Skip to main content
Top
Published in: Cancer and Metastasis Reviews 3-4/2012

01-12-2012

Suppression of tumor and metastasis progression through the scaffolding functions of SSeCKS/Gravin/AKAP12

Author: Irwin H. Gelman

Published in: Cancer and Metastasis Reviews | Issue 3-4/2012

Login to get access

Abstract

Scaffolding proteins such as SSeCKS/Gravin/AKAP12 (“AKAP12”) are thought to control oncogenic signaling pathways by regulating key mediators in a spatiotemporal manner. The downregulation of AKAP12 in many human cancers, often associated with promoter hypermethylation, or the loss of its locus at 6q24-25.2, correlates with progression to malignancy and metastasis. The forced re-expression of AKAP12 in cancer cell lines suppresses in vitro parameters of oncogenic growth, invasiveness, and cell motility through its ability to scaffold protein kinase C (PKC), F-actin, cyclins, Src, and phosphoinositides, and possibly through additional scaffolding domains for PKA, calmodulin, β1,4-galactosyltransferase-polypeptide-1, β2-adrenergic receptors, and cAMP-specific 3′,5′-cyclic phosphodiesterase 4D. Moreover, AKAP12 re-expression in tumor models results in metastasis suppression through the inhibition of Src-regulated, VEGF-mediated neovascularization at distal sites. The current review will describe the emerging understanding of how AKAP12 regulates cellular senescence and oncogenic progression at the level of tumor cells and tumor-associated microenvironment via its multiple scaffolding functions.
Literature
1.
go back to reference Gelman, I. H. (2010). Emerging roles for SSeCKS/Gravin/AKAP12 in the control of cell proliferation, cancer malignancy, and barriergenesis. Genes & Cancer, 1(11), 1147–1156.CrossRef Gelman, I. H. (2010). Emerging roles for SSeCKS/Gravin/AKAP12 in the control of cell proliferation, cancer malignancy, and barriergenesis. Genes & Cancer, 1(11), 1147–1156.CrossRef
2.
go back to reference Malbon, C. C. (2007). A-kinase anchoring proteins: trafficking in G-protein-coupled receptors and the proteins that regulate receptor biology. Current Opinion in Drug Discovery & Development, 10(5), 573–579. Malbon, C. C. (2007). A-kinase anchoring proteins: trafficking in G-protein-coupled receptors and the proteins that regulate receptor biology. Current Opinion in Drug Discovery & Development, 10(5), 573–579.
3.
go back to reference Lee, H. S., Han, J., Bai, H. J., & Kim, K. W. (2009). Brain angiogenesis in developmental and pathological processes: regulation, molecular and cellular communication at the neurovascular interface. FEBS Journal, 276(17), 4622–4635.PubMedCrossRef Lee, H. S., Han, J., Bai, H. J., & Kim, K. W. (2009). Brain angiogenesis in developmental and pathological processes: regulation, molecular and cellular communication at the neurovascular interface. FEBS Journal, 276(17), 4622–4635.PubMedCrossRef
4.
go back to reference Zan, L., Wu, H., Jiang, J., Zhao, S., Song, Y., Teng, G., et al. (2011). Temporal profile of Src, SSeCKS, and angiogenic factors after focal cerebral ischemia: correlations with angiogenesis and cerebral edema. Neurochemistry International, 58(8), 872–879.PubMedCrossRef Zan, L., Wu, H., Jiang, J., Zhao, S., Song, Y., Teng, G., et al. (2011). Temporal profile of Src, SSeCKS, and angiogenic factors after focal cerebral ischemia: correlations with angiogenesis and cerebral edema. Neurochemistry International, 58(8), 872–879.PubMedCrossRef
5.
go back to reference Gordon, T., Grove, B., Loftus, J. C., O'Toole, T., McMillan, R., Lindstrom, J., et al. (1992). Molecular cloning and prelimnary characteriztion of a novel cytoplasmic antigen recognized by myasthenia gravis sera. Journal of Clinical Investigation, 90, 992–999.PubMedCrossRef Gordon, T., Grove, B., Loftus, J. C., O'Toole, T., McMillan, R., Lindstrom, J., et al. (1992). Molecular cloning and prelimnary characteriztion of a novel cytoplasmic antigen recognized by myasthenia gravis sera. Journal of Clinical Investigation, 90, 992–999.PubMedCrossRef
6.
go back to reference Sasaki, H., Kunimatsu, M., Funii, Y., Yamakawa, Y., Fukai, I., Kiriyama, M., et al. (2001). Autoantibody to gravin is expressed more strongly in younger and nonthymomatous patients with myasthenia gravis. Surgery Today, 31(11), 1036–1037.PubMedCrossRef Sasaki, H., Kunimatsu, M., Funii, Y., Yamakawa, Y., Fukai, I., Kiriyama, M., et al. (2001). Autoantibody to gravin is expressed more strongly in younger and nonthymomatous patients with myasthenia gravis. Surgery Today, 31(11), 1036–1037.PubMedCrossRef
7.
go back to reference Lin, X., Tombler, E., Nelson, P. J., Ross, M., & Gelman, I. H. (1996). A novel src- and ras-suppressed protein kinase C substrate associated with cytoskeletal architecture. Journal of Biological Chemistry, 271(45), 28430–28438.PubMedCrossRef Lin, X., Tombler, E., Nelson, P. J., Ross, M., & Gelman, I. H. (1996). A novel src- and ras-suppressed protein kinase C substrate associated with cytoskeletal architecture. Journal of Biological Chemistry, 271(45), 28430–28438.PubMedCrossRef
8.
go back to reference Chapline, C., Mousseau, B., Ramsay, K., Duddy, S., Li, Y., Kiley, S. C., et al. (1996). Identification of a major protein kinase C-binding protein and substrate in rat embryo fibroblasts—decreased expression in transformed cells. Journal of Biological Chemistry, 271, 6417–6422.PubMedCrossRef Chapline, C., Mousseau, B., Ramsay, K., Duddy, S., Li, Y., Kiley, S. C., et al. (1996). Identification of a major protein kinase C-binding protein and substrate in rat embryo fibroblasts—decreased expression in transformed cells. Journal of Biological Chemistry, 271, 6417–6422.PubMedCrossRef
9.
go back to reference Nauert, J., Klauck, T., Langeberg, L. K., & Scott, J. D. (1997). Gravin, an autoantigen recognized by serum from myasthenia gravis patients, is a kinase scaffolding protein. Current Biology, 7, 52–62.PubMedCrossRef Nauert, J., Klauck, T., Langeberg, L. K., & Scott, J. D. (1997). Gravin, an autoantigen recognized by serum from myasthenia gravis patients, is a kinase scaffolding protein. Current Biology, 7, 52–62.PubMedCrossRef
10.
go back to reference Burack, W. R., & Shaw, A. S. (2000). Signal transduction: hanging on a scaffold. Current Opinion in Cell Biology, 12(2), 211–216.PubMedCrossRef Burack, W. R., & Shaw, A. S. (2000). Signal transduction: hanging on a scaffold. Current Opinion in Cell Biology, 12(2), 211–216.PubMedCrossRef
11.
go back to reference Johnson, G. (2002). Signal transduction—scaffolding proteins—more than meets the eye. Science, 295(5558), 1249–1250.PubMedCrossRef Johnson, G. (2002). Signal transduction—scaffolding proteins—more than meets the eye. Science, 295(5558), 1249–1250.PubMedCrossRef
12.
go back to reference Xia, W., & Gelman, I. H. (2002). Mitogen- and FAK-regulated tyrosine phosphorylation of the SSeCKS scaffolding protein modulates its actin-binding properties. Experimental Cell Research, 277(2), 139–151.PubMedCrossRef Xia, W., & Gelman, I. H. (2002). Mitogen- and FAK-regulated tyrosine phosphorylation of the SSeCKS scaffolding protein modulates its actin-binding properties. Experimental Cell Research, 277(2), 139–151.PubMedCrossRef
13.
go back to reference Yan, X., Walkiewicz, M., Carlson, J., Leiphon, L., & Grove, B. (2009). Gravin dynamics regulates the subcellular distribution of PKA. Experimental Cell Research, 315(7), 1247–1259.PubMedCrossRef Yan, X., Walkiewicz, M., Carlson, J., Leiphon, L., & Grove, B. (2009). Gravin dynamics regulates the subcellular distribution of PKA. Experimental Cell Research, 315(7), 1247–1259.PubMedCrossRef
14.
go back to reference Gao, S., Wang, H. Y., & Malbon, C. C. (2011). AKAP5 and AKAP12 form homo-oligomers. Journal of Molecular Signaling, 6(1), 3.PubMedCrossRef Gao, S., Wang, H. Y., & Malbon, C. C. (2011). AKAP5 and AKAP12 form homo-oligomers. Journal of Molecular Signaling, 6(1), 3.PubMedCrossRef
15.
go back to reference Gao, S., Wang, H. Y., & Malbon, C. C. (2011). AKAP12 and AKAP5 form higher-order hetero-oligomers. Journal of Molecular Signaling, 6(1), 8.PubMedCrossRef Gao, S., Wang, H. Y., & Malbon, C. C. (2011). AKAP12 and AKAP5 form higher-order hetero-oligomers. Journal of Molecular Signaling, 6(1), 8.PubMedCrossRef
16.
go back to reference Guo, L. W., Gao, L., Rothschild, J., Su, B., & Gelman, I. H. (2011). Control of protein kinase C activity, phorbol ester-induced cytoskeletal remodeling, and cell survival signals by the scaffolding protein SSeCKS/GRAVIN/AKAP12. Journal of Biological Chemistry, 286(44), 38356–38366.PubMedCrossRef Guo, L. W., Gao, L., Rothschild, J., Su, B., & Gelman, I. H. (2011). Control of protein kinase C activity, phorbol ester-induced cytoskeletal remodeling, and cell survival signals by the scaffolding protein SSeCKS/GRAVIN/AKAP12. Journal of Biological Chemistry, 286(44), 38356–38366.PubMedCrossRef
17.
go back to reference Lin, X., Nelson, P., & Gelman, I. H. (2000). Regulation of G–> S progression by the SSeCKS tumor suppressor: control of cyclin D expression and cellular compartmentalization. Molecular and Cellular Biology, 20(19), 7259–7272.PubMedCrossRef Lin, X., Nelson, P., & Gelman, I. H. (2000). Regulation of G–> S progression by the SSeCKS tumor suppressor: control of cyclin D expression and cellular compartmentalization. Molecular and Cellular Biology, 20(19), 7259–7272.PubMedCrossRef
18.
go back to reference Akakura, S., Huang, C., Nelson, P. J., Foster, B., & Gelman, I. H. (2008). Loss of the SSeCKS/Gravin/AKAP12 gene results in prostatic hyperplasia. Cancer Research, 68(13), 5096–5103.PubMedCrossRef Akakura, S., Huang, C., Nelson, P. J., Foster, B., & Gelman, I. H. (2008). Loss of the SSeCKS/Gravin/AKAP12 gene results in prostatic hyperplasia. Cancer Research, 68(13), 5096–5103.PubMedCrossRef
19.
go back to reference Kwon, H. B., Choi, Y. K., Lim, J. J., Kwon, S. H., Her, S., Kim, H. J., et al. (2011). AKAP12 regulates vascular integrity in zebrafish. Experimental & Molecular Medicine, 44(3), 225–235.CrossRef Kwon, H. B., Choi, Y. K., Lim, J. J., Kwon, S. H., Her, S., Kim, H. J., et al. (2011). AKAP12 regulates vascular integrity in zebrafish. Experimental & Molecular Medicine, 44(3), 225–235.CrossRef
20.
go back to reference Gelman, I. H. (2002). The role of the SSeCKS/Gravin/AKAP12 scaffolding proteins in the spaciotemporal control of signaling pathways in oncogenesis and development. Frontiers in Bioscience, 7, d1782–d1797.PubMedCrossRef Gelman, I. H. (2002). The role of the SSeCKS/Gravin/AKAP12 scaffolding proteins in the spaciotemporal control of signaling pathways in oncogenesis and development. Frontiers in Bioscience, 7, d1782–d1797.PubMedCrossRef
21.
go back to reference Lin, X., & Gelman, I. H. (1997). Re-expression of the major protein kinase C substrate, SSeCKS, suppresses v-src-induced morphological transformation and tumorigenesis. Cancer Research, 57, 2304–2312.PubMed Lin, X., & Gelman, I. H. (1997). Re-expression of the major protein kinase C substrate, SSeCKS, suppresses v-src-induced morphological transformation and tumorigenesis. Cancer Research, 57, 2304–2312.PubMed
22.
go back to reference Akakura, S., Nochajski, P., Gao, L., Sotomayor, P., Matsui, S., & Gelman, I. H. (2010). Rb-dependent cellular senescence, multinucleation and susceptibility to oncogenic transformation through PKC scaffolding by SSeCKS/AKAP12. Cell Cycle, 9(23), 4656–4665.PubMedCrossRef Akakura, S., Nochajski, P., Gao, L., Sotomayor, P., Matsui, S., & Gelman, I. H. (2010). Rb-dependent cellular senescence, multinucleation and susceptibility to oncogenic transformation through PKC scaffolding by SSeCKS/AKAP12. Cell Cycle, 9(23), 4656–4665.PubMedCrossRef
23.
go back to reference Weinberg, R. A. (1995). The molecular basis of oncogenes and tumor suppressor genes. Annals of the New York Academy of Science, 758, 331–338.CrossRef Weinberg, R. A. (1995). The molecular basis of oncogenes and tumor suppressor genes. Annals of the New York Academy of Science, 758, 331–338.CrossRef
24.
go back to reference Xia, W., Unger, P., Miller, L., Nelson, J., & Gelman, I. H. (2001). The Src-suppressed C kinase substrate, SSeCKS, is a potential metastasis inhibitor in prostate cancer. Cancer Research, 61(14), 5644–5651.PubMed Xia, W., Unger, P., Miller, L., Nelson, J., & Gelman, I. H. (2001). The Src-suppressed C kinase substrate, SSeCKS, is a potential metastasis inhibitor in prostate cancer. Cancer Research, 61(14), 5644–5651.PubMed
25.
go back to reference Lapointe, J., Li, C., Giacomini, C. P., Salari, K., Huang, S., Wang, P., et al. (2007). Genomic profiling reveals alternative genetic pathways of prostate tumorigenesis. Cancer Research, 67(18), 8504–8510.PubMedCrossRef Lapointe, J., Li, C., Giacomini, C. P., Salari, K., Huang, S., Wang, P., et al. (2007). Genomic profiling reveals alternative genetic pathways of prostate tumorigenesis. Cancer Research, 67(18), 8504–8510.PubMedCrossRef
26.
go back to reference Streb, J. W., Kitchen, C. M., Gelman, I. H., & Miano, J. M. (2004). Multiple promoters direct expression of three AKAP12 isoforms with distinct subcellular and tissue distribution profiles. Journal of Biological Chemistry, 279(53), 56014–56023.PubMedCrossRef Streb, J. W., Kitchen, C. M., Gelman, I. H., & Miano, J. M. (2004). Multiple promoters direct expression of three AKAP12 isoforms with distinct subcellular and tissue distribution profiles. Journal of Biological Chemistry, 279(53), 56014–56023.PubMedCrossRef
27.
go back to reference Bu, Y., & Gelman, I. H. (2007). v-Src-mediated down-regulation of SSeCKS metastasis suppressor gene promoter by the recruitment of HDAC1 into a USF1-Sp1-Sp3 complex. Journal of Biological Chemistry, 282(37), 26725–26739.PubMedCrossRef Bu, Y., & Gelman, I. H. (2007). v-Src-mediated down-regulation of SSeCKS metastasis suppressor gene promoter by the recruitment of HDAC1 into a USF1-Sp1-Sp3 complex. Journal of Biological Chemistry, 282(37), 26725–26739.PubMedCrossRef
28.
go back to reference Bu, Y., Gao, L., & Gelman, I. H. (2010). Role for transcription factor TFII-I in the suppression Of SSeCKS/Gravin/Akap12 transcription by Src. International Journal of Cancer, 128(8), 1836–1842.CrossRef Bu, Y., Gao, L., & Gelman, I. H. (2010). Role for transcription factor TFII-I in the suppression Of SSeCKS/Gravin/Akap12 transcription by Src. International Journal of Cancer, 128(8), 1836–1842.CrossRef
29.
go back to reference Choi, M. C., Jong, H. S., Kim, T. Y., Song, S. H., Lee, D. S., Lee, J. W., et al. (2004). AKAP12/Gravin is inactivated by epigenetic mechanism in human gastric carcinoma and shows growth suppressor activity. Oncogene, 23(42), 7095–7103.PubMedCrossRef Choi, M. C., Jong, H. S., Kim, T. Y., Song, S. H., Lee, D. S., Lee, J. W., et al. (2004). AKAP12/Gravin is inactivated by epigenetic mechanism in human gastric carcinoma and shows growth suppressor activity. Oncogene, 23(42), 7095–7103.PubMedCrossRef
30.
go back to reference Jo, U., Whang, Y. M., Kim, H. K., & Kim, Y. H. (2009). AKAP12alpha is associated with promoter methylation in lung cancer. Cancer Research and Treatment, 38(3), 144–151.CrossRef Jo, U., Whang, Y. M., Kim, H. K., & Kim, Y. H. (2009). AKAP12alpha is associated with promoter methylation in lung cancer. Cancer Research and Treatment, 38(3), 144–151.CrossRef
31.
go back to reference Tessema, M., Willink, R., Do, K., Yu, Y. Y., Yu, W., Machida, E. O., et al. (2008). Promoter methylation of genes in and around the candidate lung cancer susceptibility locus 6q23-25. Cancer Research, 68(6), 1707–1714.PubMedCrossRef Tessema, M., Willink, R., Do, K., Yu, Y. Y., Yu, W., Machida, E. O., et al. (2008). Promoter methylation of genes in and around the candidate lung cancer susceptibility locus 6q23-25. Cancer Research, 68(6), 1707–1714.PubMedCrossRef
32.
go back to reference Bonazzi, V. F., Irwin, D., & Hayward, N. K. (2009). Identification of candidate tumor suppressor genes inactivated by promoter methylation in melanoma. Genes, Chromosomes & Cancer, 48(1), 10–21.CrossRef Bonazzi, V. F., Irwin, D., & Hayward, N. K. (2009). Identification of candidate tumor suppressor genes inactivated by promoter methylation in melanoma. Genes, Chromosomes & Cancer, 48(1), 10–21.CrossRef
33.
go back to reference Mori, Y., Cai, K., Cheng, Y., Wang, S., Paun, B., Hamilton, J. P., et al. (2006). A genome-wide search identifies epigenetic silencing of somatostatin, tachykinin-1, and 5 other genes in colon cancer. Gastroenterology, 131(3), 797–808.PubMedCrossRef Mori, Y., Cai, K., Cheng, Y., Wang, S., Paun, B., Hamilton, J. P., et al. (2006). A genome-wide search identifies epigenetic silencing of somatostatin, tachykinin-1, and 5 other genes in colon cancer. Gastroenterology, 131(3), 797–808.PubMedCrossRef
34.
go back to reference Liu, W., Guan, M., Su, B., Ye, C., Li, J., Zhang, X., et al. (2010). Quantitative assessment of AKAP12 promoter methylation in colorectal cancer using methylation-sensitive high resolution melting: Correlation with dukes' stage. Cancer Biology & Therapy, 9(11), 862–871.CrossRef Liu, W., Guan, M., Su, B., Ye, C., Li, J., Zhang, X., et al. (2010). Quantitative assessment of AKAP12 promoter methylation in colorectal cancer using methylation-sensitive high resolution melting: Correlation with dukes' stage. Cancer Biology & Therapy, 9(11), 862–871.CrossRef
35.
go back to reference Liu, W., Gong, J., Hu, J., Hu, T., Sun, Y., Du, J., et al. (2011). Quantitative assessment of AKAP12 promoter methylation in human prostate cancer using methylation-sensitive high-resolution melting: correlation with Gleason score. Urology, 77(4), 1006e1–1006e7.CrossRef Liu, W., Gong, J., Hu, J., Hu, T., Sun, Y., Du, J., et al. (2011). Quantitative assessment of AKAP12 promoter methylation in human prostate cancer using methylation-sensitive high-resolution melting: correlation with Gleason score. Urology, 77(4), 1006e1–1006e7.CrossRef
36.
go back to reference Wu, W., Zhang, J., Yang, H., Shao, Y., & Yu, B. (2010). Examination of AKAP12 promoter methylation in skin cancer using methylation-sensitive high-resolution melting analysis. Clinical and Experimental Dermatology, 36(4), 381–385.PubMedCrossRef Wu, W., Zhang, J., Yang, H., Shao, Y., & Yu, B. (2010). Examination of AKAP12 promoter methylation in skin cancer using methylation-sensitive high-resolution melting analysis. Clinical and Experimental Dermatology, 36(4), 381–385.PubMedCrossRef
37.
go back to reference Mardin, W., Petrov, K., Enns, A., Senninger, N., Haier, J., & Mees, S. (2010). SERPINB5 and AKAP12—expression and promoter methylation of metastasis suppressor genes in pancreatic ductal adenocarcinoma. BMC Cancer, 10(1), 549.PubMedCrossRef Mardin, W., Petrov, K., Enns, A., Senninger, N., Haier, J., & Mees, S. (2010). SERPINB5 and AKAP12—expression and promoter methylation of metastasis suppressor genes in pancreatic ductal adenocarcinoma. BMC Cancer, 10(1), 549.PubMedCrossRef
38.
go back to reference Heller, G., Schmidt, W. M., Ziegler, B., Holzer, S., Mullauer, L., Bilban, M., et al. (2008). Genome-wide transcriptional response to 5-aza-2'-deoxycytidine and trichostatin a in multiple myeloma cells. Cancer Research, 68(1), 44–54.PubMedCrossRef Heller, G., Schmidt, W. M., Ziegler, B., Holzer, S., Mullauer, L., Bilban, M., et al. (2008). Genome-wide transcriptional response to 5-aza-2'-deoxycytidine and trichostatin a in multiple myeloma cells. Cancer Research, 68(1), 44–54.PubMedCrossRef
39.
go back to reference Wang, J., Qin, R., Ma, Y., Wu, H., Peters, H., Tyska, M., et al. (2009). Differential gene expression in normal esophagus and Barrett's esophagus. Journal of Gastroenterology, 44(9), 897–911.PubMedCrossRef Wang, J., Qin, R., Ma, Y., Wu, H., Peters, H., Tyska, M., et al. (2009). Differential gene expression in normal esophagus and Barrett's esophagus. Journal of Gastroenterology, 44(9), 897–911.PubMedCrossRef
40.
go back to reference Jin, Z., Cheng, Y., Gu, W., Zheng, Y., Sato, F., Mori, Y., et al. (2009). A multicenter, double-blinded validation study of methylation biomarkers for progression prediction in Barrett's esophagus. Cancer Research, 69(10), 4112–4115.PubMedCrossRef Jin, Z., Cheng, Y., Gu, W., Zheng, Y., Sato, F., Mori, Y., et al. (2009). A multicenter, double-blinded validation study of methylation biomarkers for progression prediction in Barrett's esophagus. Cancer Research, 69(10), 4112–4115.PubMedCrossRef
41.
go back to reference Jin, Z., Hamilton, J. P., Yang, J., Mori, Y., Olaru, A., Sato, F., et al. (2008). Hypermethylation of the AKAP12 promoter is a biomarker of Barrett’s-associated esophageal neoplastic progression. Cancer Epidemiology, Biomarkers & Prevention, 17(1), 111–117.CrossRef Jin, Z., Hamilton, J. P., Yang, J., Mori, Y., Olaru, A., Sato, F., et al. (2008). Hypermethylation of the AKAP12 promoter is a biomarker of Barrett’s-associated esophageal neoplastic progression. Cancer Epidemiology, Biomarkers & Prevention, 17(1), 111–117.CrossRef
42.
go back to reference Cai, Q., Wen, W., Qu, S., Li, G., Egan, K. M., Chen, K., et al. (2011). Replication and functional genomic analyses of the breast cancer susceptibility locus at 6q25.1 generalize its importance in women of Chinese, Japanese, and European ancestry. Cancer Research, 71(4), 1344–1355.PubMedCrossRef Cai, Q., Wen, W., Qu, S., Li, G., Egan, K. M., Chen, K., et al. (2011). Replication and functional genomic analyses of the breast cancer susceptibility locus at 6q25.1 generalize its importance in women of Chinese, Japanese, and European ancestry. Cancer Research, 71(4), 1344–1355.PubMedCrossRef
43.
go back to reference He, M. L., Chen, Y., Chen, Q., He, Y., Zhao, J., Wang, J., et al. (2011). Multiple gene dysfunctions lead to high cancer-susceptibility: evidences from a whole-exome sequencing study. American Journal of Cancer Research, 1(4), 562–573.PubMed He, M. L., Chen, Y., Chen, Q., He, Y., Zhao, J., Wang, J., et al. (2011). Multiple gene dysfunctions lead to high cancer-susceptibility: evidences from a whole-exome sequencing study. American Journal of Cancer Research, 1(4), 562–573.PubMed
44.
go back to reference Hayashi, M., Nomoto, S., Kanda, M., Okamura, Y., Nishikawa, Y., Yamada, S., et al. (2012). Identification of the a kinase anchor protein 12 (AKAP12) gene as a candidate tumor suppressor of hepatocellular carcinoma. Journal of Surgical Oncology, 105(4), 381–386.PubMedCrossRef Hayashi, M., Nomoto, S., Kanda, M., Okamura, Y., Nishikawa, Y., Yamada, S., et al. (2012). Identification of the a kinase anchor protein 12 (AKAP12) gene as a candidate tumor suppressor of hepatocellular carcinoma. Journal of Surgical Oncology, 105(4), 381–386.PubMedCrossRef
45.
go back to reference Kim, D. H., Lee, S. T., Won, H. H., Kim, S., Kim, M. J., Kim, H. J., et al. (2011). A genome-wide association study identifies novel loci associated with susceptibility to chronic myeloid leukemia. Blood, 117(25), 6906–6911.PubMedCrossRef Kim, D. H., Lee, S. T., Won, H. H., Kim, S., Kim, M. J., Kim, H. J., et al. (2011). A genome-wide association study identifies novel loci associated with susceptibility to chronic myeloid leukemia. Blood, 117(25), 6906–6911.PubMedCrossRef
46.
go back to reference Daoud, S. S., Munson, P. J., Reinhold, W., Young, L., Prabhu, V. V., Yu, Q., et al. (2003). Impact of p53 knockout and topotecan treatment on gene expression profiles in human colon carcinoma cells: a pharmacogenomic study. Cancer Research, 63(11), 2782–2793.PubMed Daoud, S. S., Munson, P. J., Reinhold, W., Young, L., Prabhu, V. V., Yu, Q., et al. (2003). Impact of p53 knockout and topotecan treatment on gene expression profiles in human colon carcinoma cells: a pharmacogenomic study. Cancer Research, 63(11), 2782–2793.PubMed
47.
go back to reference Zhang, X., Ma, L., Enkemann, S. A., & Pledger, W. J. (2003). Role of Gadd45alpha in the density-dependent G1 arrest induced by p27(Kip1). Oncogene, 22(27), 4166–4174.PubMedCrossRef Zhang, X., Ma, L., Enkemann, S. A., & Pledger, W. J. (2003). Role of Gadd45alpha in the density-dependent G1 arrest induced by p27(Kip1). Oncogene, 22(27), 4166–4174.PubMedCrossRef
48.
go back to reference Yoo, J. Y., Huso, D. L., Nathans, D., & Desiderio, S. (2002). Specific ablation of Stat3beta distorts the pattern of Stat3-responsive gene expression and impairs recovery from endotoxic shock. Cell, 108(3), 331–344.PubMedCrossRef Yoo, J. Y., Huso, D. L., Nathans, D., & Desiderio, S. (2002). Specific ablation of Stat3beta distorts the pattern of Stat3-responsive gene expression and impairs recovery from endotoxic shock. Cell, 108(3), 331–344.PubMedCrossRef
49.
go back to reference Chen, J., Maltby, K. M., & Miano, J. M. (2001). A novel retinoid-response gene set in vascular smooth muscle cells. Biochemistry and Biophysics Research Communications, 281(2), 475–482.CrossRef Chen, J., Maltby, K. M., & Miano, J. M. (2001). A novel retinoid-response gene set in vascular smooth muscle cells. Biochemistry and Biophysics Research Communications, 281(2), 475–482.CrossRef
50.
go back to reference Streb, J. W., Long, X., Lee, T. H., Sun, Q., Kitchen, C. M., Georger, M. A., et al. (2011). Retinoid-induced expression and activity of an immediate early tumor suppressor gene in vascular smooth muscle cells. PLoS One, 6(4), e18538.PubMedCrossRef Streb, J. W., Long, X., Lee, T. H., Sun, Q., Kitchen, C. M., Georger, M. A., et al. (2011). Retinoid-induced expression and activity of an immediate early tumor suppressor gene in vascular smooth muscle cells. PLoS One, 6(4), e18538.PubMedCrossRef
51.
go back to reference Palmer, H. G., Sanchez-Carbayo, M., Ordonez-Moran, P., Larriba, M. J., Cordon-Cardo, C., & Munoz, A. (2003). Genetic signatures of differentiation induced by 1alpha,25-dihydroxyvitamin D3 in human colon cancer cells. Cancer Research, 63(22), 7799–7806.PubMed Palmer, H. G., Sanchez-Carbayo, M., Ordonez-Moran, P., Larriba, M. J., Cordon-Cardo, C., & Munoz, A. (2003). Genetic signatures of differentiation induced by 1alpha,25-dihydroxyvitamin D3 in human colon cancer cells. Cancer Research, 63(22), 7799–7806.PubMed
52.
go back to reference Kovalenko, P. L., Zhang, Z., Cui, M., Clinton, S. K., & Fleet, J. C. (2010). 1,25 dihydroxyvitamin D-mediated orchestration of anticancer, transcript-level effects in the immortalized, non-transformed prostate epithelial cell line, RWPE1. BMC Genomics, 11, 26.PubMedCrossRef Kovalenko, P. L., Zhang, Z., Cui, M., Clinton, S. K., & Fleet, J. C. (2010). 1,25 dihydroxyvitamin D-mediated orchestration of anticancer, transcript-level effects in the immortalized, non-transformed prostate epithelial cell line, RWPE1. BMC Genomics, 11, 26.PubMedCrossRef
53.
go back to reference Ali, N. A., McKay, M. J., & Molloy, M. P. (2010). Proteomics of Smad4 regulated transforming growth factor-beta signalling in colon cancer cells. Molecular BioSystems, 6(11), 2332–2338.PubMedCrossRef Ali, N. A., McKay, M. J., & Molloy, M. P. (2010). Proteomics of Smad4 regulated transforming growth factor-beta signalling in colon cancer cells. Molecular BioSystems, 6(11), 2332–2338.PubMedCrossRef
54.
go back to reference Nelson, P., & Gelman, I. H. (1997). Cell-cycle regulated expression and serine phosphorylation of the myristylated protein kinase C substrate, SSeCKS: correlation with cell confluency, G0 phase and serum response. Molecular and Cellular Biochemistry, 175, 233–241.PubMedCrossRef Nelson, P., & Gelman, I. H. (1997). Cell-cycle regulated expression and serine phosphorylation of the myristylated protein kinase C substrate, SSeCKS: correlation with cell confluency, G0 phase and serum response. Molecular and Cellular Biochemistry, 175, 233–241.PubMedCrossRef
55.
go back to reference Nelson, P. S., Clegg, N., Arnold, H., Ferguson, C., Bonham, M., White, J., et al. (2002). The program of androgen-responsive genes in neoplastic prostate epithelium. Proceedings of the National Academy of Sciences of the United States of America, 99(18), 11890–11895.PubMedCrossRef Nelson, P. S., Clegg, N., Arnold, H., Ferguson, C., Bonham, M., White, J., et al. (2002). The program of androgen-responsive genes in neoplastic prostate epithelium. Proceedings of the National Academy of Sciences of the United States of America, 99(18), 11890–11895.PubMedCrossRef
56.
go back to reference Shao, C., Wang, Y., Yue, H. H., Zhang, Y. T., Shi, C. H., Liu, F., et al. (2007). Biphasic effect of androgens on prostate cancer cells and its correlation with androgen receptor coactivator dopa decarboxylase. Journal of Andrology, 28(6), 804–812.PubMedCrossRef Shao, C., Wang, Y., Yue, H. H., Zhang, Y. T., Shi, C. H., Liu, F., et al. (2007). Biphasic effect of androgens on prostate cancer cells and its correlation with androgen receptor coactivator dopa decarboxylase. Journal of Andrology, 28(6), 804–812.PubMedCrossRef
57.
go back to reference Nickols, N. G., & Dervan, P. B. (2007). Suppression of androgen receptor-mediated gene expression by a sequence-specific DNA-binding polyamide. Proceedings of the National Academy of Sciences of the United States of America, 104(25), 10418–10423.PubMedCrossRef Nickols, N. G., & Dervan, P. B. (2007). Suppression of androgen receptor-mediated gene expression by a sequence-specific DNA-binding polyamide. Proceedings of the National Academy of Sciences of the United States of America, 104(25), 10418–10423.PubMedCrossRef
58.
go back to reference Singh, A. P., Bafna, S., Chaudhary, K., Venkatraman, G., Smith, L., Eudy, J. D., et al. (2008). Genome-wide expression profiling reveals transcriptomic variation and perturbed gene networks in androgen-dependent and androgen-independent prostate cancer cells. Cancer Letters, 259(1), 28–38.PubMedCrossRef Singh, A. P., Bafna, S., Chaudhary, K., Venkatraman, G., Smith, L., Eudy, J. D., et al. (2008). Genome-wide expression profiling reveals transcriptomic variation and perturbed gene networks in androgen-dependent and androgen-independent prostate cancer cells. Cancer Letters, 259(1), 28–38.PubMedCrossRef
59.
go back to reference Cohen, S. B., Waha, A., Gelman, I. H., & Vogt, P. K. (2001). Expression of a down-regulated target, SSeCKS, reverses v-Jun-induced transformation of 10 T1/2 murine fibroblasts. Oncogene, 20(2), 141–146.PubMedCrossRef Cohen, S. B., Waha, A., Gelman, I. H., & Vogt, P. K. (2001). Expression of a down-regulated target, SSeCKS, reverses v-Jun-induced transformation of 10 T1/2 murine fibroblasts. Oncogene, 20(2), 141–146.PubMedCrossRef
60.
go back to reference Gelman, I. H., & Gao, L. (2006). The SSeCKS/Gravin/AKAP12 Metastasis Suppressor Inhibits Podosome Formation Via RhoA- and Cdc42-Dependent Pathways. Molecular Cancer Research, 4(3), 151–158.PubMedCrossRef Gelman, I. H., & Gao, L. (2006). The SSeCKS/Gravin/AKAP12 Metastasis Suppressor Inhibits Podosome Formation Via RhoA- and Cdc42-Dependent Pathways. Molecular Cancer Research, 4(3), 151–158.PubMedCrossRef
61.
go back to reference Nelson, P. J., Moissoglu, K., Vargas, J. J., Klotman, P. E., & Gelman, I. H. (1999). Involvement of the protein kinase C substrate, SSeCKS, in the actin-based stellate morphology of mesangial cells. Journal of Cell Science, 112(3), 361–370.PubMed Nelson, P. J., Moissoglu, K., Vargas, J. J., Klotman, P. E., & Gelman, I. H. (1999). Involvement of the protein kinase C substrate, SSeCKS, in the actin-based stellate morphology of mesangial cells. Journal of Cell Science, 112(3), 361–370.PubMed
62.
go back to reference Lee, S. W., Jung, K. H., Jeong, C. H., Seo, J. H., Yoon, D. K., Suh, J. K., et al. (2011). Inhibition of endothelial cell migration through the downregulation of MMP-9 by A-kinase anchoring protein 12. Molecular Medicine Report, 4(1), 145–149. Lee, S. W., Jung, K. H., Jeong, C. H., Seo, J. H., Yoon, D. K., Suh, J. K., et al. (2011). Inhibition of endothelial cell migration through the downregulation of MMP-9 by A-kinase anchoring protein 12. Molecular Medicine Report, 4(1), 145–149.
63.
go back to reference Su, B., Bu, Y., Engelberg, D., & Gelman, I. H. (2010). SSeCKS/Gravin/AKAP12 inhibits cancer cell invasiveness and chemotaxis by suppressing a PKC-RAF/MEK/ERK pathway. Journal of Biological Chemistry, 285(7), 4578–4586.PubMedCrossRef Su, B., Bu, Y., Engelberg, D., & Gelman, I. H. (2010). SSeCKS/Gravin/AKAP12 inhibits cancer cell invasiveness and chemotaxis by suppressing a PKC-RAF/MEK/ERK pathway. Journal of Biological Chemistry, 285(7), 4578–4586.PubMedCrossRef
64.
go back to reference B Su, L Gao, F Meng, L-W Guo, J Rothschild & IH Gelman (in press). Adhesion-mediated cytoskeletal remodeling is controlled by the direct scaffolding of Src from FAK complexes to lipid rafts by SSeCKS/AKAP12, Oncogene. B Su, L Gao, F Meng, L-W Guo, J Rothschild & IH Gelman (in press). Adhesion-mediated cytoskeletal remodeling is controlled by the direct scaffolding of Src from FAK complexes to lipid rafts by SSeCKS/AKAP12, Oncogene.
65.
go back to reference Lee, H., Volonte, D., Galbiati, F., Iyengar, P., Lublin, D. M., Bregman, D. B., et al. (2000). Constitutive and growth factor-regulated phosphorylation of caveolin-1 occurs at the same site (Tyr-14) in vivo: identification of a c-Src/Cav-1/Grb7 signaling cassette. Molecular Endocrinology, 14(11), 1750–1775.PubMedCrossRef Lee, H., Volonte, D., Galbiati, F., Iyengar, P., Lublin, D. M., Bregman, D. B., et al. (2000). Constitutive and growth factor-regulated phosphorylation of caveolin-1 occurs at the same site (Tyr-14) in vivo: identification of a c-Src/Cav-1/Grb7 signaling cassette. Molecular Endocrinology, 14(11), 1750–1775.PubMedCrossRef
66.
go back to reference Rinker-Schaeffer, C. W., O'Keefe, J. P., Welch, D. R., & Theodorescu, D. (2006). Metastasis suppressor proteins: discovery, molecular mechanisms, and clinical application. Clinical Cancer Research, 12(13), 3882–3889.PubMedCrossRef Rinker-Schaeffer, C. W., O'Keefe, J. P., Welch, D. R., & Theodorescu, D. (2006). Metastasis suppressor proteins: discovery, molecular mechanisms, and clinical application. Clinical Cancer Research, 12(13), 3882–3889.PubMedCrossRef
67.
go back to reference Su, B., Zheng, Q., Vaughan, M. M., Bu, Y., & Gelman, I. H. (2006). SSeCKS metastasis-suppressing activity in MatLyLu prostate cancer cells correlates with VEGF inhibition. Cancer Research, 66(11), 5599–5607.PubMedCrossRef Su, B., Zheng, Q., Vaughan, M. M., Bu, Y., & Gelman, I. H. (2006). SSeCKS metastasis-suppressing activity in MatLyLu prostate cancer cells correlates with VEGF inhibition. Cancer Research, 66(11), 5599–5607.PubMedCrossRef
68.
go back to reference Eliceiri, B. P., Paul, R., Schwartzberg, P. L., Hood, J. D., Leng, J., & Cheresh, D. A. (1999). Selective requirement for Src kinases during VEGF-induced angiogenesis and vascular permeability. Molecular Cell, 4(6), 915–924.PubMedCrossRef Eliceiri, B. P., Paul, R., Schwartzberg, P. L., Hood, J. D., Leng, J., & Cheresh, D. A. (1999). Selective requirement for Src kinases during VEGF-induced angiogenesis and vascular permeability. Molecular Cell, 4(6), 915–924.PubMedCrossRef
69.
go back to reference Eliceiri, B. P., Puente, X. S., Hood, J. D., Stupack, D. G., Schlaepfer, D. D., Huang, X. Z. Z., et al. (2002). Src-mediated coupling of focal adhesion kinase to integrin alpha v beta 5 in vascular endothelial growth factor signaling. The Journal of Cell Biology, 157(1), 149–159.PubMedCrossRef Eliceiri, B. P., Puente, X. S., Hood, J. D., Stupack, D. G., Schlaepfer, D. D., Huang, X. Z. Z., et al. (2002). Src-mediated coupling of focal adhesion kinase to integrin alpha v beta 5 in vascular endothelial growth factor signaling. The Journal of Cell Biology, 157(1), 149–159.PubMedCrossRef
70.
go back to reference Weis, S., Cui, J., Barnes, L., & Cheresh, D. (2004). Endothelial barrier disruption by VEGF-mediated Src activity potentiates tumor cell extravasation and metastasis. The Journal of Cell Biology, 167(2), 223–229.PubMedCrossRef Weis, S., Cui, J., Barnes, L., & Cheresh, D. (2004). Endothelial barrier disruption by VEGF-mediated Src activity potentiates tumor cell extravasation and metastasis. The Journal of Cell Biology, 167(2), 223–229.PubMedCrossRef
71.
go back to reference Lee, S. W., Kim, W. J., Choi, Y. K., Song, H. S., Son, M. J., Gelman, I. H., et al. (2003). SSeCKS regulates angiogenesis and tight junction formation in blood-brain barrier. Nature Medicine, 9(7), 900–906.PubMedCrossRef Lee, S. W., Kim, W. J., Choi, Y. K., Song, H. S., Son, M. J., Gelman, I. H., et al. (2003). SSeCKS regulates angiogenesis and tight junction formation in blood-brain barrier. Nature Medicine, 9(7), 900–906.PubMedCrossRef
72.
go back to reference Adluri, R. S., Thirunavukkarasu, M., Zhan, L., Akita, Y., Samuel, S. M., Otani, H., et al. (2011). Thioredoxin 1 enhances neovascularization and reduces ventricular remodeling during chronic myocardial infarction: a study using thioredoxin 1 transgenic mice. Journal of Molecular and Cellular Cardiology, 50(1), 239–247.PubMedCrossRef Adluri, R. S., Thirunavukkarasu, M., Zhan, L., Akita, Y., Samuel, S. M., Otani, H., et al. (2011). Thioredoxin 1 enhances neovascularization and reduces ventricular remodeling during chronic myocardial infarction: a study using thioredoxin 1 transgenic mice. Journal of Molecular and Cellular Cardiology, 50(1), 239–247.PubMedCrossRef
73.
go back to reference Choi, Y. K., Kim, J. H., Kim, W. J., Lee, H. Y., Park, J. A., Lee, S. W., et al. (2007). AKAP12 regulates human blood-retinal barrier formation by downregulation of hypoxia-inducible factor-1alpha. Journal of Neuroscience, 27(16), 4472–4481.PubMedCrossRef Choi, Y. K., Kim, J. H., Kim, W. J., Lee, H. Y., Park, J. A., Lee, S. W., et al. (2007). AKAP12 regulates human blood-retinal barrier formation by downregulation of hypoxia-inducible factor-1alpha. Journal of Neuroscience, 27(16), 4472–4481.PubMedCrossRef
74.
go back to reference Choi, Y. K., & Kim, K. W. (2008). AKAP12 in astrocytes induces barrier functions in human endothelial cells through protein kinase Czeta. FEBS Journal, 275(9), 2338–2353.PubMedCrossRef Choi, Y. K., & Kim, K. W. (2008). AKAP12 in astrocytes induces barrier functions in human endothelial cells through protein kinase Czeta. FEBS Journal, 275(9), 2338–2353.PubMedCrossRef
75.
go back to reference Steagall, R. J., Hua, F., Thirunazukarasu, M., Zhan, L., Li, C., Maulik, N., et al. (2010). HspA12B promotes angiogenesis through suppressing AKAP12 and up-regulating VEGF pathway. Angiogenesis, 118, S449. Steagall, R. J., Hua, F., Thirunazukarasu, M., Zhan, L., Li, C., Maulik, N., et al. (2010). HspA12B promotes angiogenesis through suppressing AKAP12 and up-regulating VEGF pathway. Angiogenesis, 118, S449.
76.
go back to reference Liu, W., Guan, M., Hu, T., Gu, X., & Lu, Y. (2011). Re-expression of AKAP12 inhibits progression and metastasis potential of colorectal carcinoma in vivo and in vitro. PLoS One, 6(8), e24015.PubMedCrossRef Liu, W., Guan, M., Hu, T., Gu, X., & Lu, Y. (2011). Re-expression of AKAP12 inhibits progression and metastasis potential of colorectal carcinoma in vivo and in vitro. PLoS One, 6(8), e24015.PubMedCrossRef
77.
go back to reference Akakura, S., Bouchard, R., Bshara, W., Morrison, C., & Gelman, I. H. (2010). Carcinogen-induced squamous papillomas and oncogenic progression in the absence of the SSeCKS/AKAP12 metastasis suppressor correlates with FAK upregulation. International Journal of Cancer, 129(8), 2025–2031. Akakura, S., Bouchard, R., Bshara, W., Morrison, C., & Gelman, I. H. (2010). Carcinogen-induced squamous papillomas and oncogenic progression in the absence of the SSeCKS/AKAP12 metastasis suppressor correlates with FAK upregulation. International Journal of Cancer, 129(8), 2025–2031.
78.
go back to reference Ohtani, N., Mann, D. J., & Hara, E. (2009). Cellular senescence: its role in tumor suppression and aging. Cancer Science, 100(5), 792–797.PubMedCrossRef Ohtani, N., Mann, D. J., & Hara, E. (2009). Cellular senescence: its role in tumor suppression and aging. Cancer Science, 100(5), 792–797.PubMedCrossRef
79.
go back to reference McLean, G. W., Brown, K., Arbuckle, M. I., Wyke, A. W., Pikkarainen, T., Ruoslahti, E., et al. (2001). Decreased focal adhesion kinase suppresses papilloma formation during experimental mouse skin carcinogenesis. Cancer Research, 61(23), 8385–8389.PubMed McLean, G. W., Brown, K., Arbuckle, M. I., Wyke, A. W., Pikkarainen, T., Ruoslahti, E., et al. (2001). Decreased focal adhesion kinase suppresses papilloma formation during experimental mouse skin carcinogenesis. Cancer Research, 61(23), 8385–8389.PubMed
80.
go back to reference Akakura, S., Su, B., Nochajski, P., Foster, B., Huang, C., Nelson, P. J., et al. (2009). SSeCKS/Gravin/AKAP12 suppresses metastasis through tumor- and microenvironment-specific pathways. Clinical & Experimental Metastasis, 26(7), 864(A49). Akakura, S., Su, B., Nochajski, P., Foster, B., Huang, C., Nelson, P. J., et al. (2009). SSeCKS/Gravin/AKAP12 suppresses metastasis through tumor- and microenvironment-specific pathways. Clinical & Experimental Metastasis, 26(7), 864(A49).
81.
go back to reference Daigeler, A., Klein-Hitpass, L., Chromik, M. A., Muller, O., Hauser, J., Homann, H. H., et al. (2008). Heterogeneous in vitro effects of doxorubicin on gene expression in primary human liposarcoma cultures. BMC Cancer, 8, 313.PubMedCrossRef Daigeler, A., Klein-Hitpass, L., Chromik, M. A., Muller, O., Hauser, J., Homann, H. H., et al. (2008). Heterogeneous in vitro effects of doxorubicin on gene expression in primary human liposarcoma cultures. BMC Cancer, 8, 313.PubMedCrossRef
82.
go back to reference Harlin, H., Meng, Y., Peterson, A. C., Zha, Y., Tretiakova, M., Slingluff, C., et al. (2009). Chemokine expression in melanoma metastases associated with CD8+ T-cell recruitment. Cancer Research, 69(7), 3077–3085.PubMedCrossRef Harlin, H., Meng, Y., Peterson, A. C., Zha, Y., Tretiakova, M., Slingluff, C., et al. (2009). Chemokine expression in melanoma metastases associated with CD8+ T-cell recruitment. Cancer Research, 69(7), 3077–3085.PubMedCrossRef
83.
go back to reference Radvanyi, L., Singh-Sandhu, D., Gallichan, S., Lovitt, C., Pedyczak, A., Mallo, G., et al. (2005). The gene associated with trichorhinophalangeal syndrome in humans is overexpressed in breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 102(31), 11005–11010.PubMedCrossRef Radvanyi, L., Singh-Sandhu, D., Gallichan, S., Lovitt, C., Pedyczak, A., Mallo, G., et al. (2005). The gene associated with trichorhinophalangeal syndrome in humans is overexpressed in breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 102(31), 11005–11010.PubMedCrossRef
Metadata
Title
Suppression of tumor and metastasis progression through the scaffolding functions of SSeCKS/Gravin/AKAP12
Author
Irwin H. Gelman
Publication date
01-12-2012
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 3-4/2012
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-012-9360-1

Other articles of this Issue 3-4/2012

Cancer and Metastasis Reviews 3-4/2012 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine