Skip to main content
Top
Published in: Cancer and Metastasis Reviews 3-4/2012

01-12-2012

Genes associate with abnormal bone cell activity in bone metastasis

Author: G. David Roodman

Published in: Cancer and Metastasis Reviews | Issue 3-4/2012

Login to get access

Abstract

Bone is one of the most frequent sites of metastasis in patients with malignancies. Up to 90 % of patients with multiple myeloma, and 60 % to 75 % patients with prostate cancer and breast cancer develop bone metastasis at the later stages of their diseases. Bone metastases are responsible for tremendous morbidity in patients with cancer, including severe bone pain, pathologic fractures, spinal cord and nerve compression syndromes, life-threatening hypercalcemia, and increased mortality. Multiple factors produced by tumor cells or produced by the bone marrow microenvironment in response to tumor cells play important roles in activation of osteoclastic bone resorption and modulation of osteoblastic activity in patients with bone metastasis. In this chapter, we will review the genes that play important roles in bone destruction, tumor growth, and osteoblast activity in bone metastasis and discuss the potential therapies targeting the products of these genes to block both bone destruction and tumor growth.
Literature
2.
go back to reference Coleman, R. E. (2001). Metastatic bone disease: clinical features, pathophysiology and treatment strategies. Cancer Treatment Reviews, 27, 165–176.PubMedCrossRef Coleman, R. E. (2001). Metastatic bone disease: clinical features, pathophysiology and treatment strategies. Cancer Treatment Reviews, 27, 165–176.PubMedCrossRef
3.
go back to reference Mundy, G. R. (2002). Metastasis to bone: causes, consequences and therapeutic opportunities. Nature Reviews Cancer, 2, 584–593.PubMedCrossRef Mundy, G. R. (2002). Metastasis to bone: causes, consequences and therapeutic opportunities. Nature Reviews Cancer, 2, 584–593.PubMedCrossRef
4.
go back to reference Lipton, A. (2004). Pathophysiology of bone metastases: how this knowledge may lead to therapeutic intervention. Journal of Supportive Oncology, 2(3), 205–213. discussion 213–214, 216–217, 219–220.PubMed Lipton, A. (2004). Pathophysiology of bone metastases: how this knowledge may lead to therapeutic intervention. Journal of Supportive Oncology, 2(3), 205–213. discussion 213–214, 216–217, 219–220.PubMed
5.
go back to reference Rosen, L. S., Gordon, D., Kaminski, M., Howell, A., Belch, A., Mackey, J., Apffelstaedt, J., Hussein, M. A., Coleman, R. E., Reitsma, D. J., Chen, B. L., & Seaman, J. J. (2003). Long-term efficacy and safety of zoledronic acid compared with pamidronate disodium in the treatment of skeletal complications in patients with advanced multiple myeloma or breast carcinoma: a randomized, double-blind, multicenter, comparative trial. Cancer, 98(8), 1735–1744.PubMedCrossRef Rosen, L. S., Gordon, D., Kaminski, M., Howell, A., Belch, A., Mackey, J., Apffelstaedt, J., Hussein, M. A., Coleman, R. E., Reitsma, D. J., Chen, B. L., & Seaman, J. J. (2003). Long-term efficacy and safety of zoledronic acid compared with pamidronate disodium in the treatment of skeletal complications in patients with advanced multiple myeloma or breast carcinoma: a randomized, double-blind, multicenter, comparative trial. Cancer, 98(8), 1735–1744.PubMedCrossRef
6.
go back to reference Chirgwin, J. M., & Guise, T. A. (2000). Molecular mechanisms of tumor–bone interactions in osteolytic metastases. Critical Reviews in Eukaryotic Gene Expression, 10(2), 159–178.PubMedCrossRef Chirgwin, J. M., & Guise, T. A. (2000). Molecular mechanisms of tumor–bone interactions in osteolytic metastases. Critical Reviews in Eukaryotic Gene Expression, 10(2), 159–178.PubMedCrossRef
7.
go back to reference Taube, T., Elomaa, I., Blomqvist, C., et al. (1994). Histomorphometric evidence for osteoclast-mediated bone resorption in metastatic breast cancer. Bone, 15(2), 161–166.PubMedCrossRef Taube, T., Elomaa, I., Blomqvist, C., et al. (1994). Histomorphometric evidence for osteoclast-mediated bone resorption in metastatic breast cancer. Bone, 15(2), 161–166.PubMedCrossRef
8.
go back to reference Boyde A, Maconnachie E, Reid SA, et al. (1986). Scanning electron microscopy in bone pathology: review of methods, potential and applications. Scan Electron Microsc (Pt 4), 1537–1554. Boyde A, Maconnachie E, Reid SA, et al. (1986). Scanning electron microscopy in bone pathology: review of methods, potential and applications. Scan Electron Microsc (Pt 4), 1537–1554.
9.
go back to reference Fowler, J. A., Edwards, C. M., & Croucher, P. I. (2011). Tumor-host cell interactions in the bone disease of myeloma. Molecular mechanisms of breast cancer metastases to bone. Bone, 48(1), 121–128.PubMedCrossRef Fowler, J. A., Edwards, C. M., & Croucher, P. I. (2011). Tumor-host cell interactions in the bone disease of myeloma. Molecular mechanisms of breast cancer metastases to bone. Bone, 48(1), 121–128.PubMedCrossRef
10.
go back to reference Guise, T. A., Kozlow, W. M., Heras-Herzig, A., Padalecki, S. S., Yin, J. J., & Chirgwin, J. M. (2005). Molecular mechanisms of breast cancer metastases to bone. Clinical Breast Cancer, 5(Suppl(2)), S46–S53.PubMedCrossRef Guise, T. A., Kozlow, W. M., Heras-Herzig, A., Padalecki, S. S., Yin, J. J., & Chirgwin, J. M. (2005). Molecular mechanisms of breast cancer metastases to bone. Clinical Breast Cancer, 5(Suppl(2)), S46–S53.PubMedCrossRef
11.
go back to reference Roodman, G. D. (2004). Mechanisms of bone metastasis. The New England Journal of Medicine, 350(16), 1655–1664.PubMedCrossRef Roodman, G. D. (2004). Mechanisms of bone metastasis. The New England Journal of Medicine, 350(16), 1655–1664.PubMedCrossRef
12.
go back to reference Cackowski, F. C., Anderson, J. L., Patrene, K. D., Choksi, R. J., Shapiro, S. D., Windle, J. J., Blair, H. C., & Roodman, G. D. (2010). Osteoclasts are important for bone angiogenesis. Blood, 115(1), 140–149.PubMedCrossRef Cackowski, F. C., Anderson, J. L., Patrene, K. D., Choksi, R. J., Shapiro, S. D., Windle, J. J., Blair, H. C., & Roodman, G. D. (2010). Osteoclasts are important for bone angiogenesis. Blood, 115(1), 140–149.PubMedCrossRef
13.
go back to reference Lacey, D. L., Timms, E., Tan, H. L., et al. (1998). Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell, 93(2), 165–176.PubMedCrossRef Lacey, D. L., Timms, E., Tan, H. L., et al. (1998). Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell, 93(2), 165–176.PubMedCrossRef
14.
go back to reference Dougall, W. C., Glaccum, M., Charrier, K., et al. (1999). RANK is essential for osteoclast and lymph node development. Genes & Development, 13(18), 2412–2424.CrossRef Dougall, W. C., Glaccum, M., Charrier, K., et al. (1999). RANK is essential for osteoclast and lymph node development. Genes & Development, 13(18), 2412–2424.CrossRef
15.
go back to reference Sezer, O., Heider, U., Jakob, C., et al. (2002). Human bone marrow myeloma cells express RANKL. Journal of Clinical Oncology, 20(1), 353–354.PubMed Sezer, O., Heider, U., Jakob, C., et al. (2002). Human bone marrow myeloma cells express RANKL. Journal of Clinical Oncology, 20(1), 353–354.PubMed
16.
go back to reference Huang, L., Cheng, Y. Y., Chow, L. T. C., Zheng, M. H., & Kumta, S. M. (2002). Tumour cells produce receptor activator of NF-κB ligand (RANKL) in skeletal metastases. J Clin Path, 55(11), 877–878.PubMedCrossRef Huang, L., Cheng, Y. Y., Chow, L. T. C., Zheng, M. H., & Kumta, S. M. (2002). Tumour cells produce receptor activator of NF-κB ligand (RANKL) in skeletal metastases. J Clin Path, 55(11), 877–878.PubMedCrossRef
17.
go back to reference Hofbauer, L. C., Khosla, S., Dunstan, C. R., Lacey, D. L., Boyle, W. J., & Riggs, B. L. (2000). The roles of osteoprotegerin and osteoprotegerin ligand in the paracrine regulation of bone resorption. Journal of Bone and Mineral Research, 15(1), 2–12.PubMedCrossRef Hofbauer, L. C., Khosla, S., Dunstan, C. R., Lacey, D. L., Boyle, W. J., & Riggs, B. L. (2000). The roles of osteoprotegerin and osteoprotegerin ligand in the paracrine regulation of bone resorption. Journal of Bone and Mineral Research, 15(1), 2–12.PubMedCrossRef
18.
go back to reference Fuller, K., Wong, B., Fox, S., Choi, Y., & Chambers, T. J. (1998). TRANCE is necessary and sufficient for osteoblast-mediated activation of bone resorption in osteoclasts. The Journal of Experimental Medicine, 188(5), 997–1001.PubMedCrossRef Fuller, K., Wong, B., Fox, S., Choi, Y., & Chambers, T. J. (1998). TRANCE is necessary and sufficient for osteoblast-mediated activation of bone resorption in osteoclasts. The Journal of Experimental Medicine, 188(5), 997–1001.PubMedCrossRef
19.
go back to reference Roodman, G. D. (1999). Cell biology of the osteoclast. Experimental Hematology, 27(8), 1229–1241.PubMedCrossRef Roodman, G. D. (1999). Cell biology of the osteoclast. Experimental Hematology, 27(8), 1229–1241.PubMedCrossRef
20.
go back to reference Tsukii, K., Shima, N., Mochizuki, S., et al. (1998). Osteoclast differentiation factor mediates an essential signal for bone resorption induced by 1 alpha, 25-dihydroxyvitamin D3, prostaglandin E2, or parathyroid hormone in the microenvironment of bone. Biochemical and Biophysical Research Communications, 246(2), 337–341.PubMedCrossRef Tsukii, K., Shima, N., Mochizuki, S., et al. (1998). Osteoclast differentiation factor mediates an essential signal for bone resorption induced by 1 alpha, 25-dihydroxyvitamin D3, prostaglandin E2, or parathyroid hormone in the microenvironment of bone. Biochemical and Biophysical Research Communications, 246(2), 337–341.PubMedCrossRef
21.
go back to reference Hofbauer, L. C., Neubauer, A., & Heufelder, A. E. (2001). Receptor activator of nuclear factor-kappaB ligand and osteoprotegerin: potential implications for the pathogenesis and treatment of malignant bone diseases. Cancer, 92(3), 460–470.PubMedCrossRef Hofbauer, L. C., Neubauer, A., & Heufelder, A. E. (2001). Receptor activator of nuclear factor-kappaB ligand and osteoprotegerin: potential implications for the pathogenesis and treatment of malignant bone diseases. Cancer, 92(3), 460–470.PubMedCrossRef
22.
23.
go back to reference Santos, V. R., Lima, J. A., Gonçalves, T. E., Bastos, M. F., Figueiredo, L. C., Shibli, J. A., & Duarte, P. M. (2010). Receptor activator of nuclear factor-kappa B ligand/osteoprotegerin ratio in sites of chronic periodontitis of subjects with poorly and well-controlled type 2 diabetes. Journal of Periodontology, 81(10), 1455–1465.PubMedCrossRef Santos, V. R., Lima, J. A., Gonçalves, T. E., Bastos, M. F., Figueiredo, L. C., Shibli, J. A., & Duarte, P. M. (2010). Receptor activator of nuclear factor-kappa B ligand/osteoprotegerin ratio in sites of chronic periodontitis of subjects with poorly and well-controlled type 2 diabetes. Journal of Periodontology, 81(10), 1455–1465.PubMedCrossRef
24.
go back to reference Goranova-Marinova, V., Goranov, S., Pavlov, P., & Tzvetkova, T. (2007). Serum levels of OPG, RANKL and RANKL/OPG ratio in newly-diagnosed patients with multiple myeloma. Clinical Correlations. Haematologica, 92(7), 1000–1001.CrossRef Goranova-Marinova, V., Goranov, S., Pavlov, P., & Tzvetkova, T. (2007). Serum levels of OPG, RANKL and RANKL/OPG ratio in newly-diagnosed patients with multiple myeloma. Clinical Correlations. Haematologica, 92(7), 1000–1001.CrossRef
25.
go back to reference Terpos, E., Szydlo, R., Apperley, J. F., Hatjiharissi, E., Politou, M., Meletis, J., Viniou, N., Yataganas, X., Goldman, J. M., & Rahemtulla, A. (2003). Soluble receptor activator of nuclear factor KB ligand-osteoprotegerin ratio predicts survival in multiple myeloma: proposal for a novel prognostic index. Blood, 102(3), 1064–1069. Terpos, E., Szydlo, R., Apperley, J. F., Hatjiharissi, E., Politou, M., Meletis, J., Viniou, N., Yataganas, X., Goldman, J. M., & Rahemtulla, A. (2003). Soluble receptor activator of nuclear factor KB ligand-osteoprotegerin ratio predicts survival in multiple myeloma: proposal for a novel prognostic index. Blood, 102(3), 1064–1069.
26.
go back to reference Canon, J., Bryant, R., Roudier, M., Osgood, T., Jones, J., Miller, R., Coxon, A., Radinsky, R., & Dougall, W. C. (2010). Inhibition of RANKL increases the anti-tumor effect of the EGFR inhibitor panitumumab in a murine model of bone metastasis. Bone, 46(6), 1613–1619.PubMedCrossRef Canon, J., Bryant, R., Roudier, M., Osgood, T., Jones, J., Miller, R., Coxon, A., Radinsky, R., & Dougall, W. C. (2010). Inhibition of RANKL increases the anti-tumor effect of the EGFR inhibitor panitumumab in a murine model of bone metastasis. Bone, 46(6), 1613–1619.PubMedCrossRef
27.
go back to reference Canon, J. R., Roudier, M., Bryant, R., Morony, S., Stolina, M., Kostenuik, P. J., & Dougall, W. C. (2008). Inhibition of RANKL blocks skeletal tumor progression and improves survival in a mouse model of breast cancer bone metastasis. Clinical & Experimental Metastasis, 25(2), 119–129.CrossRef Canon, J. R., Roudier, M., Bryant, R., Morony, S., Stolina, M., Kostenuik, P. J., & Dougall, W. C. (2008). Inhibition of RANKL blocks skeletal tumor progression and improves survival in a mouse model of breast cancer bone metastasis. Clinical & Experimental Metastasis, 25(2), 119–129.CrossRef
28.
go back to reference Tannehill-Gregg, S. H., Levine, A. L., Nadella, M. V., Iguchi, H., & Rosol, T. J. (2006). The effect of zoledronic acid and osteoprotegerin on growth of human lung cancer in the tibias of nude mice. Clinical & Experimental Metastasis, 23(1), 19–31.CrossRef Tannehill-Gregg, S. H., Levine, A. L., Nadella, M. V., Iguchi, H., & Rosol, T. J. (2006). The effect of zoledronic acid and osteoprotegerin on growth of human lung cancer in the tibias of nude mice. Clinical & Experimental Metastasis, 23(1), 19–31.CrossRef
29.
go back to reference Gonzalez-Suarez, E., Jacob, A. P., Jones, J., Miller, R., Roudier-Meyer, M. P., Erwert, R., Pinkas, J., Branstetter, D., & Dougall, W. C. (2010). RANK ligand mediates progestin-induced mammary epithelial proliferation and carcinogenesis. Nature, 468(7320), 103–107.PubMedCrossRef Gonzalez-Suarez, E., Jacob, A. P., Jones, J., Miller, R., Roudier-Meyer, M. P., Erwert, R., Pinkas, J., Branstetter, D., & Dougall, W. C. (2010). RANK ligand mediates progestin-induced mammary epithelial proliferation and carcinogenesis. Nature, 468(7320), 103–107.PubMedCrossRef
30.
go back to reference Azim, H., Michiels, S., Bedard, P. L., Singhal, S. K., Criscitiello, C., Ignatiadis, M., Haibe-Kains, B., Piccart, M. J., Sotiriou, C., & Loi, S. (2012). Elucidating prognosis and biology of breast cancer arising in young women using gene expression profiling. Clin Cancer Res, 18, 1341–1351.PubMedCrossRef Azim, H., Michiels, S., Bedard, P. L., Singhal, S. K., Criscitiello, C., Ignatiadis, M., Haibe-Kains, B., Piccart, M. J., Sotiriou, C., & Loi, S. (2012). Elucidating prognosis and biology of breast cancer arising in young women using gene expression profiling. Clin Cancer Res, 18, 1341–1351.PubMedCrossRef
31.
go back to reference Tang, Z. N., Zhang, F., Tang, P., Qi, X. W., & Jiang, J. (2011). RANKL-induced migration of MDA-MB-231 human breast cancer cells via Src and MAPK activation. Oncology Reports, 26(5), 1243–1250. doi:10.3892/or.11.1368.PubMed Tang, Z. N., Zhang, F., Tang, P., Qi, X. W., & Jiang, J. (2011). RANKL-induced migration of MDA-MB-231 human breast cancer cells via Src and MAPK activation. Oncology Reports, 26(5), 1243–1250. doi:10.​3892/​or.​11.​1368.PubMed
32.
go back to reference Jones, D. H., Nakashima, T., Sanchez, O. H., Kozieradzki, I., Komarova, S. V., Sarosi, I., Morony, S., Rubin, E., Sarao, R., Hojilla, C. V., Komnenovic, V., Kong, Y. Y., Schreiber, M., Dixon, S. J., Sims, S. M., Khokha, R., Wada, T., & Penninger, J. M. (2006). Regulation of cancer cell migration and bone metastasis by RANKL. Nature, 440(7084), 692–696.PubMedCrossRef Jones, D. H., Nakashima, T., Sanchez, O. H., Kozieradzki, I., Komarova, S. V., Sarosi, I., Morony, S., Rubin, E., Sarao, R., Hojilla, C. V., Komnenovic, V., Kong, Y. Y., Schreiber, M., Dixon, S. J., Sims, S. M., Khokha, R., Wada, T., & Penninger, J. M. (2006). Regulation of cancer cell migration and bone metastasis by RANKL. Nature, 440(7084), 692–696.PubMedCrossRef
33.
go back to reference Stopeck, A. T., Lipton, A., Body, J. J., Steger, G. G., Tonkin, K., de Boer, R. H., Lichinitser, M., Fujiwara, Y., Yardley, D. A., Viniega, M., Fan, M., Jiang, Q., Dansey, R., Jun, S., & Braun, A. (2010). Denosumab compared with zoledronic acid for the treatment of bone metastases in patients with advanced breast cancer: a randomized double-blind study. Journal of Clinical Oncology, 28(35), 5123–5129.CrossRef Stopeck, A. T., Lipton, A., Body, J. J., Steger, G. G., Tonkin, K., de Boer, R. H., Lichinitser, M., Fujiwara, Y., Yardley, D. A., Viniega, M., Fan, M., Jiang, Q., Dansey, R., Jun, S., & Braun, A. (2010). Denosumab compared with zoledronic acid for the treatment of bone metastases in patients with advanced breast cancer: a randomized double-blind study. Journal of Clinical Oncology, 28(35), 5123–5129.CrossRef
34.
go back to reference Fizazi, K., Carducci, M., Smith, M., Damião, R., Brown, J., Karsh, L., Milecki, P., Shore, N., Rader, M., Wang, H., Jiang, Q., Tadros, S., Dansey, R., & Goessl, C. (2011). Denosumab versus zoledronic acid for treatment of bone metastases in men with castration-resistant prostate cancer: a randomized, double-blind study. Lancet, 337(9768), 813–822.CrossRef Fizazi, K., Carducci, M., Smith, M., Damião, R., Brown, J., Karsh, L., Milecki, P., Shore, N., Rader, M., Wang, H., Jiang, Q., Tadros, S., Dansey, R., & Goessl, C. (2011). Denosumab versus zoledronic acid for treatment of bone metastases in men with castration-resistant prostate cancer: a randomized, double-blind study. Lancet, 337(9768), 813–822.CrossRef
35.
go back to reference Henry, D. H., Costa, L., Goldwasser, F., Hirsh, V., Hungria, V., Prausova, J., Scagliotti, G. V., Sleeboom, H., Spencer, A., Vadhan-Raj, S., von Moos, R., Willenbacher, W., Woll, P. J., Wang, J., Jiang, Q., Jun, S., Dansey, R., & Yeh, H. (2011). Randomized, double-blind study of denosumab versus zoledronic acid in the treatment of bone metastases in patients with advanced cancer (excluding breast and prostate cancer) or multiple myeloma. Journal of Clinical Oncology, 29(9), 1125–1132.PubMedCrossRef Henry, D. H., Costa, L., Goldwasser, F., Hirsh, V., Hungria, V., Prausova, J., Scagliotti, G. V., Sleeboom, H., Spencer, A., Vadhan-Raj, S., von Moos, R., Willenbacher, W., Woll, P. J., Wang, J., Jiang, Q., Jun, S., Dansey, R., & Yeh, H. (2011). Randomized, double-blind study of denosumab versus zoledronic acid in the treatment of bone metastases in patients with advanced cancer (excluding breast and prostate cancer) or multiple myeloma. Journal of Clinical Oncology, 29(9), 1125–1132.PubMedCrossRef
36.
go back to reference Choi, S. J., Cruz, J. C., Craig, F., et al. (2000). Macrophage inflammatory protein 1-alpha is a potential osteoclast stimulatory factor in multiple myeloma. Blood, 96(2), 671–675.PubMed Choi, S. J., Cruz, J. C., Craig, F., et al. (2000). Macrophage inflammatory protein 1-alpha is a potential osteoclast stimulatory factor in multiple myeloma. Blood, 96(2), 671–675.PubMed
37.
go back to reference Han, J. H., Choi, S. J., Kurihara, N., et al. (2001). Macrophage inflammatory protein-1alpha is an osteoclastogenic factor in myeloma that is independent of receptor activator of nuclear factor kappaB ligand. Blood, 97(11), 3349–3353.PubMedCrossRef Han, J. H., Choi, S. J., Kurihara, N., et al. (2001). Macrophage inflammatory protein-1alpha is an osteoclastogenic factor in myeloma that is independent of receptor activator of nuclear factor kappaB ligand. Blood, 97(11), 3349–3353.PubMedCrossRef
38.
go back to reference Choi, S. J., Oba, Y., Gazitt, Y., et al. (2001). Antisense inhibition of macrophage inflammatory protein 1-alpha blocks bone destruction in a model of myeloma bone disease. The Journal of Clinical Investigation, 108(12), 1833–1841.PubMed Choi, S. J., Oba, Y., Gazitt, Y., et al. (2001). Antisense inhibition of macrophage inflammatory protein 1-alpha blocks bone destruction in a model of myeloma bone disease. The Journal of Clinical Investigation, 108(12), 1833–1841.PubMed
39.
go back to reference Oyajobi, B. O., Franchin, G., Williams, P. J., et al. (2003). Dual effects of macrophage inflammatory protein-1alpha on osteolysis and tumor burden in the murine 5TGM1 model of myeloma bone disease. Blood, 102(1), 311–319.PubMedCrossRef Oyajobi, B. O., Franchin, G., Williams, P. J., et al. (2003). Dual effects of macrophage inflammatory protein-1alpha on osteolysis and tumor burden in the murine 5TGM1 model of myeloma bone disease. Blood, 102(1), 311–319.PubMedCrossRef
40.
go back to reference Vallet, S., Raje, N., Ishitsuka, K., Hideshima, T., Podar, K., Chhetri, S., Pozzi, S., Breitkreutz, I., Kiziltepe, T., Yasui, H., Ocio, E. M., Shiraishi, N., Jin, J., Okawa, Y., Ikeda, H., Mukherjee, S., Vaghela, N., Cirstea, D., Ladetto, M., Boccadoro, M., & Anderson, K. C. (2007). MLN3897, a novel CCR1 inhibitor, impairs osteoclastogenesis and inhibits the interaction of multiple myeloma cells and osteoclasts. Blood, 110(10), 3744–3752.PubMedCrossRef Vallet, S., Raje, N., Ishitsuka, K., Hideshima, T., Podar, K., Chhetri, S., Pozzi, S., Breitkreutz, I., Kiziltepe, T., Yasui, H., Ocio, E. M., Shiraishi, N., Jin, J., Okawa, Y., Ikeda, H., Mukherjee, S., Vaghela, N., Cirstea, D., Ladetto, M., Boccadoro, M., & Anderson, K. C. (2007). MLN3897, a novel CCR1 inhibitor, impairs osteoclastogenesis and inhibits the interaction of multiple myeloma cells and osteoclasts. Blood, 110(10), 3744–3752.PubMedCrossRef
41.
go back to reference Oba, Y., Lee, J. W., Ehrlich, L. A., Chung, H. Y., Jelinek, D. F., Callander, N. S., Horuk, R., Choi, S. J., & Roodman, G. D. (2005). MIP-1alpha utilizes both CCR1 and CCR5 to induce osteoclast formation and increase adhesion of myeloma cells to marrow stromal cells. Experimental Hematology, 33(3), 272–278.PubMedCrossRef Oba, Y., Lee, J. W., Ehrlich, L. A., Chung, H. Y., Jelinek, D. F., Callander, N. S., Horuk, R., Choi, S. J., & Roodman, G. D. (2005). MIP-1alpha utilizes both CCR1 and CCR5 to induce osteoclast formation and increase adhesion of myeloma cells to marrow stromal cells. Experimental Hematology, 33(3), 272–278.PubMedCrossRef
42.
go back to reference Lentzsch, S., Chatterjee, M., Gries, M., Bommert, K., Gollasch, H., Dörken, B., & Bargou. (2004). RC PI3-K/AKT/FKHR and MAPK signaling cascades are redundantly stimulated by a variety of cytokines and contribute independently to proliferation and survival of multiple myeloma cells. Leukemia, 18(11), 1883–1890.PubMedCrossRef Lentzsch, S., Chatterjee, M., Gries, M., Bommert, K., Gollasch, H., Dörken, B., & Bargou. (2004). RC PI3-K/AKT/FKHR and MAPK signaling cascades are redundantly stimulated by a variety of cytokines and contribute independently to proliferation and survival of multiple myeloma cells. Leukemia, 18(11), 1883–1890.PubMedCrossRef
43.
go back to reference Roussou, M., Tasidou, A., Dimopoulos, M. A., Kastritis, E., Migkou, M., Christoulas, D., Gavriatopoulou, M., Zagouri, F., Matsouka, C., Anagnostou, D., & Terpos, E. (2009). Increased expression of macrophage inflammatory protein-1alpha on trephine biopsies correlates with extensive bone disease, increased angiogenesis and advanced stage in newly diagnosed patients with multiple myeloma. Leukemia, 23(11), 2177–2181.PubMedCrossRef Roussou, M., Tasidou, A., Dimopoulos, M. A., Kastritis, E., Migkou, M., Christoulas, D., Gavriatopoulou, M., Zagouri, F., Matsouka, C., Anagnostou, D., & Terpos, E. (2009). Increased expression of macrophage inflammatory protein-1alpha on trephine biopsies correlates with extensive bone disease, increased angiogenesis and advanced stage in newly diagnosed patients with multiple myeloma. Leukemia, 23(11), 2177–2181.PubMedCrossRef
44.
go back to reference Terpos, E., Politou, M., Szydlo, R., Goldman, J. M., Apperley, J. F., & Rahemtulla. (2003). A Serum levels of macrophage inflammatory protein-1 alpha (MIP-1alpha) correlate with the extent of bone disease and survival in patients with multiple myeloma. British Journal of Haematology, 123(1), 106–109.PubMedCrossRef Terpos, E., Politou, M., Szydlo, R., Goldman, J. M., Apperley, J. F., & Rahemtulla. (2003). A Serum levels of macrophage inflammatory protein-1 alpha (MIP-1alpha) correlate with the extent of bone disease and survival in patients with multiple myeloma. British Journal of Haematology, 123(1), 106–109.PubMedCrossRef
45.
go back to reference Cross, N. A., Hillman, L. S., & Forte, L. R. (1998). The effects of calcium supplementation, duration of lactation, and time of day on concentrations of parathyroid hormone-related protein in human milk: a pilot study. Journal of Human Lactation, 14(2), 111–117.PubMedCrossRef Cross, N. A., Hillman, L. S., & Forte, L. R. (1998). The effects of calcium supplementation, duration of lactation, and time of day on concentrations of parathyroid hormone-related protein in human milk: a pilot study. Journal of Human Lactation, 14(2), 111–117.PubMedCrossRef
46.
go back to reference Guise, T. A. (2000). Molecular mechanisms of osteolytic bone metastases. Cancer, 88(12 Suppl), 2892–2898.PubMedCrossRef Guise, T. A. (2000). Molecular mechanisms of osteolytic bone metastases. Cancer, 88(12 Suppl), 2892–2898.PubMedCrossRef
47.
go back to reference Kremer, R., Li, J., Camirand, A., & Karaplis, A. C. (2011). Parathyroid hormone related protein (PTHrP) in tumor progression. Advances in Experimental Medicine and Biology, 720, 145–160.PubMedCrossRef Kremer, R., Li, J., Camirand, A., & Karaplis, A. C. (2011). Parathyroid hormone related protein (PTHrP) in tumor progression. Advances in Experimental Medicine and Biology, 720, 145–160.PubMedCrossRef
48.
go back to reference Yin, J. J., Selander, K., Chirgwin, J. M., Dallas, M., Grubbs, B. G., Wieser, R., Massagué, J., Mundy, G. R., & Guise, T. A. (1999). TGF-beta signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. The Journal of Clinical Investigation, 103(2), 197–206.PubMedCrossRef Yin, J. J., Selander, K., Chirgwin, J. M., Dallas, M., Grubbs, B. G., Wieser, R., Massagué, J., Mundy, G. R., & Guise, T. A. (1999). TGF-beta signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. The Journal of Clinical Investigation, 103(2), 197–206.PubMedCrossRef
49.
go back to reference Guise, T. A., Yin, J. J., Taylor, S. D., Kumagai, Y., Dallas, M., Boyce, B. F., Yoneda, T., & Mundy, G. R. (1996). Evidence for a causal role of parathyroid hormone-related protein in the pathogenesis of human breast cancer-mediated osteolysis. The Journal of Clinical Investigation, 98(7), 1544–1549.PubMedCrossRef Guise, T. A., Yin, J. J., Taylor, S. D., Kumagai, Y., Dallas, M., Boyce, B. F., Yoneda, T., & Mundy, G. R. (1996). Evidence for a causal role of parathyroid hormone-related protein in the pathogenesis of human breast cancer-mediated osteolysis. The Journal of Clinical Investigation, 98(7), 1544–1549.PubMedCrossRef
50.
go back to reference Tan, A. R., Alexe, G., & Reiss, M. (2008). Transforming growth factor-beta signaling: emerging stem cell target in metastatic breast cancer? Breast Cancer Research and Treatment, 115(3), 453–495.PubMedCrossRef Tan, A. R., Alexe, G., & Reiss, M. (2008). Transforming growth factor-beta signaling: emerging stem cell target in metastatic breast cancer? Breast Cancer Research and Treatment, 115(3), 453–495.PubMedCrossRef
51.
go back to reference Jung, Y., Wang, J., Song, J., et al. (2007). Annexin II expressed by osteoblasts andendothelial cells regulates stem cell adhesion, homing, and engraftment following transplantation. Blood, 110(1), 82–90.PubMedCrossRef Jung, Y., Wang, J., Song, J., et al. (2007). Annexin II expressed by osteoblasts andendothelial cells regulates stem cell adhesion, homing, and engraftment following transplantation. Blood, 110(1), 82–90.PubMedCrossRef
52.
go back to reference Rescher, U., & Gerke, V. (2004). Annexins-unique membrane binding proteins with diverse functions. Journal of Cell Science, 117(Pt 13), 2631–2639.PubMedCrossRef Rescher, U., & Gerke, V. (2004). Annexins-unique membrane binding proteins with diverse functions. Journal of Cell Science, 117(Pt 13), 2631–2639.PubMedCrossRef
53.
go back to reference Waisman, D. M. (1995). Annexin II tetramer: structure and function. Mol Cell Biochem, 149–150, 301–322.PubMedCrossRef Waisman, D. M. (1995). Annexin II tetramer: structure and function. Mol Cell Biochem, 149–150, 301–322.PubMedCrossRef
54.
go back to reference Lu, G., Maeda, H., Reddy, S. V., et al. (2006). Cloning and characterization of the annexin II receptor on human marrow stromal cells. Journal of Biological Chemistry, 281(41), 30542–30550.PubMedCrossRef Lu, G., Maeda, H., Reddy, S. V., et al. (2006). Cloning and characterization of the annexin II receptor on human marrow stromal cells. Journal of Biological Chemistry, 281(41), 30542–30550.PubMedCrossRef
55.
go back to reference Shiozawa, Y., Havens, A. M., Jung, Y., et al. (2008). Annexin II/Annexin II receptor axis regulates adhesion, migration, homing, and growth of prostate cancer. Journal of Cellular Biochemistry, 105(2), 370–380.PubMedCrossRef Shiozawa, Y., Havens, A. M., Jung, Y., et al. (2008). Annexin II/Annexin II receptor axis regulates adhesion, migration, homing, and growth of prostate cancer. Journal of Cellular Biochemistry, 105(2), 370–380.PubMedCrossRef
56.
go back to reference Li, F., Chung, H., Reddy, S. V., et al. (2005). Annexin II stimulates RANKL expression through MAPK. Journal of Bone and Mineral Research, 20(7), 1161–1167.PubMedCrossRef Li, F., Chung, H., Reddy, S. V., et al. (2005). Annexin II stimulates RANKL expression through MAPK. Journal of Bone and Mineral Research, 20(7), 1161–1167.PubMedCrossRef
57.
go back to reference Takahashi, S., Reddy, S. V., Chirgwin, J. M., et al. (1994). Cloning and identification of annexin II as an autocrine/paracrine factor that increases osteoclast formation and bone resorption. Journal of Biological Chemistry, 269(46), 28696–28701.PubMed Takahashi, S., Reddy, S. V., Chirgwin, J. M., et al. (1994). Cloning and identification of annexin II as an autocrine/paracrine factor that increases osteoclast formation and bone resorption. Journal of Biological Chemistry, 269(46), 28696–28701.PubMed
58.
go back to reference Claudio, J. O., Masih-Khan, E., Tang, H., et al. (2002). A molecular compendium of genes expressed in multiple myeloma. Blood, 100(6), 2175–2186.PubMedCrossRef Claudio, J. O., Masih-Khan, E., Tang, H., et al. (2002). A molecular compendium of genes expressed in multiple myeloma. Blood, 100(6), 2175–2186.PubMedCrossRef
59.
go back to reference Bao, H., Jiang, M., Zhu, M., Sheng, F., Ruan, J., & Ruan, C. (2009). Overexpression of Annexin II affects the proliferation, apoptosis, invasion and production of proangiogenic factors in multiple myeloma. International Journal of Hematology, 90(2), 177–185.PubMedCrossRef Bao, H., Jiang, M., Zhu, M., Sheng, F., Ruan, J., & Ruan, C. (2009). Overexpression of Annexin II affects the proliferation, apoptosis, invasion and production of proangiogenic factors in multiple myeloma. International Journal of Hematology, 90(2), 177–185.PubMedCrossRef
60.
go back to reference D’Souza, S., Kurihara, N., Shiozawa, Y., Joseph, J., Taichman, R., Galson, D. L., & Roodman, G. D. (2012). Annexin II interactions with the annexin II receptor enhance multiple myeloma cell adhesion and growth in the bone marrow microenvironment. Blood, 119, 1888–1896.PubMedCrossRef D’Souza, S., Kurihara, N., Shiozawa, Y., Joseph, J., Taichman, R., Galson, D. L., & Roodman, G. D. (2012). Annexin II interactions with the annexin II receptor enhance multiple myeloma cell adhesion and growth in the bone marrow microenvironment. Blood, 119, 1888–1896.PubMedCrossRef
61.
go back to reference Lee, J. W., Chung, H. Y., Ehrlich, L. A., et al. (2004). IL-3 expression by myeloma cells increases both osteoclast formation and growth of myeloma cells. Blood, 103(6), 2308–2315.PubMedCrossRef Lee, J. W., Chung, H. Y., Ehrlich, L. A., et al. (2004). IL-3 expression by myeloma cells increases both osteoclast formation and growth of myeloma cells. Blood, 103(6), 2308–2315.PubMedCrossRef
62.
go back to reference Rebecca Silbermann, Marina Bolzoni, Paola Storti, Benedetta Dalla Palma, Sabrina Bonomini, Judy Anderson, G. David Roodman, and Nicola Giuliani. (2011). Bone marrow monocyte/macrophage derived activin A mediates the osteoclastogenic effects of IL-3 in myeloma. Blood (ASH Annual Meeting Abstracts) 118: 3933. Rebecca Silbermann, Marina Bolzoni, Paola Storti, Benedetta Dalla Palma, Sabrina Bonomini, Judy Anderson, G. David Roodman, and Nicola Giuliani. (2011). Bone marrow monocyte/macrophage derived activin A mediates the osteoclastogenic effects of IL-3 in myeloma. Blood (ASH Annual Meeting Abstracts) 118: 3933.
63.
go back to reference Cheung, W. C., & Van Ness, B. (2002). Distinct IL-6 signal transduction leads to growth arrest and death in B cells or growth promotion and cell survival in myeloma cells. Leukemia, 16(6), 1182–1188.PubMedCrossRef Cheung, W. C., & Van Ness, B. (2002). Distinct IL-6 signal transduction leads to growth arrest and death in B cells or growth promotion and cell survival in myeloma cells. Leukemia, 16(6), 1182–1188.PubMedCrossRef
64.
go back to reference de la Mata, J., Uy, H. L., Guise, T. A., Story, B., Boyce, B. F., Mundy, G. R., & Roodman, G. D. (1995). Interleukin-6 enhances hypercalcemia and bone resorption mediated by parathyroid hormone-related protein in vivo. The Journal of Clinical Investigation, 95(6), 2846–2852.PubMedCrossRef de la Mata, J., Uy, H. L., Guise, T. A., Story, B., Boyce, B. F., Mundy, G. R., & Roodman, G. D. (1995). Interleukin-6 enhances hypercalcemia and bone resorption mediated by parathyroid hormone-related protein in vivo. The Journal of Clinical Investigation, 95(6), 2846–2852.PubMedCrossRef
65.
go back to reference Gupta, D., Treon, S. P., Shima, Y., Hideshima, T., Podar, K., Tai, Y. T., Lin, B., Lentzsch, S., Davies, F. E., Chauhan, D., Schlossman, R. L., Richardson, P., Ralph, P., Wu, L., Payvandi, F., Muller, G., Stirling, D. I., & Anderson, K. C. (2001). Adherence of multiple myeloma cells to bone marrow stromal cells upregulates vascular endothelial growth factor secretion: therapeutic applications. Leukemia, 15(12), 1950–1961.PubMedCrossRef Gupta, D., Treon, S. P., Shima, Y., Hideshima, T., Podar, K., Tai, Y. T., Lin, B., Lentzsch, S., Davies, F. E., Chauhan, D., Schlossman, R. L., Richardson, P., Ralph, P., Wu, L., Payvandi, F., Muller, G., Stirling, D. I., & Anderson, K. C. (2001). Adherence of multiple myeloma cells to bone marrow stromal cells upregulates vascular endothelial growth factor secretion: therapeutic applications. Leukemia, 15(12), 1950–1961.PubMedCrossRef
66.
go back to reference Riancho, J. A., & Mundy, G. R. (1995). The role of cytokines and growth factors as mediators of the effects of systemic hormones at the bone local level. Critical Reviews in Eukaryotic Gene Expression, 5(3–4), 193–217.PubMedCrossRef Riancho, J. A., & Mundy, G. R. (1995). The role of cytokines and growth factors as mediators of the effects of systemic hormones at the bone local level. Critical Reviews in Eukaryotic Gene Expression, 5(3–4), 193–217.PubMedCrossRef
67.
go back to reference Raje, N., & Roodman, G. D. (2011). Advances in the biology and treatment of bone disease in multiple myeloma. Clinical Cancer Research, 17(6), 1278–1286.PubMedCrossRef Raje, N., & Roodman, G. D. (2011). Advances in the biology and treatment of bone disease in multiple myeloma. Clinical Cancer Research, 17(6), 1278–1286.PubMedCrossRef
68.
go back to reference Li, X., Pennisi, A., & Yaccoby, S. (2008). Role of decorin in the antimyeloma effects of osteoblasts. Blood, 112(1), 159–168.PubMedCrossRef Li, X., Pennisi, A., & Yaccoby, S. (2008). Role of decorin in the antimyeloma effects of osteoblasts. Blood, 112(1), 159–168.PubMedCrossRef
69.
go back to reference Yang, X., & Karsenty, G. (2002). Transcription factors in bone: developmental and pathological aspects. Trends in Molecular Medicine, 8, 340.PubMedCrossRef Yang, X., & Karsenty, G. (2002). Transcription factors in bone: developmental and pathological aspects. Trends in Molecular Medicine, 8, 340.PubMedCrossRef
71.
go back to reference Tian, E., Zhan, F., Walker, R., et al. (2003). The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. The New England Journal of Medicine, 349(26), 2483–2494.PubMedCrossRef Tian, E., Zhan, F., Walker, R., et al. (2003). The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. The New England Journal of Medicine, 349(26), 2483–2494.PubMedCrossRef
72.
go back to reference Yaccoby, S., Ling, W., Zhan, F., Walker, R., Barlogie, B., & Shaughnessy, J. D., Jr. (2007). Antibody-based inhibition of DKK1 suppresses tumor-induced bone resorption and multiple myeloma growth in vivo. Blood, 109(5), 2106–2111.PubMedCrossRef Yaccoby, S., Ling, W., Zhan, F., Walker, R., Barlogie, B., & Shaughnessy, J. D., Jr. (2007). Antibody-based inhibition of DKK1 suppresses tumor-induced bone resorption and multiple myeloma growth in vivo. Blood, 109(5), 2106–2111.PubMedCrossRef
73.
go back to reference Fulciniti, M., Tassone, P., Hideshima, T., et al. (2009). Anti-DKK1 mAb (BHQ880) as a potential therapeutic agent for multiple myeloma. Blood, 114(2), 371–379.PubMedCrossRef Fulciniti, M., Tassone, P., Hideshima, T., et al. (2009). Anti-DKK1 mAb (BHQ880) as a potential therapeutic agent for multiple myeloma. Blood, 114(2), 371–379.PubMedCrossRef
74.
go back to reference Oshima, T., Abe, M., Asano, J., et al. (2005). Myeloma cells suppress bone formation by secreting a soluble Wnt inhibitor, sFRP-2. Blood, 106(9), 3160–3165.PubMedCrossRef Oshima, T., Abe, M., Asano, J., et al. (2005). Myeloma cells suppress bone formation by secreting a soluble Wnt inhibitor, sFRP-2. Blood, 106(9), 3160–3165.PubMedCrossRef
75.
go back to reference Ehrlich, L. A., Chung, H. Y., Ghobrial, I., et al. (2005). IL-3 is a potential inhibitor of osteoblast differentiation in multiple myeloma. Blood, 106(4), 1407–1414.PubMedCrossRef Ehrlich, L. A., Chung, H. Y., Ghobrial, I., et al. (2005). IL-3 is a potential inhibitor of osteoblast differentiation in multiple myeloma. Blood, 106(4), 1407–1414.PubMedCrossRef
76.
go back to reference Giuliani, N., Colla, S., Morandi, F., et al. (2005). Myeloma cells block RUNX2/CBFA1 activity in human bone marrow osteoblast progenitors and inhibit osteoblast formation and differentiation. Blood, 106(7), 2472–2483.PubMedCrossRef Giuliani, N., Colla, S., Morandi, F., et al. (2005). Myeloma cells block RUNX2/CBFA1 activity in human bone marrow osteoblast progenitors and inhibit osteoblast formation and differentiation. Blood, 106(7), 2472–2483.PubMedCrossRef
77.
go back to reference Hjorth-Hansen, H., Seifert, M. F., Börset, M., Aarset, H., Ostlie, A., Sundan, A., & Waage, A. (1999). Marked osteoblastopenia and reduced bone formation in a model of multiple myeloma bone disease in severe combined immunodeficiency mice. Journal of Bone and Mineral Research, 14(2), 256–263.PubMedCrossRef Hjorth-Hansen, H., Seifert, M. F., Börset, M., Aarset, H., Ostlie, A., Sundan, A., & Waage, A. (1999). Marked osteoblastopenia and reduced bone formation in a model of multiple myeloma bone disease in severe combined immunodeficiency mice. Journal of Bone and Mineral Research, 14(2), 256–263.PubMedCrossRef
78.
go back to reference Rokstad, A. M., Holtan, S., Strand, B., Steinkjer, B., Ryan, L., Kulseng, B., & Skjåk-Braek, G. (2002). Microencapsulation of cells producing therapeutic proteins: optimizing cell growth and secretion. TCell Transplant, 11(4), 313–324. Rokstad, A. M., Holtan, S., Strand, B., Steinkjer, B., Ryan, L., Kulseng, B., & Skjåk-Braek, G. (2002). Microencapsulation of cells producing therapeutic proteins: optimizing cell growth and secretion. TCell Transplant, 11(4), 313–324.
79.
go back to reference Kawasaki, T., Niki, Y., Miyamoto, T., Horiuchi, K., Matsumoto, M., Aizawa, M., & Toyama, Y. (2010). The effect of timing in the administration of hepatocyte growth factor to modulate BMP-2-induced osteoblast differentiation. Biomaterials, 31(6), 1191–1198.PubMedCrossRef Kawasaki, T., Niki, Y., Miyamoto, T., Horiuchi, K., Matsumoto, M., Aizawa, M., & Toyama, Y. (2010). The effect of timing in the administration of hepatocyte growth factor to modulate BMP-2-induced osteoblast differentiation. Biomaterials, 31(6), 1191–1198.PubMedCrossRef
80.
go back to reference Standal, T., Abildgaard, N., Fagerli, U. M., Stordal, B., Hjertner, O., Borset, M., & Sundan, A. (2007). HGF inhibits BMP-induced osteoblastogenesis: possible implications for the bone disease of multiple myeloma. Blood, 109(7), 3024–3030.PubMed Standal, T., Abildgaard, N., Fagerli, U. M., Stordal, B., Hjertner, O., Borset, M., & Sundan, A. (2007). HGF inhibits BMP-induced osteoblastogenesis: possible implications for the bone disease of multiple myeloma. Blood, 109(7), 3024–3030.PubMed
81.
go back to reference Hideshima, T., Chauhan, D., Podar, K., Schlossman, R. L., Richardson, P., & Anderson, K. C. (2001). Novel therapies targeting the myeloma cell and its bone marrow microenvironment. Seminars in Oncology, 28(6), 607–612.PubMedCrossRef Hideshima, T., Chauhan, D., Podar, K., Schlossman, R. L., Richardson, P., & Anderson, K. C. (2001). Novel therapies targeting the myeloma cell and its bone marrow microenvironment. Seminars in Oncology, 28(6), 607–612.PubMedCrossRef
82.
go back to reference Zhao, L., Huang, J., Zhang, H., Wang, Y., Matesic, L. E., Takahata, M., Awad, H., Chen, D., & Xing, L. (2011). Tumor necrosis factor inhibits mesenchymal stem cell differentiation into osteoblasts via the ubiquitin E3 ligase Wwp1. Stem Cells, 29(10), 1601–1610. doi:10.1002/stem.703.PubMedCrossRef Zhao, L., Huang, J., Zhang, H., Wang, Y., Matesic, L. E., Takahata, M., Awad, H., Chen, D., & Xing, L. (2011). Tumor necrosis factor inhibits mesenchymal stem cell differentiation into osteoblasts via the ubiquitin E3 ligase Wwp1. Stem Cells, 29(10), 1601–1610. doi:10.​1002/​stem.​703.PubMedCrossRef
83.
go back to reference Olfa, G., Christophe, C., Philippe, L., Romain, S., Khaled, H., Pierre, H., Odile, B., & Jean-Christophe, D. (2010). RUNX2 regulates the effects of TNFalpha on proliferation and apoptosis in SaOs-2 cells. Bone, 46(4), 901–910.PubMedCrossRef Olfa, G., Christophe, C., Philippe, L., Romain, S., Khaled, H., Pierre, H., Odile, B., & Jean-Christophe, D. (2010). RUNX2 regulates the effects of TNFalpha on proliferation and apoptosis in SaOs-2 cells. Bone, 46(4), 901–910.PubMedCrossRef
84.
go back to reference Vallet, S., Mukherjee, S., Vaghela, N., Hideshima, T., Fulciniti, M., Pozzi, S., Santo, L., Cirstea, D., Patel, K., Sohani, A. R., Guimaraes, A., Xie, W., Chauhan, D., Schoonmaker, J. A., Attar, E., Churchill, M., Weller, E., Munshi, N., Seehra, J. S., Weissleder, R., Anderson, K. C., Scadden, D. T., & Raje, N. (2010). Activin A promotes multiple myeloma-induced osteolysis and is a promising target for myeloma bone disease. Proceedings of the National Academy of Sciences of the United States of America, 107(11), 5124–5129.PubMedCrossRef Vallet, S., Mukherjee, S., Vaghela, N., Hideshima, T., Fulciniti, M., Pozzi, S., Santo, L., Cirstea, D., Patel, K., Sohani, A. R., Guimaraes, A., Xie, W., Chauhan, D., Schoonmaker, J. A., Attar, E., Churchill, M., Weller, E., Munshi, N., Seehra, J. S., Weissleder, R., Anderson, K. C., Scadden, D. T., & Raje, N. (2010). Activin A promotes multiple myeloma-induced osteolysis and is a promising target for myeloma bone disease. Proceedings of the National Academy of Sciences of the United States of America, 107(11), 5124–5129.PubMedCrossRef
85.
go back to reference Chantry, A. D., Heath, D., Mulivor, A. W., Pearsall, S., Baud'huin, M., Coulton, L., Evans, H., Abdul, N., Werner, E. D., Bouxsein, M. L., Key, M. L., Seehra, J., Arnett, T. R., Vanderkerken, K., & Croucher, P. (2010). Inhibiting activin-A signaling stimulates bone formation and prevents cancer-induced bone destruction in vivo. Journal of Bone and Mineral Research, 25(12), 2633–2646. doi:10.1002/jbmr.142. Erratum in: J Bone Miner Res, 26(2), 439.PubMedCrossRef Chantry, A. D., Heath, D., Mulivor, A. W., Pearsall, S., Baud'huin, M., Coulton, L., Evans, H., Abdul, N., Werner, E. D., Bouxsein, M. L., Key, M. L., Seehra, J., Arnett, T. R., Vanderkerken, K., & Croucher, P. (2010). Inhibiting activin-A signaling stimulates bone formation and prevents cancer-induced bone destruction in vivo. Journal of Bone and Mineral Research, 25(12), 2633–2646. doi:10.​1002/​jbmr.​142. Erratum in: J Bone Miner Res, 26(2), 439.PubMedCrossRef
86.
go back to reference Lotinun, S., Pearsall, R. S., Davies, M. V., Marvell, T. H., Monnell, T. E., Ucran, J., Fajardo, R. J., Kumar, R., Underwood, K. W., Seehra, J., Bouxsein, M. L., & Baron, R. (2010). A soluble activin receptor Type IIA fusion protein (ACE-011) increases bone mass via a dual anabolic-antiresorptive effect in Cynomolgus monkeys. Bone, 46(4), 1082–1088.PubMedCrossRef Lotinun, S., Pearsall, R. S., Davies, M. V., Marvell, T. H., Monnell, T. E., Ucran, J., Fajardo, R. J., Kumar, R., Underwood, K. W., Seehra, J., Bouxsein, M. L., & Baron, R. (2010). A soluble activin receptor Type IIA fusion protein (ACE-011) increases bone mass via a dual anabolic-antiresorptive effect in Cynomolgus monkeys. Bone, 46(4), 1082–1088.PubMedCrossRef
87.
go back to reference Abdulkadyrov KM, Salogub GN, Khuazheva NK, Woolf R, Haltom E, Borgstein NG, Knight R, Renshaw G, Yang Y, Sherman ML. (2009). ACE-011, a Soluble Activin Receptor Type Iia IgG-Fc Fusion Protein, Increases Hemoglobin (Hb) and Improves Bone Lesions in Multiple Myeloma Patients Receiving Myelosuppressive Chemotherapy: Preliminary Analysis, American Society of Hematology (ASH) Meeting, Abstract 749. Abdulkadyrov KM, Salogub GN, Khuazheva NK, Woolf R, Haltom E, Borgstein NG, Knight R, Renshaw G, Yang Y, Sherman ML. (2009). ACE-011, a Soluble Activin Receptor Type Iia IgG-Fc Fusion Protein, Increases Hemoglobin (Hb) and Improves Bone Lesions in Multiple Myeloma Patients Receiving Myelosuppressive Chemotherapy: Preliminary Analysis, American Society of Hematology (ASH) Meeting, Abstract 749.
89.
go back to reference Mendoza-Villanueva, D., Zeef, L., & Shore, P. (2011). Metastatic breast cancer cells inhibit osteoblast differentiation through the Runx2/CBFβ-dependent expression of the Wnt antagonist, sclerostin. Breast Cancer Research, 13(5), R106.PubMedCrossRef Mendoza-Villanueva, D., Zeef, L., & Shore, P. (2011). Metastatic breast cancer cells inhibit osteoblast differentiation through the Runx2/CBFβ-dependent expression of the Wnt antagonist, sclerostin. Breast Cancer Research, 13(5), R106.PubMedCrossRef
90.
go back to reference van Lierop, A. H., Hamdy, N. A., Hamersma, H., van Bezooijen, R. L., Power, J., Loveridge, N., & Papapoulos, S. E. (2011). Patients with sclerosteosis and disease carriers: human models of the effect of sclerostin on bone turnover. Journal of Bone and Mineral Research, 26(12), 2804–2811. doi:10.1002/jbmr.474.PubMedCrossRef van Lierop, A. H., Hamdy, N. A., Hamersma, H., van Bezooijen, R. L., Power, J., Loveridge, N., & Papapoulos, S. E. (2011). Patients with sclerosteosis and disease carriers: human models of the effect of sclerostin on bone turnover. Journal of Bone and Mineral Research, 26(12), 2804–2811. doi:10.​1002/​jbmr.​474.PubMedCrossRef
91.
go back to reference Paszty, C., Turner, C. H., & Robinson, M. K. (2010). Sclerostin: a gem from the genome leads to bone-building antibodies. Journal of Bone and Mineral Research, 25(9), 1897–1904.PubMedCrossRef Paszty, C., Turner, C. H., & Robinson, M. K. (2010). Sclerostin: a gem from the genome leads to bone-building antibodies. Journal of Bone and Mineral Research, 25(9), 1897–1904.PubMedCrossRef
92.
go back to reference Terpos, E., Christoulas, D., Katodritou, E., Bratengeier, C., Gkotzamanidou, M., Michalis, E., Delimpasi, S., Pouli, A., Meletis, J., Kastritis, E., Zervas, K., & Dimopoulos, M. A. (2011). Elevated circulating sclerostin correlates with advanced disease features and abnormal bone remodeling in symptomatic myeloma: reduction post-bortezomib monotherapy. International Journal of Cancer. doi:10.1002/ijc.27342. Terpos, E., Christoulas, D., Katodritou, E., Bratengeier, C., Gkotzamanidou, M., Michalis, E., Delimpasi, S., Pouli, A., Meletis, J., Kastritis, E., Zervas, K., & Dimopoulos, M. A. (2011). Elevated circulating sclerostin correlates with advanced disease features and abnormal bone remodeling in symptomatic myeloma: reduction post-bortezomib monotherapy. International Journal of Cancer. doi:10.​1002/​ijc.​27342.
93.
go back to reference D'Souza, S., del Prete, D., Jin, S., Sun, Q., Huston, A. J., Kostov, F. E., Sammut, B., Hong, C. S., Anderson, J. L., Patrene, K. D., Yu, S., Velu, C. S., Xiao, G., Grimes, H. L., Roodman, G. D., & Galson, D. L. (2011). Gfi1 expressed in bone marrow stromal cells is a novel osteoblast suppressor in patients with multiple myeloma bone disease. Blood, 118(26), 6871–6880.PubMedCrossRef D'Souza, S., del Prete, D., Jin, S., Sun, Q., Huston, A. J., Kostov, F. E., Sammut, B., Hong, C. S., Anderson, J. L., Patrene, K. D., Yu, S., Velu, C. S., Xiao, G., Grimes, H. L., Roodman, G. D., & Galson, D. L. (2011). Gfi1 expressed in bone marrow stromal cells is a novel osteoblast suppressor in patients with multiple myeloma bone disease. Blood, 118(26), 6871–6880.PubMedCrossRef
94.
go back to reference Guise, T. A., Yin, J. J., & Mohammad, K. S. (2003). Role of endothelin-1 in osteoblastic bone metastases. Cancer, 97(3 Suppl), 779–784.PubMedCrossRef Guise, T. A., Yin, J. J., & Mohammad, K. S. (2003). Role of endothelin-1 in osteoblastic bone metastases. Cancer, 97(3 Suppl), 779–784.PubMedCrossRef
95.
go back to reference Granchi, S., Brocchi, S., Bonaccorsi, L., Baldi, E., Vinci, M. C., Forti, G., Serio, M., & Maggi, M. (2001). Endothelin-1 production by prostate cancer cell lines is up-regulated by factors involved in cancer progression and down-regulated by androgens. Prostate, 49(4), 267–277.PubMedCrossRef Granchi, S., Brocchi, S., Bonaccorsi, L., Baldi, E., Vinci, M. C., Forti, G., Serio, M., & Maggi, M. (2001). Endothelin-1 production by prostate cancer cell lines is up-regulated by factors involved in cancer progression and down-regulated by androgens. Prostate, 49(4), 267–277.PubMedCrossRef
96.
go back to reference Clines, G. A., Mohammad, K. S., Bao, Y., et al. (2007). Dickkopf homolog 1 mediates endothelin-1-stimulated new bone formation. Molecular Endocrinology, 21(2), 486–498.PubMedCrossRef Clines, G. A., Mohammad, K. S., Bao, Y., et al. (2007). Dickkopf homolog 1 mediates endothelin-1-stimulated new bone formation. Molecular Endocrinology, 21(2), 486–498.PubMedCrossRef
97.
go back to reference Yuyama, H., Koakutsu, A., Fujiyasu, N., Tanahashi, M., Fujimori, A., Sato, S., Shibasaki, K., Tanaka, S., Sudoh, K., Sasamata, M., & Miyata, K. (2004). Effects of selective endothelin ET(A) receptor antagonists on endothelin-1-induced potentiation of cancer pain. European Journal of Pharmacology, 492(2–3), 177–182.PubMedCrossRef Yuyama, H., Koakutsu, A., Fujiyasu, N., Tanahashi, M., Fujimori, A., Sato, S., Shibasaki, K., Tanaka, S., Sudoh, K., Sasamata, M., & Miyata, K. (2004). Effects of selective endothelin ET(A) receptor antagonists on endothelin-1-induced potentiation of cancer pain. European Journal of Pharmacology, 492(2–3), 177–182.PubMedCrossRef
98.
go back to reference Yi, B., Williams, P. J., Niewolna, M., et al. (2002). Tumor-derived platelet-derived growth factor-BB plays a critical role in osteosclerotic bone metastasis in an animal model of human breast cancer. Cancer Research, 62(3), 917–923.PubMed Yi, B., Williams, P. J., Niewolna, M., et al. (2002). Tumor-derived platelet-derived growth factor-BB plays a critical role in osteosclerotic bone metastasis in an animal model of human breast cancer. Cancer Research, 62(3), 917–923.PubMed
99.
go back to reference Dai, J., Keller, J., Zhang, J., et al. (2005). Bone morphogenetic protein-6 promotes osteoblastic prostate cancer bone metastases through a dual mechanism. Cancer Research, 65(18), 8274–8285.PubMedCrossRef Dai, J., Keller, J., Zhang, J., et al. (2005). Bone morphogenetic protein-6 promotes osteoblastic prostate cancer bone metastases through a dual mechanism. Cancer Research, 65(18), 8274–8285.PubMedCrossRef
100.
go back to reference Hall, C. L., Bafico, A., Dai, J., et al. (2005). Prostate cancer cells promote osteoblastic bone metastases through Wnts. Cancer Research, 65(17), 7554–7560.PubMed Hall, C. L., Bafico, A., Dai, J., et al. (2005). Prostate cancer cells promote osteoblastic bone metastases through Wnts. Cancer Research, 65(17), 7554–7560.PubMed
101.
go back to reference Achbarou, A., Kaiser, S., Tremblay, G., et al. (1994). Urokinase overproduction results in increased skeletal metastasis by prostate cancer cells in vivo. Cancer Research, 54(9), 2372–2377.PubMed Achbarou, A., Kaiser, S., Tremblay, G., et al. (1994). Urokinase overproduction results in increased skeletal metastasis by prostate cancer cells in vivo. Cancer Research, 54(9), 2372–2377.PubMed
Metadata
Title
Genes associate with abnormal bone cell activity in bone metastasis
Author
G. David Roodman
Publication date
01-12-2012
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 3-4/2012
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-012-9372-x

Other articles of this Issue 3-4/2012

Cancer and Metastasis Reviews 3-4/2012 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine