47.
go back to reference Kunisada, T., Lu, S.-Z., Yoshida, H., Nishikawa, S., Nishikawa, S.-i., Mizoguchi, M., et al. (1998). Murine cutaneous mastocytosis and epidermal melanocytosis induced by keratinocyte expression of transgenic stem cell factor. The Journal of Experimental Medicine, 187(10), 1565–1573.PubMedCrossRef Kunisada, T., Lu, S.-Z., Yoshida, H., Nishikawa, S., Nishikawa, S.-i., Mizoguchi, M., et al. (1998). Murine cutaneous mastocytosis and epidermal melanocytosis induced by keratinocyte expression of transgenic stem cell factor. The Journal of Experimental Medicine, 187(10), 1565–1573.PubMedCrossRef
48.
go back to reference Yamazaki, F., Okamoto, H., Matsumura, Y., Tanaka, K., Kunisada, T., & Horio, T. (2005). Development of a new mouse model (xeroderma pigmentosum A-deficient, stem cell factor-transgenic) of ultraviolet B-induced melanoma. The Journal of Investigative Dermatology, 125(3), 521–525.PubMedCrossRef Yamazaki, F., Okamoto, H., Matsumura, Y., Tanaka, K., Kunisada, T., & Horio, T. (2005). Development of a new mouse model (xeroderma pigmentosum A-deficient, stem cell factor-transgenic) of ultraviolet B-induced melanoma. The Journal of Investigative Dermatology, 125(3), 521–525.PubMedCrossRef
49.
go back to reference Damsky, W. E., Jr., & Bosenberg, M. (2010). Mouse melanoma models and cell lines. Pigment Cell & Melanoma Research, 23(6), 853–859.CrossRef Damsky, W. E., Jr., & Bosenberg, M. (2010). Mouse melanoma models and cell lines. Pigment Cell & Melanoma Research, 23(6), 853–859.CrossRef
50.
go back to reference Mintz, B., & Silvers, W. K. (1993). Transgenic mouse model of malignant skin melanoma. Proceedings of the National Academy of Sciences of the United States of America, 90(19), 8817–8821.PubMedCrossRef Mintz, B., & Silvers, W. K. (1993). Transgenic mouse model of malignant skin melanoma. Proceedings of the National Academy of Sciences of the United States of America, 90(19), 8817–8821.PubMedCrossRef
51.
go back to reference Chin, L., Pomerantz, J., Polsky, D., Jacobson, M., Cohen, C., Cordon-Cardo, C., et al. (1997). Cooperative effects of INK4a and ras in melanoma susceptibility in vivo. Genes & Development, 11(21), 2822–2834.CrossRef Chin, L., Pomerantz, J., Polsky, D., Jacobson, M., Cohen, C., Cordon-Cardo, C., et al. (1997). Cooperative effects of INK4a and ras in melanoma susceptibility in vivo. Genes & Development, 11(21), 2822–2834.CrossRef
52.
go back to reference Bardeesy, N., Bastian, B. C., Hezel, A., Pinkel, D., DePinho, R. A., & Chin, L. (2001). Dual inactivation of RB and p53 pathways in RAS-induced melanomas. Molecular and Cellular Biology, 21(6), 2144–2153.PubMedCrossRef Bardeesy, N., Bastian, B. C., Hezel, A., Pinkel, D., DePinho, R. A., & Chin, L. (2001). Dual inactivation of RB and p53 pathways in RAS-induced melanomas. Molecular and Cellular Biology, 21(6), 2144–2153.PubMedCrossRef
53.
go back to reference Hacker, E., Muller, H. K., Irwin, N., Gabrielli, B., Lincoln, D., Pavey, S., et al. (2006). Spontaneous and UV radiation-induced multiple metastatic melanomas in Cdk4R24C/R24C/TPras mice. Cancer Research, 66(6), 2946–2952.PubMedCrossRef Hacker, E., Muller, H. K., Irwin, N., Gabrielli, B., Lincoln, D., Pavey, S., et al. (2006). Spontaneous and UV radiation-induced multiple metastatic melanomas in Cdk4R24C/R24C/TPras mice. Cancer Research, 66(6), 2946–2952.PubMedCrossRef
54.
go back to reference Kannan, K., Sharpless, N. E., Xu, J., O’Hagan, R. C., Bosenberg, M., & Chin, L. (2003). Components of the Rb pathway are critical targets of UV mutagenesis in a murine melanoma model. Proceedings of the National Academy of Sciences of the United States of America, 100(3), 1221–1225.PubMedCrossRef Kannan, K., Sharpless, N. E., Xu, J., O’Hagan, R. C., Bosenberg, M., & Chin, L. (2003). Components of the Rb pathway are critical targets of UV mutagenesis in a murine melanoma model. Proceedings of the National Academy of Sciences of the United States of America, 100(3), 1221–1225.PubMedCrossRef
55.
go back to reference Sotillo, R., Garcia, J. F., Ortega, S., Martin, J., Dubus, P., Barbacid, M., et al. (2001). Invasive melanoma in Cdk4-targeted mice. [Research Support, Non-U.S. Gov't]. Proceedings of the National Academy of Sciences of the United States of America, 98(23), 13312–13317.PubMedCrossRef Sotillo, R., Garcia, J. F., Ortega, S., Martin, J., Dubus, P., Barbacid, M., et al. (2001). Invasive melanoma in Cdk4-targeted mice. [Research Support, Non-U.S. Gov't]. Proceedings of the National Academy of Sciences of the United States of America, 98(23), 13312–13317.PubMedCrossRef
56.
go back to reference Powell, M. B., Hyman, P., Bell, O. D., Balmain, A., Brown, K., Alberts, D., et al. (1995). Hyperpigmentation and melanocytic hyperplasia in transgenic mice expressing the human T24 Ha-ras gene regulated by a mouse tyrosinase promoter. Molecular Carcinogenesis, 12(2), 82–90.PubMedCrossRef Powell, M. B., Hyman, P., Bell, O. D., Balmain, A., Brown, K., Alberts, D., et al. (1995). Hyperpigmentation and melanocytic hyperplasia in transgenic mice expressing the human T24 Ha-ras gene regulated by a mouse tyrosinase promoter. Molecular Carcinogenesis, 12(2), 82–90.PubMedCrossRef
58.
go back to reference Goel, V. K., Ibrahim, N., Jiang, G., Singhal, M., Fee, S., Flotte, T., et al. (2009). Melanocytic nevus-like hyperplasia and melanoma in transgenic BRAFV600E mice. Oncogene, 28(23), 2289–2298.PubMedCrossRef Goel, V. K., Ibrahim, N., Jiang, G., Singhal, M., Fee, S., Flotte, T., et al. (2009). Melanocytic nevus-like hyperplasia and melanoma in transgenic BRAFV600E mice. Oncogene, 28(23), 2289–2298.PubMedCrossRef
59.
go back to reference Dhomen, N., Reis-Filho, J. S., da Rocha Dias, S., Hayward, R., Savage, K., Delmas, V., et al. (2009). Oncogenic Braf induces melanocyte senescence and melanoma in mice. Cancer Cell, 15(4), 294–303.PubMedCrossRef Dhomen, N., Reis-Filho, J. S., da Rocha Dias, S., Hayward, R., Savage, K., Delmas, V., et al. (2009). Oncogenic Braf induces melanocyte senescence and melanoma in mice. Cancer Cell, 15(4), 294–303.PubMedCrossRef
60.
go back to reference Dankort, D., Curley, D. P., Cartlidge, R. A., Nelson, B., Karnezis, A. N., Damsky, W. E., Jr., et al. (2009). BrafV600E cooperates with Pten loss to induce metastatic melanoma. Nature Genetics, 41(5), 544–552. doi:10.1038/ng.356.PubMedCrossRef Dankort, D., Curley, D. P., Cartlidge, R. A., Nelson, B., Karnezis, A. N., Damsky, W. E., Jr., et al. (2009). BrafV600E cooperates with Pten loss to induce metastatic melanoma. Nature Genetics, 41(5), 544–552. doi:10.​1038/​ng.​356.PubMedCrossRef
61.
go back to reference Pollock, P. M., Harper, U. L., Hansen, K. S., Yudt, L. M., Stark, M., Robbins, C. M., et al. (2003). High frequency of BRAF mutations in nevi. Nature Genetics, 33(1), 19–20. doi:10.1038/ng1054.PubMedCrossRef Pollock, P. M., Harper, U. L., Hansen, K. S., Yudt, L. M., Stark, M., Robbins, C. M., et al. (2003). High frequency of BRAF mutations in nevi. Nature Genetics, 33(1), 19–20. doi:10.​1038/​ng1054.PubMedCrossRef
62.
go back to reference Patton, E. E., Widlund, H. R., Kutok, J. L., Kopani, K. R., Amatruda, J. F., Murphey, R. D., et al. (2005). BRAF mutations are sufficient to promote nevi formation and cooperate with p53 in the genesis of melanoma. Current Biology, 15(3), 249–254.PubMedCrossRef Patton, E. E., Widlund, H. R., Kutok, J. L., Kopani, K. R., Amatruda, J. F., Murphey, R. D., et al. (2005). BRAF mutations are sufficient to promote nevi formation and cooperate with p53 in the genesis of melanoma. Current Biology, 15(3), 249–254.PubMedCrossRef
63.
go back to reference Michaloglou, C., Vredeveld, L. C. W., Soengas, M. S., Denoyelle, C., Kuilman, T., van der Horst, C. M. A. M., et al. (2005). BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature, 436(7051), 720–724. doi:10.1038/nature03890.PubMedCrossRef Michaloglou, C., Vredeveld, L. C. W., Soengas, M. S., Denoyelle, C., Kuilman, T., van der Horst, C. M. A. M., et al. (2005). BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature, 436(7051), 720–724. doi:10.​1038/​nature03890.PubMedCrossRef
64.
go back to reference Gruis, N. A., Van der Velden, P. A., Sandkuijl, L. A., Prins, D. E., Weaver-Feldhaus, J., Kamb, A., et al. (1995). Homozygotes for CDKN2 (p16) germline mutation in Dutch familial melanoma kindreds. Nature Genetics, 10(3), 351–353.PubMedCrossRef Gruis, N. A., Van der Velden, P. A., Sandkuijl, L. A., Prins, D. E., Weaver-Feldhaus, J., Kamb, A., et al. (1995). Homozygotes for CDKN2 (p16) germline mutation in Dutch familial melanoma kindreds. Nature Genetics, 10(3), 351–353.PubMedCrossRef
65.
go back to reference Ruiz, A., Puig, S., Malvehy, J., Lázaro, C., Lynch, M., Gimenez-Arnau, A. M., et al. (1999). CDKN2A mutations in Spanish cutaneous malignant melanoma families and patients with multiple melanomas and other neoplasia. Journal of Medical Genetics, 36(6), 490–493.PubMed Ruiz, A., Puig, S., Malvehy, J., Lázaro, C., Lynch, M., Gimenez-Arnau, A. M., et al. (1999). CDKN2A mutations in Spanish cutaneous malignant melanoma families and patients with multiple melanomas and other neoplasia. Journal of Medical Genetics, 36(6), 490–493.PubMed
66.
go back to reference Goldstein, A. M., Chan, M., Harland, M., Hayward, N. K., Demenais, F., Bishop, D. T., et al. (2007). Features associated with germline CDKN2A mutations: a GenoMEL study of melanoma-prone families from three continents. Journal of Medical Genetics, 44(2), 99–106.PubMedCrossRef Goldstein, A. M., Chan, M., Harland, M., Hayward, N. K., Demenais, F., Bishop, D. T., et al. (2007). Features associated with germline CDKN2A mutations: a GenoMEL study of melanoma-prone families from three continents. Journal of Medical Genetics, 44(2), 99–106.PubMedCrossRef
Metadata
Title
Reconstructing skin cancers using animal models
Authors
Michael D. Gober
Hasan M. Bashir
John T. Seykora
Publication date
01-06-2013
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 1-2/2013
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-012-9410-8

Other articles of this Issue 1-2/2013

Cancer and Metastasis Reviews 1-2/2013 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine