Skip to main content
Top
Published in: Cancer and Metastasis Reviews 3-4/2012

01-12-2012 | NON-THEMATIC REVIEW

Transcription factor PROX1: its role in development and cancer

Authors: Tamador Elsir, Anja Smits, Mikael S. Lindström, Monica Nistér

Published in: Cancer and Metastasis Reviews | Issue 3-4/2012

Login to get access

Abstract

The homeobox gene PROX1 is critical for organ development during embryogenesis. The Drosophila homologue, known as prospero has been shown to act as a tumor suppressor by controlling asymmetric cell division of neuroblasts. Likewise, alterations in PROX1 expression and function are associated with a number of human cancers including hematological malignancies, carcinomas of the pancreas, liver and the biliary system, sporadic breast cancer, Kaposiform hemangioendothelioma, colon cancer, and brain tumors. PROX1 is involved in cancer development and progression and has been ascribed both tumor suppressive and oncogenic properties in a variety of different cancer types. However, the exact mechanisms through which PROX1 regulates proliferation, migration, and invasion of cancer cells are by large unknown. This review provides an update on the role of PROX1 in organ development and on its emerging functions in cancer, with special emphasis on the central nervous system and glial brain tumors.
Literature
1.
go back to reference Abate-Shen, C. (2002). Deregulated homeobox gene expression in cancer: cause or consequence? Nature Reviews. Cancer, 2(10), 777–785.PubMedCrossRef Abate-Shen, C. (2002). Deregulated homeobox gene expression in cancer: cause or consequence? Nature Reviews. Cancer, 2(10), 777–785.PubMedCrossRef
2.
go back to reference Oliver, G., Sosa-Pineda, B., Geisendorf, S., Spana, E. P., Doe, C. Q., & Gruss, P. (1993). Prox1, a prospero-related homeobox gene expressed during mouse development. Mechanisms of Development, 44(1), 3–16.PubMedCrossRef Oliver, G., Sosa-Pineda, B., Geisendorf, S., Spana, E. P., Doe, C. Q., & Gruss, P. (1993). Prox1, a prospero-related homeobox gene expressed during mouse development. Mechanisms of Development, 44(1), 3–16.PubMedCrossRef
3.
go back to reference Zinovieva, R. D., Duncan, M. K., Johnson, T. R., Torres, R., Polymeropoulos, M. H., & Tomarev, S. I. (1996). Structure and chromosomal localization of the human homeobox gene Prox1. Genomics, 35(3), 517–522.PubMedCrossRef Zinovieva, R. D., Duncan, M. K., Johnson, T. R., Torres, R., Polymeropoulos, M. H., & Tomarev, S. I. (1996). Structure and chromosomal localization of the human homeobox gene Prox1. Genomics, 35(3), 517–522.PubMedCrossRef
4.
go back to reference Banerjee-Basu, S., Landsman, D., & Baxevanis, A. D. (1999). Threading analysis of prospero-type homeodomains. In Silico Biology, 1(3), 163–173.PubMed Banerjee-Basu, S., Landsman, D., & Baxevanis, A. D. (1999). Threading analysis of prospero-type homeodomains. In Silico Biology, 1(3), 163–173.PubMed
5.
go back to reference Ryter, J. M., Doe, C. Q., & Matthews, B. W. (2002). Structure of the DNA binding region of prospero reveals a novel homeo-prospero domain. Structure, 10(11), 1541–1549.PubMedCrossRef Ryter, J. M., Doe, C. Q., & Matthews, B. W. (2002). Structure of the DNA binding region of prospero reveals a novel homeo-prospero domain. Structure, 10(11), 1541–1549.PubMedCrossRef
6.
go back to reference Yousef, M. S., & Matthews, B. W. (2005). Structural basis of prospero-DNA interaction: implications for transcription regulation in developing cells. Structure, 13(4), 601–607.PubMedCrossRef Yousef, M. S., & Matthews, B. W. (2005). Structural basis of prospero-DNA interaction: implications for transcription regulation in developing cells. Structure, 13(4), 601–607.PubMedCrossRef
7.
go back to reference Song, K. H., Li, T., & Chiang, J. Y. (2006). A prospero-related homeodomain protein is a novel co-regulator of hepatocyte nuclear factor 4alpha that regulates the cholesterol 7alpha-hydroxylase gene. Journal of Biological Chemistry, 281(15), 10081–10088.PubMedCrossRef Song, K. H., Li, T., & Chiang, J. Y. (2006). A prospero-related homeodomain protein is a novel co-regulator of hepatocyte nuclear factor 4alpha that regulates the cholesterol 7alpha-hydroxylase gene. Journal of Biological Chemistry, 281(15), 10081–10088.PubMedCrossRef
8.
go back to reference Steffensen, K. R., Holter, E., Bavner, A., Nilsson, M., Pelto-Huikko, M., Tomarev, S., et al. (2004). Functional conservation of interactions between a homeodomain cofactor and a mammalian FTZ-F1 homologue. EMBO Reports, 5(6), 613–619.PubMedCrossRef Steffensen, K. R., Holter, E., Bavner, A., Nilsson, M., Pelto-Huikko, M., Tomarev, S., et al. (2004). Functional conservation of interactions between a homeodomain cofactor and a mammalian FTZ-F1 homologue. EMBO Reports, 5(6), 613–619.PubMedCrossRef
9.
go back to reference Chen, X., Patel, T. P., Simirskii, V. I., & Duncan, M. K. (2008). PCNA interacts with Prox1 and represses its transcriptional activity. Molecular Vision, 14, 2076–2086.PubMed Chen, X., Patel, T. P., Simirskii, V. I., & Duncan, M. K. (2008). PCNA interacts with Prox1 and represses its transcriptional activity. Molecular Vision, 14, 2076–2086.PubMed
10.
go back to reference Pan, M. R., Chang, T. M., Chang, H. C., Su, J. L., Wang, H. W., & Hung, W. C. (2009). Sumoylation of Prox1 controls its ability to induce VEGFR3 expression and lymphatic phenotypes in endothelial cells. Journal of Cell Science, 122(Pt 18), 3358–3364.PubMedCrossRef Pan, M. R., Chang, T. M., Chang, H. C., Su, J. L., Wang, H. W., & Hung, W. C. (2009). Sumoylation of Prox1 controls its ability to induce VEGFR3 expression and lymphatic phenotypes in endothelial cells. Journal of Cell Science, 122(Pt 18), 3358–3364.PubMedCrossRef
11.
go back to reference Shan, S. F., Wang, L. F., Zhai, J. W., Qin, Y., Ouyang, H. F., Kong, Y. Y., et al. (2008). Modulation of transcriptional corepressor activity of prospero-related homeobox protein (Prox1) by SUMO modification. FEBS Letters, 582(27), 3723–3728.PubMedCrossRef Shan, S. F., Wang, L. F., Zhai, J. W., Qin, Y., Ouyang, H. F., Kong, Y. Y., et al. (2008). Modulation of transcriptional corepressor activity of prospero-related homeobox protein (Prox1) by SUMO modification. FEBS Letters, 582(27), 3723–3728.PubMedCrossRef
12.
go back to reference Doe, C. Q., Chu-LaGraff, Q., Wright, D. M., & Scott, M. P. (1991). The prospero gene specifies cell fates in the Drosophila central nervous system. Cell, 65(3), 451–464.PubMedCrossRef Doe, C. Q., Chu-LaGraff, Q., Wright, D. M., & Scott, M. P. (1991). The prospero gene specifies cell fates in the Drosophila central nervous system. Cell, 65(3), 451–464.PubMedCrossRef
13.
go back to reference Betschinger, J., & Knoblich, J. A. (2004). Dare to be different: asymmetric cell division in Drosophila, C. elegans and vertebrates. Current Biology, 14(16), R674–R685.PubMedCrossRef Betschinger, J., & Knoblich, J. A. (2004). Dare to be different: asymmetric cell division in Drosophila, C. elegans and vertebrates. Current Biology, 14(16), R674–R685.PubMedCrossRef
14.
15.
go back to reference Myster, D. L., & Duronio, R. J. (2000). To differentiate or not to differentiate? Current Biology, 10(8), R302–R304.PubMedCrossRef Myster, D. L., & Duronio, R. J. (2000). To differentiate or not to differentiate? Current Biology, 10(8), R302–R304.PubMedCrossRef
16.
go back to reference Betschinger, J., Mechtler, K., & Knoblich, J. A. (2006). Asymmetric segregation of the tumor suppressor brat regulates self-renewal in Drosophila neural stem cells. Cell, 124(6), 1241–1253.PubMedCrossRef Betschinger, J., Mechtler, K., & Knoblich, J. A. (2006). Asymmetric segregation of the tumor suppressor brat regulates self-renewal in Drosophila neural stem cells. Cell, 124(6), 1241–1253.PubMedCrossRef
17.
18.
go back to reference Choksi, S. P., Southall, T. D., Bossing, T., Edoff, K., de Wit, E., Fischer, B. E., et al. (2006). Prospero acts as a binary switch between self-renewal and differentiation in Drosophila neural stem cells. Developmental Cell, 11(6), 775–789.PubMedCrossRef Choksi, S. P., Southall, T. D., Bossing, T., Edoff, K., de Wit, E., Fischer, B. E., et al. (2006). Prospero acts as a binary switch between self-renewal and differentiation in Drosophila neural stem cells. Developmental Cell, 11(6), 775–789.PubMedCrossRef
19.
go back to reference Hirata, J., Nakagoshi, H., Nabeshima, Y., & Matsuzaki, F. (1995). Asymmetric segregation of the homeodomain protein prospero during Drosophila development. Nature, 377(6550), 627–630.PubMedCrossRef Hirata, J., Nakagoshi, H., Nabeshima, Y., & Matsuzaki, F. (1995). Asymmetric segregation of the homeodomain protein prospero during Drosophila development. Nature, 377(6550), 627–630.PubMedCrossRef
20.
go back to reference Southall, T. D., & Brand, A. H. (2009). Neural stem cell transcriptional networks highlight genes essential for nervous system development. EMBO Journal, 28(24), 3799–3807.PubMedCrossRef Southall, T. D., & Brand, A. H. (2009). Neural stem cell transcriptional networks highlight genes essential for nervous system development. EMBO Journal, 28(24), 3799–3807.PubMedCrossRef
21.
go back to reference Griffiths, R. L., & Hidalgo, A. (2004). Prospero maintains the mitotic potential of glial precursors enabling them to respond to neurons. EMBO Journal, 23(12), 2440–2450.PubMedCrossRef Griffiths, R. L., & Hidalgo, A. (2004). Prospero maintains the mitotic potential of glial precursors enabling them to respond to neurons. EMBO Journal, 23(12), 2440–2450.PubMedCrossRef
22.
go back to reference Raff, M. C., Durand, B., & Gao, F. B. (1998). Cell number control and timing in animal development: the oligodendrocyte cell lineage. International Journal of Developmental Biology, 42(3), 263–267.PubMed Raff, M. C., Durand, B., & Gao, F. B. (1998). Cell number control and timing in animal development: the oligodendrocyte cell lineage. International Journal of Developmental Biology, 42(3), 263–267.PubMed
23.
go back to reference Stacey, S. M., Thomas, G. B., Labbe, A., & Van Meyel, D. J. (2007). Longitudinal glia in the fly CNS: pushing the envelope on glial diversity and neuron-glial interactions. Neuron Glia Biology, 3(1), 27–33.PubMedCrossRef Stacey, S. M., Thomas, G. B., Labbe, A., & Van Meyel, D. J. (2007). Longitudinal glia in the fly CNS: pushing the envelope on glial diversity and neuron-glial interactions. Neuron Glia Biology, 3(1), 27–33.PubMedCrossRef
24.
go back to reference Hidalgo, A., & Griffiths, R. (2004). Coupling glial numbers and axonal patterns. Cell Cycle, 3(9), 1118–1120.PubMedCrossRef Hidalgo, A., & Griffiths, R. (2004). Coupling glial numbers and axonal patterns. Cell Cycle, 3(9), 1118–1120.PubMedCrossRef
25.
go back to reference Freeman, M. R., Delrow, J., Kim, J., Johnson, E., & Doe, C. Q. (2003). Unwrapping glial biology: gcm target genes regulating glial development, diversification, and function. Neuron, 38(4), 567–580.PubMedCrossRef Freeman, M. R., Delrow, J., Kim, J., Johnson, E., & Doe, C. Q. (2003). Unwrapping glial biology: gcm target genes regulating glial development, diversification, and function. Neuron, 38(4), 567–580.PubMedCrossRef
26.
go back to reference Freeman, M. R., & Doe, C. Q. (2001). Asymmetric prospero localization is required to generate mixed neuronal/glial lineages in the Drosophila CNS. Development, 128(20), 4103–4112.PubMed Freeman, M. R., & Doe, C. Q. (2001). Asymmetric prospero localization is required to generate mixed neuronal/glial lineages in the Drosophila CNS. Development, 128(20), 4103–4112.PubMed
27.
go back to reference Hong, Y. K., & Detmar, M. (2003). Prox1, master regulator of the lymphatic vasculature phenotype. Cell and Tissue Research, 314(1), 85–92.PubMedCrossRef Hong, Y. K., & Detmar, M. (2003). Prox1, master regulator of the lymphatic vasculature phenotype. Cell and Tissue Research, 314(1), 85–92.PubMedCrossRef
28.
go back to reference Weller, M., & Tautz, D. (2003). Prospero and Snail expression during spider neurogenesis. Development Genes and Evolution, 213(11), 554–566.PubMedCrossRef Weller, M., & Tautz, D. (2003). Prospero and Snail expression during spider neurogenesis. Development Genes and Evolution, 213(11), 554–566.PubMedCrossRef
29.
go back to reference Wigle, J. T., Chowdhury, K., Gruss, P., & Oliver, G. (1999). Prox1 function is crucial for mouse lens-fibre elongation. Nature Genetics, 21(3), 318–322.PubMedCrossRef Wigle, J. T., Chowdhury, K., Gruss, P., & Oliver, G. (1999). Prox1 function is crucial for mouse lens-fibre elongation. Nature Genetics, 21(3), 318–322.PubMedCrossRef
30.
go back to reference Wigle, J. T., & Oliver, G. (1999). Prox1 function is required for the development of the murine lymphatic system. Cell, 98(6), 769–778.PubMedCrossRef Wigle, J. T., & Oliver, G. (1999). Prox1 function is required for the development of the murine lymphatic system. Cell, 98(6), 769–778.PubMedCrossRef
31.
go back to reference Galeeva, A., Treuter, E., Tomarev, S., & Pelto-Huikko, M. (2007). A prospero-related homeobox gene Prox-1 is expressed during postnatal brain development as well as in the adult rodent brain. Neuroscience, 146(2), 604–616.PubMedCrossRef Galeeva, A., Treuter, E., Tomarev, S., & Pelto-Huikko, M. (2007). A prospero-related homeobox gene Prox-1 is expressed during postnatal brain development as well as in the adult rodent brain. Neuroscience, 146(2), 604–616.PubMedCrossRef
32.
go back to reference Lavado, A., & Oliver, G. (2007). Prox1 expression patterns in the developing and adult murine brain. Developmental Dynamics, 236(2), 518–524.PubMedCrossRef Lavado, A., & Oliver, G. (2007). Prox1 expression patterns in the developing and adult murine brain. Developmental Dynamics, 236(2), 518–524.PubMedCrossRef
33.
go back to reference Kaltezioti, V., Kouroupi, G., Oikonomaki, M., Mantouvalou, E., Stergiopoulos, A., Charonis, A., et al. (2010). Prox1 regulates the notch1-mediated inhibition of neurogenesis. PLoS Biology, 8(12), e1000565.PubMedCrossRef Kaltezioti, V., Kouroupi, G., Oikonomaki, M., Mantouvalou, E., Stergiopoulos, A., Charonis, A., et al. (2010). Prox1 regulates the notch1-mediated inhibition of neurogenesis. PLoS Biology, 8(12), e1000565.PubMedCrossRef
34.
go back to reference Karalay, O., Doberauer, K., Vadodaria, K. C., Knobloch, M., Berti, L., Miquelajauregui, A., et al. (2011). Prospero-related homeobox 1 gene (Prox1) is regulated by canonical Wnt signaling and has a stage-specific role in adult hippocampal neurogenesis. Proceedings of the National Academy of Sciences of the United States of America, 108(14), 5807–5812.PubMedCrossRef Karalay, O., Doberauer, K., Vadodaria, K. C., Knobloch, M., Berti, L., Miquelajauregui, A., et al. (2011). Prospero-related homeobox 1 gene (Prox1) is regulated by canonical Wnt signaling and has a stage-specific role in adult hippocampal neurogenesis. Proceedings of the National Academy of Sciences of the United States of America, 108(14), 5807–5812.PubMedCrossRef
35.
go back to reference Misra, K., Gui, H., & Matise, M. P. (2008). Prox1 regulates a transitory state for interneuron neurogenesis in the spinal cord. Developmental Dynamics, 237(2), 393–402.PubMedCrossRef Misra, K., Gui, H., & Matise, M. P. (2008). Prox1 regulates a transitory state for interneuron neurogenesis in the spinal cord. Developmental Dynamics, 237(2), 393–402.PubMedCrossRef
36.
go back to reference Torii, M., Matsuzaki, F., Osumi, N., Kaibuchi, K., Nakamura, S., Casarosa, S., et al. (1999). Transcription factors Mash-1 and Prox-1 delineate early steps in differentiation of neural stem cells in the developing central nervous system. Development, 126(3), 443–456.PubMed Torii, M., Matsuzaki, F., Osumi, N., Kaibuchi, K., Nakamura, S., Casarosa, S., et al. (1999). Transcription factors Mash-1 and Prox-1 delineate early steps in differentiation of neural stem cells in the developing central nervous system. Development, 126(3), 443–456.PubMed
37.
go back to reference Elkouris, M., Balaskas, N., Poulou, M., Politis, P. K., Panayiotou, E., Malas, S., et al. (2011). Sox1 maintains the undifferentiated state of cortical neural progenitor cells via the suppression of Prox1-mediated cell cycle exit and neurogenesis. Stem Cells. doi:10.1002/stem.554. Elkouris, M., Balaskas, N., Poulou, M., Politis, P. K., Panayiotou, E., Malas, S., et al. (2011). Sox1 maintains the undifferentiated state of cortical neural progenitor cells via the suppression of Prox1-mediated cell cycle exit and neurogenesis. Stem Cells. doi:10.​1002/​stem.​554.
38.
go back to reference Deng, W., Aimone, J. B., & Gage, F. H. (2010). New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nature Reviews Neuroscience, 11(5), 339–350.PubMedCrossRef Deng, W., Aimone, J. B., & Gage, F. H. (2010). New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nature Reviews Neuroscience, 11(5), 339–350.PubMedCrossRef
39.
go back to reference Lavado, A., Lagutin, O. V., Chow, L. M., Baker, S. J., & Oliver, G. (2010). Prox1 is required for granule cell maturation and intermediate progenitor maintenance during brain neurogenesis. PLoS Biology. doi:10.1371/1000460. Lavado, A., Lagutin, O. V., Chow, L. M., Baker, S. J., & Oliver, G. (2010). Prox1 is required for granule cell maturation and intermediate progenitor maintenance during brain neurogenesis. PLoS Biology. doi:10.​1371/​1000460.
40.
go back to reference Duncan, M. K., Cui, W., Oh, D. J., & Tomarev, S. I. (2002). Prox1 is differentially localized during lens development. Mechanisms of Development, 112(1–2), 195–198.PubMedCrossRef Duncan, M. K., Cui, W., Oh, D. J., & Tomarev, S. I. (2002). Prox1 is differentially localized during lens development. Mechanisms of Development, 112(1–2), 195–198.PubMedCrossRef
41.
go back to reference Tomarev, S. I., Sundin, O., Banerjee-Basu, S., Duncan, M. K., Yang, J. M., & Piatigorsky, J. (1996). Chicken homeobox gene Prox 1 related to Drosophila prospero is expressed in the developing lens and retina. Developmental Dynamics, 206(4), 354–367.PubMedCrossRef Tomarev, S. I., Sundin, O., Banerjee-Basu, S., Duncan, M. K., Yang, J. M., & Piatigorsky, J. (1996). Chicken homeobox gene Prox 1 related to Drosophila prospero is expressed in the developing lens and retina. Developmental Dynamics, 206(4), 354–367.PubMedCrossRef
42.
go back to reference Dyer, M. A., Livesey, F. J., Cepko, C. L., & Oliver, G. (2003). Prox1 function controls progenitor cell proliferation and horizontal cell genesis in the mammalian retina. Nature Genetics, 34(1), 53–58.PubMedCrossRef Dyer, M. A., Livesey, F. J., Cepko, C. L., & Oliver, G. (2003). Prox1 function controls progenitor cell proliferation and horizontal cell genesis in the mammalian retina. Nature Genetics, 34(1), 53–58.PubMedCrossRef
43.
go back to reference Burke, Z., & Oliver, G. (2002). Prox1 is an early specific marker for the developing liver and pancreas in the mammalian foregut endoderm. Mechanisms of Development, 118(1–2), 147–155.PubMedCrossRef Burke, Z., & Oliver, G. (2002). Prox1 is an early specific marker for the developing liver and pancreas in the mammalian foregut endoderm. Mechanisms of Development, 118(1–2), 147–155.PubMedCrossRef
44.
go back to reference Sosa-Pineda, B., Wigle, J. T., & Oliver, G. (2000). Hepatocyte migration during liver development requires Prox1. Nature Genetics, 25(3), 254–255.PubMedCrossRef Sosa-Pineda, B., Wigle, J. T., & Oliver, G. (2000). Hepatocyte migration during liver development requires Prox1. Nature Genetics, 25(3), 254–255.PubMedCrossRef
45.
go back to reference Dufour, C. R., Levasseur, M. P., Pham, N. H., Eichner, L. J., Wilson, B. J., Charest-Marcotte, A., et al. (2011). Genomic convergence among ERRalpha, PROX1, and BMAL1 in the control of metabolic clock outputs. PLoS Genetics, 7(6), e1002143.PubMedCrossRef Dufour, C. R., Levasseur, M. P., Pham, N. H., Eichner, L. J., Wilson, B. J., Charest-Marcotte, A., et al. (2011). Genomic convergence among ERRalpha, PROX1, and BMAL1 in the control of metabolic clock outputs. PLoS Genetics, 7(6), e1002143.PubMedCrossRef
46.
go back to reference Charest-Marcotte, A., Dufour, C. R., Wilson, B. J., Tremblay, A. M., Eichner, L. J., Arlow, D. H., et al. (2010). The homeobox protein Prox1 is a negative modulator of ERR{alpha}/PGC-1{alpha} bioenergetic functions. Genes & Development, 24(6), 537–542.CrossRef Charest-Marcotte, A., Dufour, C. R., Wilson, B. J., Tremblay, A. M., Eichner, L. J., Arlow, D. H., et al. (2010). The homeobox protein Prox1 is a negative modulator of ERR{alpha}/PGC-1{alpha} bioenergetic functions. Genes & Development, 24(6), 537–542.CrossRef
47.
go back to reference Wang, J., Kilic, G., Aydin, M., Burke, Z., Oliver, G., & Sosa-Pineda, B. (2005). Prox1 activity controls pancreas morphogenesis and participates in the production of "secondary transition" pancreatic endocrine cells. Developmental Biology, 286(1), 182–194.PubMedCrossRef Wang, J., Kilic, G., Aydin, M., Burke, Z., Oliver, G., & Sosa-Pineda, B. (2005). Prox1 activity controls pancreas morphogenesis and participates in the production of "secondary transition" pancreatic endocrine cells. Developmental Biology, 286(1), 182–194.PubMedCrossRef
48.
go back to reference Wigle, J. T., Harvey, N., Detmar, M., Lagutina, I., Grosveld, G., Gunn, M. D., et al. (2002). An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype. EMBO Journal, 21(7), 1505–1513.PubMedCrossRef Wigle, J. T., Harvey, N., Detmar, M., Lagutina, I., Grosveld, G., Gunn, M. D., et al. (2002). An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype. EMBO Journal, 21(7), 1505–1513.PubMedCrossRef
49.
go back to reference Tammela, T., & Alitalo, K. (2010). Lymphangiogenesis: molecular mechanisms and future promise. Cell, 140(4), 460–476.PubMedCrossRef Tammela, T., & Alitalo, K. (2010). Lymphangiogenesis: molecular mechanisms and future promise. Cell, 140(4), 460–476.PubMedCrossRef
50.
go back to reference Johnson, N. C., Dillard, M. E., Baluk, P., McDonald, D. M., Harvey, N. L., Frase, S. L., et al. (2008). Lymphatic endothelial cell identity is reversible and its maintenance requires Prox1 activity. Genes & Development, 22(23), 3282–3291.CrossRef Johnson, N. C., Dillard, M. E., Baluk, P., McDonald, D. M., Harvey, N. L., Frase, S. L., et al. (2008). Lymphatic endothelial cell identity is reversible and its maintenance requires Prox1 activity. Genes & Development, 22(23), 3282–3291.CrossRef
51.
go back to reference Makinen, T., Norrmen, C., & Petrova, T. V. (2007). Molecular mechanisms of lymphatic vascular development. Cellular and Molecular Life Sciences, 64(15), 1915–1929.PubMedCrossRef Makinen, T., Norrmen, C., & Petrova, T. V. (2007). Molecular mechanisms of lymphatic vascular development. Cellular and Molecular Life Sciences, 64(15), 1915–1929.PubMedCrossRef
52.
go back to reference Petrova, T. V., Makinen, T., Makela, T. P., Saarela, J., Virtanen, I., Ferrell, R. E., et al. (2002). Lymphatic endothelial reprogramming of vascular endothelial cells by the Prox-1 homeobox transcription factor. EMBO Journal, 21(17), 4593–4599.PubMedCrossRef Petrova, T. V., Makinen, T., Makela, T. P., Saarela, J., Virtanen, I., Ferrell, R. E., et al. (2002). Lymphatic endothelial reprogramming of vascular endothelial cells by the Prox-1 homeobox transcription factor. EMBO Journal, 21(17), 4593–4599.PubMedCrossRef
53.
go back to reference Rodriguez-Niedenfuhr, M., Papoutsi, M., Christ, B., Nicolaides, K. H., von Kaisenberg, C. S., Tomarev, S. I., et al. (2001). Prox1 is a marker of ectodermal placodes, endodermal compartments, lymphatic endothelium and lymphangioblasts. Anat Embryol (Berl), 204(5), 399–406.CrossRef Rodriguez-Niedenfuhr, M., Papoutsi, M., Christ, B., Nicolaides, K. H., von Kaisenberg, C. S., Tomarev, S. I., et al. (2001). Prox1 is a marker of ectodermal placodes, endodermal compartments, lymphatic endothelium and lymphangioblasts. Anat Embryol (Berl), 204(5), 399–406.CrossRef
54.
go back to reference Risebro, C. A., Searles, R. G., Melville, A. A., Ehler, E., Jina, N., Shah, S., et al. (2009). Prox1 maintains muscle structure and growth in the developing heart. Development, 136(3), 495–505.PubMedCrossRef Risebro, C. A., Searles, R. G., Melville, A. A., Ehler, E., Jina, N., Shah, S., et al. (2009). Prox1 maintains muscle structure and growth in the developing heart. Development, 136(3), 495–505.PubMedCrossRef
55.
go back to reference Louis, D. N., Ohgaki, H., Wiestler, O. D., Cavenee, W. K., Burger, P. C., Jouvet, A., et al. (2007). The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathologica, 114(2), 97–109.PubMedCrossRef Louis, D. N., Ohgaki, H., Wiestler, O. D., Cavenee, W. K., Burger, P. C., Jouvet, A., et al. (2007). The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathologica, 114(2), 97–109.PubMedCrossRef
56.
go back to reference Furnari, F. B., Fenton, T., Bachoo, R. M., Mukasa, A., Stommel, J. M., Stegh, A., et al. (2007). Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes & Development, 21(21), 2683–2710.CrossRef Furnari, F. B., Fenton, T., Bachoo, R. M., Mukasa, A., Stommel, J. M., Stegh, A., et al. (2007). Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes & Development, 21(21), 2683–2710.CrossRef
57.
go back to reference Elsir, T., Eriksson, A., Orrego, A., Lindstrom, M. S., & Nister, M. (2010). Expression of PROX1 Is a common feature of high-grade malignant astrocytic gliomas. Journal of Neuropathology and Experimental Neurology, 69(2), 129–138.PubMedCrossRef Elsir, T., Eriksson, A., Orrego, A., Lindstrom, M. S., & Nister, M. (2010). Expression of PROX1 Is a common feature of high-grade malignant astrocytic gliomas. Journal of Neuropathology and Experimental Neurology, 69(2), 129–138.PubMedCrossRef
58.
go back to reference Elsir, T., Qu, M., Berntsson, S. G., Orrego, A., Olofsson, T., Lindstrom, M. S., et al. (2011). PROX1 is a predictor of survival for gliomas WHO grade II. British Journal of Cancer, 104(11), 1747–1754.PubMedCrossRef Elsir, T., Qu, M., Berntsson, S. G., Orrego, A., Olofsson, T., Lindstrom, M. S., et al. (2011). PROX1 is a predictor of survival for gliomas WHO grade II. British Journal of Cancer, 104(11), 1747–1754.PubMedCrossRef
59.
go back to reference Holmberg, J., He, X., Peredo, I., Orrego, A., Hesselager, G., Ericsson, C., et al. (2011). Activation of neural and pluripotent stem cell signatures correlates with increased malignancy in human glioma. PLoS One. doi:10.1371/journal.pone.0018454. Holmberg, J., He, X., Peredo, I., Orrego, A., Hesselager, G., Ericsson, C., et al. (2011). Activation of neural and pluripotent stem cell signatures correlates with increased malignancy in human glioma. PLoS One. doi:10.​1371/​journal.​pone.​0018454.
60.
go back to reference Grau, S. J., Trillsch, F., von Luttichau, I., Nelson, P. J., Herms, J., Tonn, J. C., et al. (2008). Lymphatic phenotype of tumour vessels in malignant gliomas. Neuropathology and Applied Neurobiology, 34(6), 675–679.PubMedCrossRef Grau, S. J., Trillsch, F., von Luttichau, I., Nelson, P. J., Herms, J., Tonn, J. C., et al. (2008). Lymphatic phenotype of tumour vessels in malignant gliomas. Neuropathology and Applied Neurobiology, 34(6), 675–679.PubMedCrossRef
61.
go back to reference Jenny, B., Harrison, J. A., Baetens, D., Tille, J. C., Burkhardt, K., Mottaz, H., et al. (2006). Expression and localization of VEGF-C and VEGFR-3 in glioblastomas and haemangioblastomas. The Journal of Pathology, 209(1), 34–43.PubMedCrossRef Jenny, B., Harrison, J. A., Baetens, D., Tille, J. C., Burkhardt, K., Mottaz, H., et al. (2006). Expression and localization of VEGF-C and VEGFR-3 in glioblastomas and haemangioblastomas. The Journal of Pathology, 209(1), 34–43.PubMedCrossRef
62.
go back to reference Mueller, S., & Matthay, K. K. (2009). Neuroblastoma: biology and staging. Current Oncology Reports, 11(6), 431–438.PubMedCrossRef Mueller, S., & Matthay, K. K. (2009). Neuroblastoma: biology and staging. Current Oncology Reports, 11(6), 431–438.PubMedCrossRef
63.
go back to reference Becker, J., Wang, B., Pavlakovic, H., Buttler, K., & Wilting, J. (2010). Homeobox transcription factor Prox1 in sympathetic ganglia of vertebrate embryos: correlation with human stage 4 s neuroblastoma. Pediatric Research, 68(2), 112–117.PubMedCrossRef Becker, J., Wang, B., Pavlakovic, H., Buttler, K., & Wilting, J. (2010). Homeobox transcription factor Prox1 in sympathetic ganglia of vertebrate embryos: correlation with human stage 4 s neuroblastoma. Pediatric Research, 68(2), 112–117.PubMedCrossRef
64.
go back to reference Kinzler, K. W., & Vogelstein, B. (1996). Lessons from hereditary colorectal cancer. Cell, 87(2), 159–170.PubMedCrossRef Kinzler, K. W., & Vogelstein, B. (1996). Lessons from hereditary colorectal cancer. Cell, 87(2), 159–170.PubMedCrossRef
65.
go back to reference Petrova, T. V., Nykanen, A., Norrmen, C., Ivanov, K. I., Andersson, L. C., Haglund, C., et al. (2008). Transcription factor PROX1 induces colon cancer progression by promoting the transition from benign to highly dysplastic phenotype. Cancer Cell, 13(5), 407–419.PubMedCrossRef Petrova, T. V., Nykanen, A., Norrmen, C., Ivanov, K. I., Andersson, L. C., Haglund, C., et al. (2008). Transcription factor PROX1 induces colon cancer progression by promoting the transition from benign to highly dysplastic phenotype. Cancer Cell, 13(5), 407–419.PubMedCrossRef
66.
go back to reference Edvardsson, K., Strom, A., Jonsson, P., Gustafsson, J. A., & Williams, C. (2011). Estrogen receptor beta induces antiinflammatory and antitumorigenic networks in colon cancer cells. Molecular Endocrinology, 25(6), 969–979.PubMedCrossRef Edvardsson, K., Strom, A., Jonsson, P., Gustafsson, J. A., & Williams, C. (2011). Estrogen receptor beta induces antiinflammatory and antitumorigenic networks in colon cancer cells. Molecular Endocrinology, 25(6), 969–979.PubMedCrossRef
67.
go back to reference Skog, M., Bono, P., Lundin, M., Lundin, J., Louhimo, J., Linder, N., et al. (2011). Expression and prognostic value of transcription factor PROX1 in colorectal cancer. British Journal of Cancer, 2011(4), 297. Skog, M., Bono, P., Lundin, M., Lundin, J., Louhimo, J., Linder, N., et al. (2011). Expression and prognostic value of transcription factor PROX1 in colorectal cancer. British Journal of Cancer, 2011(4), 297.
68.
go back to reference Shimoda, M., Takahashi, M., Yoshimoto, T., Kono, T., Ikai, I., & Kubo, H. (2006). A homeobox protein, prox1, is involved in the differentiation, proliferation, and prognosis in hepatocellular carcinoma. Clinical Cancer Research, 12(20 Pt 1), 6005–6011.PubMedCrossRef Shimoda, M., Takahashi, M., Yoshimoto, T., Kono, T., Ikai, I., & Kubo, H. (2006). A homeobox protein, prox1, is involved in the differentiation, proliferation, and prognosis in hepatocellular carcinoma. Clinical Cancer Research, 12(20 Pt 1), 6005–6011.PubMedCrossRef
69.
go back to reference Akagami, M., Kawada, K., Kubo, H., Kawada, M., Takahashi, M., Kaganoi, J., et al. (2011). Transcriptional factor Prox1 plays an essential role in the antiproliferative action of interferon-gamma in esophageal cancer cells. Annals of Surgical Oncology, 18(13), 3868–3877.PubMedCrossRef Akagami, M., Kawada, K., Kubo, H., Kawada, M., Takahashi, M., Kaganoi, J., et al. (2011). Transcriptional factor Prox1 plays an essential role in the antiproliferative action of interferon-gamma in esophageal cancer cells. Annals of Surgical Oncology, 18(13), 3868–3877.PubMedCrossRef
70.
go back to reference Kaganoi, J., Watanabe, G., Okabe, M., Nagatani, S., Kawabe, A., Shimada, Y., et al. (2007). STAT1 activation-induced apoptosis of esophageal squamous cell carcinoma cells in vivo. Annals of Surgical Oncology, 14(4), 1405–1415.PubMedCrossRef Kaganoi, J., Watanabe, G., Okabe, M., Nagatani, S., Kawabe, A., Shimada, Y., et al. (2007). STAT1 activation-induced apoptosis of esophageal squamous cell carcinoma cells in vivo. Annals of Surgical Oncology, 14(4), 1405–1415.PubMedCrossRef
71.
go back to reference Schneider, M., Buchler, P., Giese, N., Giese, T., Wilting, J., Buchler, M. W., et al. (2006). Role of lymphangiogenesis and lymphangiogenic factors during pancreatic cancer progression and lymphatic spread. International Journal of Oncology, 28(4), 883–890.PubMed Schneider, M., Buchler, P., Giese, N., Giese, T., Wilting, J., Buchler, M. W., et al. (2006). Role of lymphangiogenesis and lymphangiogenic factors during pancreatic cancer progression and lymphatic spread. International Journal of Oncology, 28(4), 883–890.PubMed
72.
go back to reference Laerm, A., Helmbold, P., Goldberg, M., Dammann, R., Holzhausen, H. J., & Ballhausen, W. G. (2007). Prospero-related homeobox 1 (PROX1) is frequently inactivated by genomic deletions and epigenetic silencing in carcinomas of the bilary system. Journal of Hepatology, 46(1), 89–97.PubMedCrossRef Laerm, A., Helmbold, P., Goldberg, M., Dammann, R., Holzhausen, H. J., & Ballhausen, W. G. (2007). Prospero-related homeobox 1 (PROX1) is frequently inactivated by genomic deletions and epigenetic silencing in carcinomas of the bilary system. Journal of Hepatology, 46(1), 89–97.PubMedCrossRef
73.
go back to reference Nagai, H., Li, Y., Hatano, S., Toshihito, O., Yuge, M., Ito, E., et al. (2003). Mutations and aberrant DNA methylation of the PROX1 gene in hematologic malignancies. Genes, Chromosomes & Cancer, 38(1), 13–21.CrossRef Nagai, H., Li, Y., Hatano, S., Toshihito, O., Yuge, M., Ito, E., et al. (2003). Mutations and aberrant DNA methylation of the PROX1 gene in hematologic malignancies. Genes, Chromosomes & Cancer, 38(1), 13–21.CrossRef
74.
go back to reference Versmold, B., Felsberg, J., Mikeska, T., Ehrentraut, D., Kohler, J., Hampl, J. A., et al. (2007). Epigenetic silencing of the candidate tumor suppressor gene PROX1 in sporadic breast cancer. International Journal of Cancer, 121(3), 547–554.CrossRef Versmold, B., Felsberg, J., Mikeska, T., Ehrentraut, D., Kohler, J., Hampl, J. A., et al. (2007). Epigenetic silencing of the candidate tumor suppressor gene PROX1 in sporadic breast cancer. International Journal of Cancer, 121(3), 547–554.CrossRef
75.
go back to reference Uldrick, T. S., & Whitby, D. (2011). Update on KSHV epidemiology, Kaposi Sarcoma pathogenesis, and treatment of Kaposi Sarcoma. Cancer Letters, 305(2), 150–162.PubMedCrossRef Uldrick, T. S., & Whitby, D. (2011). Update on KSHV epidemiology, Kaposi Sarcoma pathogenesis, and treatment of Kaposi Sarcoma. Cancer Letters, 305(2), 150–162.PubMedCrossRef
76.
go back to reference Jussila, L., Valtola, R., Partanen, T. A., Salven, P., Heikkila, P., Matikainen, M. T., et al. (1998). Lymphatic endothelium and Kaposi's sarcoma spindle cells detected by antibodies against the vascular endothelial growth factor receptor-3. Cancer Research, 58(8), 1599–1604.PubMed Jussila, L., Valtola, R., Partanen, T. A., Salven, P., Heikkila, P., Matikainen, M. T., et al. (1998). Lymphatic endothelium and Kaposi's sarcoma spindle cells detected by antibodies against the vascular endothelial growth factor receptor-3. Cancer Research, 58(8), 1599–1604.PubMed
77.
go back to reference Hong, Y. K., Foreman, K., Shin, J. W., Hirakawa, S., Curry, C. L., Sage, D. R., et al. (2004). Lymphatic reprogramming of blood vascular endothelium by Kaposi sarcoma-associated herpesvirus. Nature Genetics, 36(7), 683–685.PubMedCrossRef Hong, Y. K., Foreman, K., Shin, J. W., Hirakawa, S., Curry, C. L., Sage, D. R., et al. (2004). Lymphatic reprogramming of blood vascular endothelium by Kaposi sarcoma-associated herpesvirus. Nature Genetics, 36(7), 683–685.PubMedCrossRef
78.
go back to reference Yoo, J., Kang, J., Lee, H. N., Aguilar, B., Kafka, D., Lee, S., et al. (2010). Kaposin-B enhances the PROX1 mRNA stability during lymphatic reprogramming of vascular endothelial cells by Kaposi's sarcoma herpes virus. PLoS Pathogens, 6(8), e1001046.PubMedCrossRef Yoo, J., Kang, J., Lee, H. N., Aguilar, B., Kafka, D., Lee, S., et al. (2010). Kaposin-B enhances the PROX1 mRNA stability during lymphatic reprogramming of vascular endothelial cells by Kaposi's sarcoma herpes virus. PLoS Pathogens, 6(8), e1001046.PubMedCrossRef
79.
go back to reference Elyada, E., Pribluda, A., Goldstein, R. E., Morgenstern, Y., Brachya, G., Cojocaru, G., et al. (2011). CKIalpha ablation highlights a critical role for p53 in invasiveness control. Nature, 470(7334), 409–413.PubMedCrossRef Elyada, E., Pribluda, A., Goldstein, R. E., Morgenstern, Y., Brachya, G., Cojocaru, G., et al. (2011). CKIalpha ablation highlights a critical role for p53 in invasiveness control. Nature, 470(7334), 409–413.PubMedCrossRef
80.
go back to reference Dadras, S. S., Skrzypek, A., Nguyen, L., Shin, J. W., Schulz, M. M., Arbiser, J., et al. (2008). Prox-1 promotes invasion of kaposiform hemangioendotheliomas. The Journal of Investigative Dermatology, 128(12), 2798–2806.PubMedCrossRef Dadras, S. S., Skrzypek, A., Nguyen, L., Shin, J. W., Schulz, M. M., Arbiser, J., et al. (2008). Prox-1 promotes invasion of kaposiform hemangioendotheliomas. The Journal of Investigative Dermatology, 128(12), 2798–2806.PubMedCrossRef
81.
go back to reference Cao, Y. (2005). Opinion: emerging mechanisms of tumour lymphangiogenesis and lymphatic metastasis. Nature Reviews. Cancer, 5(9), 735–743.PubMedCrossRef Cao, Y. (2005). Opinion: emerging mechanisms of tumour lymphangiogenesis and lymphatic metastasis. Nature Reviews. Cancer, 5(9), 735–743.PubMedCrossRef
83.
go back to reference Hope, K. J., Cellot, S., Ting, S. B., MacRae, T., Mayotte, N., Iscove, N. N., et al. (2010). An RNAi screen identifies Msi2 and Prox1 as having opposite roles in the regulation of hematopoietic stem cell activity. Cell Stem Cell, 7(1), 101–113.PubMedCrossRef Hope, K. J., Cellot, S., Ting, S. B., MacRae, T., Mayotte, N., Iscove, N. N., et al. (2010). An RNAi screen identifies Msi2 and Prox1 as having opposite roles in the regulation of hematopoietic stem cell activity. Cell Stem Cell, 7(1), 101–113.PubMedCrossRef
84.
go back to reference Monzani, E., Facchetti, F., Galmozzi, E., Corsini, E., Benetti, A., Cavazzin, C., et al. (2007). Melanoma contains CD133 and ABCG2 positive cells with enhanced tumourigenic potential. European Journal of Cancer, 43(5), 935–946.PubMedCrossRef Monzani, E., Facchetti, F., Galmozzi, E., Corsini, E., Benetti, A., Cavazzin, C., et al. (2007). Melanoma contains CD133 and ABCG2 positive cells with enhanced tumourigenic potential. European Journal of Cancer, 43(5), 935–946.PubMedCrossRef
85.
go back to reference Balla, M. M., Vemuganti, G. K., Kannabiran, C., Honavar, S. G., & Murthy, R. (2009). Phenotypic characterization of retinoblastoma for the presence of putative cancer stem-like cell markers by flow cytometry. Investigative Ophthalmology & Visual Science, 50(4), 1506–1514.CrossRef Balla, M. M., Vemuganti, G. K., Kannabiran, C., Honavar, S. G., & Murthy, R. (2009). Phenotypic characterization of retinoblastoma for the presence of putative cancer stem-like cell markers by flow cytometry. Investigative Ophthalmology & Visual Science, 50(4), 1506–1514.CrossRef
86.
go back to reference Steiner, B., Zurborg, S., Horster, H., Fabel, K., & Kempermann, G. (2008). Differential 24 h responsiveness of Prox1-expressing precursor cells in adult hippocampal neurogenesis to physical activity, environmental enrichment, and kainic acid-induced seizures. Neuroscience, 154(2), 521–529.PubMedCrossRef Steiner, B., Zurborg, S., Horster, H., Fabel, K., & Kempermann, G. (2008). Differential 24 h responsiveness of Prox1-expressing precursor cells in adult hippocampal neurogenesis to physical activity, environmental enrichment, and kainic acid-induced seizures. Neuroscience, 154(2), 521–529.PubMedCrossRef
87.
go back to reference Zheng, H., Ying, H., Yan, H., Kimmelman, A. C., Hiller, D. J., Chen, A. J., et al. (2008). Pten and p53 converge on c-Myc to control differentiation, self-renewal, and transformation of normal and neoplastic stem cells in glioblastoma. Cold Spring Harbor Symposia on Quantitative Biology, 73, 427–437.PubMedCrossRef Zheng, H., Ying, H., Yan, H., Kimmelman, A. C., Hiller, D. J., Chen, A. J., et al. (2008). Pten and p53 converge on c-Myc to control differentiation, self-renewal, and transformation of normal and neoplastic stem cells in glioblastoma. Cold Spring Harbor Symposia on Quantitative Biology, 73, 427–437.PubMedCrossRef
88.
go back to reference Srinivasan, R. S., Geng, X., Yang, Y., Wang, Y., Mukatira, S., Studer, M., et al. (2010). The nuclear hormone receptor Coup-TFII is required for the initiation and early maintenance of Prox1 expression in lymphatic endothelial cells. Genes & Development, 24(7), 696–707.CrossRef Srinivasan, R. S., Geng, X., Yang, Y., Wang, Y., Mukatira, S., Studer, M., et al. (2010). The nuclear hormone receptor Coup-TFII is required for the initiation and early maintenance of Prox1 expression in lymphatic endothelial cells. Genes & Development, 24(7), 696–707.CrossRef
89.
go back to reference Yoshimatsu, Y., Yamazaki, T., Mihira, H., Itoh, T., Suehiro, J., Yuki, K., et al. (2011). Ets family members induce lymphangiogenesis through physical and functional interaction with Prox1. Journal of Cell Science, 124(Pt 16), 2753–2762.PubMedCrossRef Yoshimatsu, Y., Yamazaki, T., Mihira, H., Itoh, T., Suehiro, J., Yuki, K., et al. (2011). Ets family members induce lymphangiogenesis through physical and functional interaction with Prox1. Journal of Cell Science, 124(Pt 16), 2753–2762.PubMedCrossRef
90.
go back to reference Azuma, K., Urano, T., Watabe, T., Ouchi, Y., & Inoue, S. (2011). PROX1 suppresses vitamin K-induced transcriptional activity of steroid and xenobiotic receptor. Genes to Cells, 16(11), 1063–1070.PubMedCrossRef Azuma, K., Urano, T., Watabe, T., Ouchi, Y., & Inoue, S. (2011). PROX1 suppresses vitamin K-induced transcriptional activity of steroid and xenobiotic receptor. Genes to Cells, 16(11), 1063–1070.PubMedCrossRef
91.
go back to reference Takahashi, M., Yoshimoto, T., Shimoda, M., Kono, T., Koizumi, M., Yazumi, S., et al. (2006). Loss of function of the candidate tumor suppressor prox1 by RNA mutation in human cancer cells. Neoplasia, 8(12), 1003–1010.PubMedCrossRef Takahashi, M., Yoshimoto, T., Shimoda, M., Kono, T., Koizumi, M., Yazumi, S., et al. (2006). Loss of function of the candidate tumor suppressor prox1 by RNA mutation in human cancer cells. Neoplasia, 8(12), 1003–1010.PubMedCrossRef
92.
go back to reference Dudas, J., Mansuroglu, T., Moriconi, F., Haller, F., Wilting, J., Lorf, T., et al. (2008). Altered regulation of Prox1-gene-expression in liver tumors. BMC Cancer, 8(92), 92.PubMedCrossRef Dudas, J., Mansuroglu, T., Moriconi, F., Haller, F., Wilting, J., Lorf, T., et al. (2008). Altered regulation of Prox1-gene-expression in liver tumors. BMC Cancer, 8(92), 92.PubMedCrossRef
93.
go back to reference Yoshimoto, T., Takahashi, M., Nagayama, S., Watanabe, G., Shimada, Y., Sakasi, Y., et al. (2007). RNA mutations of prox1 detected in human esophageal cancer cells by the shifted termination assay. Biochemical and Biophysical Research Communications, 359(2), 258–262.PubMedCrossRef Yoshimoto, T., Takahashi, M., Nagayama, S., Watanabe, G., Shimada, Y., Sakasi, Y., et al. (2007). RNA mutations of prox1 detected in human esophageal cancer cells by the shifted termination assay. Biochemical and Biophysical Research Communications, 359(2), 258–262.PubMedCrossRef
Metadata
Title
Transcription factor PROX1: its role in development and cancer
Authors
Tamador Elsir
Anja Smits
Mikael S. Lindström
Monica Nistér
Publication date
01-12-2012
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 3-4/2012
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-012-9390-8

Other articles of this Issue 3-4/2012

Cancer and Metastasis Reviews 3-4/2012 Go to the issue

Announcement

Biographies

Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine