Skip to main content
Top
Published in: Journal of Gastroenterology 9/2009

01-09-2009 | Original Article—Alimentary Tract

Differential gene expression in normal esophagus and Barrett’s esophagus

Authors: Jacob Wang, Rong Qin, Yan Ma, Huiyun Wu, Heiko Peters, Matthew Tyska, Nicholas J. Shaheen, Xiaoxin Chen

Published in: Journal of Gastroenterology | Issue 9/2009

Login to get access

Abstract

Purpose

As the premalignant lesion of human esophageal adenocarcinoma (EAC), Barrett’s esophagus (BE) is characterized by intestinal metaplasia in the normal esophagus (NE). Gene expression profiling with microarray and serial analysis of gene expression (SAGE) may help us understand the potential molecular mechanism of human BE.

Methods

We analyzed three microarray datasets (two cDNA arrays and one oligonucleotide array) and one SAGE dataset with statistical tools, significance analysis of microarrays (SAM) and SAGE(Poisson), to identify individual genes differentially expressed in BE. Gene set enrichment analysis (GSEA) was used to identify a priori defined sets of genes that were differentially expressed. These gene sets were grouped according to either certain signaling pathways (GSEA curated), or the presence of consensus binding sequences of known transcription factors (GSEA motif). Immunohistochemical staining (IHC) was used to validate differential gene expression.

Results

Both SAM and SAGE(Poisson) identified 68 differentially expressed genes (55 BE genes and 13 NE genes) with an arbitrary cutoff ratio (≥4-fold). With IHC on matched pairs of NE and BE tissues from 6 patients, these genes were grouped into 6 categories: category I (25 genes only expressed in BE), category II (5 genes only expressed in NE), category III (8 genes expressed more in BE than in NE), and category IV (2 genes expressed more in NE than in BE). Differential expression of the remaining genes was not confirmed by IHC either due to false discovery (category V), or lack of proper antibodies (category VI). Besides individual genes, the TGFβ pathway and several transcription factors (CDX2, HNF1, and HNF4) were identified by GSEA as enriched pathways and motifs in BE. Apart from 9 target genes known to be up-regulated in BE, IHC staining confirmed up-regulation of 19 additional CDX1 and CDX2 target genes in BE.

Conclusion

Our data suggested an important role of CDX1 and CDX2 in the development of BE. The IHC-confirmed gene list will lead to future studies on the molecular mechanism of BE.
Appendix
Available only for authorised users
Literature
1.
go back to reference Chen X, Yang CS. Esophageal adenocarcinoma: a review and perspectives on the mechanism of carcinogenesis and chemoprevention. Carcinogenesis. 2001;22:1119–29.PubMedCrossRef Chen X, Yang CS. Esophageal adenocarcinoma: a review and perspectives on the mechanism of carcinogenesis and chemoprevention. Carcinogenesis. 2001;22:1119–29.PubMedCrossRef
2.
go back to reference Jankowski JA, Harrison RF, Perry I, Balkwill F, Tselepis C. Barrett’s metaplasia. Lancet. 2000;356:2079–85.PubMedCrossRef Jankowski JA, Harrison RF, Perry I, Balkwill F, Tselepis C. Barrett’s metaplasia. Lancet. 2000;356:2079–85.PubMedCrossRef
3.
go back to reference Fitzgerald RC. Barrett’s oesophagus and oesophageal adenocarcinoma: how does acid interfere with cell proliferation and differentiation? Gut. 2005;54(Suppl 1):i21–6.PubMedCrossRef Fitzgerald RC. Barrett’s oesophagus and oesophageal adenocarcinoma: how does acid interfere with cell proliferation and differentiation? Gut. 2005;54(Suppl 1):i21–6.PubMedCrossRef
4.
go back to reference Krishnadath KK. Novel findings in the pathogenesis of esophageal columnar metaplasia or Barrett’s esophagus. Curr Opin Gastroenterol. 2007;23:440–5.PubMedCrossRef Krishnadath KK. Novel findings in the pathogenesis of esophageal columnar metaplasia or Barrett’s esophagus. Curr Opin Gastroenterol. 2007;23:440–5.PubMedCrossRef
5.
go back to reference van Baal JW, Krishnadath KK. High throughput techniques for characterizing the expression profile of Barrett’s esophagus. Dis Esophagus. 2008;21:634–40.PubMedCrossRef van Baal JW, Krishnadath KK. High throughput techniques for characterizing the expression profile of Barrett’s esophagus. Dis Esophagus. 2008;21:634–40.PubMedCrossRef
6.
go back to reference Barrett MT, Yeung KY, Ruzzo WL, Hsu L, Blount PL, Sullivan R, et al. Transcriptional analyses of Barrett’s metaplasia and normal upper GI mucosae. Neoplasia. 2002;4:121–8.PubMedCrossRef Barrett MT, Yeung KY, Ruzzo WL, Hsu L, Blount PL, Sullivan R, et al. Transcriptional analyses of Barrett’s metaplasia and normal upper GI mucosae. Neoplasia. 2002;4:121–8.PubMedCrossRef
7.
go back to reference Fox CA, Sapinoso LM, Zhang H, Zhang W, McLeod HL, Petroni GR, et al. Altered expression of TFF-1 and CES-2 in Barrett’s esophagus and associated adenocarcinomas. Neoplasia. 2005;7:407–16.PubMedCrossRef Fox CA, Sapinoso LM, Zhang H, Zhang W, McLeod HL, Petroni GR, et al. Altered expression of TFF-1 and CES-2 in Barrett’s esophagus and associated adenocarcinomas. Neoplasia. 2005;7:407–16.PubMedCrossRef
8.
go back to reference Gomes LI, Esteves GH, Carvalho AF, Cristo EB, Hirata R Jr, Martins WK, et al. Expression profile of malignant and nonmalignant lesions of esophagus and stomach: differential activity of functional modules related to inflammation and lipid metabolism. Cancer Res. 2005;65:7127–36.PubMedCrossRef Gomes LI, Esteves GH, Carvalho AF, Cristo EB, Hirata R Jr, Martins WK, et al. Expression profile of malignant and nonmalignant lesions of esophagus and stomach: differential activity of functional modules related to inflammation and lipid metabolism. Cancer Res. 2005;65:7127–36.PubMedCrossRef
9.
go back to reference Greenawalt DM, Duong C, Smyth GK, Ciavarella ML, Thompson NJ, Tiang T, et al. Gene expression profiling of esophageal cancer: comparative analysis of Barrett’s esophagus, adenocarcinoma, and squamous cell carcinoma. Int J Cancer. 2007;120:1914–21.PubMedCrossRef Greenawalt DM, Duong C, Smyth GK, Ciavarella ML, Thompson NJ, Tiang T, et al. Gene expression profiling of esophageal cancer: comparative analysis of Barrett’s esophagus, adenocarcinoma, and squamous cell carcinoma. Int J Cancer. 2007;120:1914–21.PubMedCrossRef
10.
go back to reference Hao Y, Triadafilopoulos G, Sahbaie P, Young HS, Omary MB, Lowe AW. Gene expression profiling reveals stromal genes expressed in common between Barrett’s esophagus and adenocarcinoma. Gastroenterology. 2006;131:925–33.PubMedCrossRef Hao Y, Triadafilopoulos G, Sahbaie P, Young HS, Omary MB, Lowe AW. Gene expression profiling reveals stromal genes expressed in common between Barrett’s esophagus and adenocarcinoma. Gastroenterology. 2006;131:925–33.PubMedCrossRef
11.
go back to reference Helm J, Enkemann SA, Coppola D, Barthel JS, Kelley ST, Yeatman TJ. Dedifferentiation precedes invasion in the progression from Barrett’s metaplasia to esophageal adenocarcinoma. Clin Cancer Res. 2005;11:2478–85.PubMedCrossRef Helm J, Enkemann SA, Coppola D, Barthel JS, Kelley ST, Yeatman TJ. Dedifferentiation precedes invasion in the progression from Barrett’s metaplasia to esophageal adenocarcinoma. Clin Cancer Res. 2005;11:2478–85.PubMedCrossRef
12.
go back to reference Kimchi ET, Posner MC, Park JO, Darga TE, Kocherginsky M, Karrison T, et al. Progression of Barrett’s metaplasia to adenocarcinoma is associated with the suppression of the transcriptional programs of epidermal differentiation. Cancer Res. 2005;65:3146–54.PubMed Kimchi ET, Posner MC, Park JO, Darga TE, Kocherginsky M, Karrison T, et al. Progression of Barrett’s metaplasia to adenocarcinoma is associated with the suppression of the transcriptional programs of epidermal differentiation. Cancer Res. 2005;65:3146–54.PubMed
13.
go back to reference Ostrowski J, Mikula M, Karczmarski J, Rubel T, Wyrwicz LS, Bragoszewski P, et al. Molecular defense mechanisms of Barrett’s metaplasia estimated by an integrative genomics. J Mol Med. 2007;85:733–43.PubMedCrossRef Ostrowski J, Mikula M, Karczmarski J, Rubel T, Wyrwicz LS, Bragoszewski P, et al. Molecular defense mechanisms of Barrett’s metaplasia estimated by an integrative genomics. J Mol Med. 2007;85:733–43.PubMedCrossRef
14.
go back to reference Ostrowski J, Rubel T, Wyrwicz LS, Mikula M, Bielasik A, Butruk E, et al. Three clinical variants of gastroesophageal reflux disease form two distinct gene expression signatures. J Mol Med. 2006;84:872–82.PubMedCrossRef Ostrowski J, Rubel T, Wyrwicz LS, Mikula M, Bielasik A, Butruk E, et al. Three clinical variants of gastroesophageal reflux disease form two distinct gene expression signatures. J Mol Med. 2006;84:872–82.PubMedCrossRef
15.
go back to reference Pohler E, Craig AL, Cotton J, Lawrie L, Dillon JF, Ross P, et al. The Barrett’s antigen anterior gradient-2 silences the p53 transcriptional response to DNA damage. Mol Cell Proteomics. 2004;3:534–47.PubMedCrossRef Pohler E, Craig AL, Cotton J, Lawrie L, Dillon JF, Ross P, et al. The Barrett’s antigen anterior gradient-2 silences the p53 transcriptional response to DNA damage. Mol Cell Proteomics. 2004;3:534–47.PubMedCrossRef
16.
go back to reference Selaru FM, Zou T, Xu Y, Shustova V, Yin J, Mori Y, et al. Global gene expression profiling in Barrett’s esophagus and esophageal cancer: a comparative analysis using cDNA microarrays. Oncogene. 2002;21:475–8.PubMedCrossRef Selaru FM, Zou T, Xu Y, Shustova V, Yin J, Mori Y, et al. Global gene expression profiling in Barrett’s esophagus and esophageal cancer: a comparative analysis using cDNA microarrays. Oncogene. 2002;21:475–8.PubMedCrossRef
17.
go back to reference van Baal JW, Milano F, Rygiel AM, Bergman JJ, Rosmolen WD, van Deventer SJ, et al. A comparative analysis by SAGE of gene expression profiles of Barrett’s esophagus, normal squamous esophagus, and gastric cardia. Gastroenterology. 2005;129:1274–81.PubMedCrossRef van Baal JW, Milano F, Rygiel AM, Bergman JJ, Rosmolen WD, van Deventer SJ, et al. A comparative analysis by SAGE of gene expression profiles of Barrett’s esophagus, normal squamous esophagus, and gastric cardia. Gastroenterology. 2005;129:1274–81.PubMedCrossRef
18.
go back to reference Wang S, Zhan M, Yin J, Abraham JM, Mori Y, Sato F, et al. Transcriptional profiling suggests that Barrett’s metaplasia is an early intermediate stage in esophageal adenocarcinogenesis. Oncogene. 2006;25:3346–56.PubMedCrossRef Wang S, Zhan M, Yin J, Abraham JM, Mori Y, Sato F, et al. Transcriptional profiling suggests that Barrett’s metaplasia is an early intermediate stage in esophageal adenocarcinogenesis. Oncogene. 2006;25:3346–56.PubMedCrossRef
19.
go back to reference Xu Y, Selaru FM, Yin J, Zou TT, Shustova V, Mori Y, et al. Artificial neural networks and gene filtering distinguish between global gene expression profiles of Barrett’s esophagus and esophageal cancer. Cancer Res. 2002;62:3493–7.PubMed Xu Y, Selaru FM, Yin J, Zou TT, Shustova V, Mori Y, et al. Artificial neural networks and gene filtering distinguish between global gene expression profiles of Barrett’s esophagus and esophageal cancer. Cancer Res. 2002;62:3493–7.PubMed
20.
go back to reference van Baal JW, Diks SH, Wanders RJ, Rygiel AM, Milano F, Joore J, et al. Comparison of kinome profiles of Barrett’s esophagus with normal squamous esophagus and normal gastric cardia. Cancer Res. 2006;66:11605–12.PubMedCrossRef van Baal JW, Diks SH, Wanders RJ, Rygiel AM, Milano F, Joore J, et al. Comparison of kinome profiles of Barrett’s esophagus with normal squamous esophagus and normal gastric cardia. Cancer Res. 2006;66:11605–12.PubMedCrossRef
21.
go back to reference Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA. 2001;98:5116–21.PubMedCrossRef Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA. 2001;98:5116–21.PubMedCrossRef
22.
go back to reference Cai L, Huang H, Blackshaw S, Liu JS, Cepko C, Wong WH. Clustering analysis of SAGE data using a Poisson approach. Genome Biol. 2004;5:R51.PubMedCrossRef Cai L, Huang H, Blackshaw S, Liu JS, Cepko C, Wong WH. Clustering analysis of SAGE data using a Poisson approach. Genome Biol. 2004;5:R51.PubMedCrossRef
23.
go back to reference Lewin K, Appelman H. Barrett’s esophagus, columnar dysplasia, and adenocarcinoma of the esophagus. In: Appelman KLaH, editor. Tumors of the Esophagus and Stomach. Washington: AFIP; 1995. p. 99–144. Lewin K, Appelman H. Barrett’s esophagus, columnar dysplasia, and adenocarcinoma of the esophagus. In: Appelman KLaH, editor. Tumors of the Esophagus and Stomach. Washington: AFIP; 1995. p. 99–144.
24.
go back to reference Liu T, Zhang X, So CK, Wang S, Wang P, Yan L, et al. Regulation of Cdx2 expression by promoter methylation, and effects of Cdx2 transfection on morphology and gene expression of human esophageal epithelial cells. Carcinogenesis. 2007;28:488–96.PubMedCrossRef Liu T, Zhang X, So CK, Wang S, Wang P, Yan L, et al. Regulation of Cdx2 expression by promoter methylation, and effects of Cdx2 transfection on morphology and gene expression of human esophageal epithelial cells. Carcinogenesis. 2007;28:488–96.PubMedCrossRef
25.
go back to reference Wong NA, Wilding J, Bartlett S, Liu Y, Warren BF, Piris J, et al. CDX1 is an important molecular mediator of Barrett’s metaplasia. Proc Natl Acad Sci USA. 2005;102:7565–70.PubMedCrossRef Wong NA, Wilding J, Bartlett S, Liu Y, Warren BF, Piris J, et al. CDX1 is an important molecular mediator of Barrett’s metaplasia. Proc Natl Acad Sci USA. 2005;102:7565–70.PubMedCrossRef
26.
go back to reference Yang Q, Bermingham NA, Finegold MJ, Zoghbi HY. Requirement of Math1 for secretory cell lineage commitment in the mouse intestine. Science. 2001;294:2155–8.PubMedCrossRef Yang Q, Bermingham NA, Finegold MJ, Zoghbi HY. Requirement of Math1 for secretory cell lineage commitment in the mouse intestine. Science. 2001;294:2155–8.PubMedCrossRef
27.
go back to reference Eda A, Osawa H, Satoh K, Yanaka I, Kihira K, Ishino Y, et al. Aberrant expression of CDX2 in Barrett’s epithelium and inflammatory esophageal mucosa. J Gastroenterol. 2003;38:14–22.PubMedCrossRef Eda A, Osawa H, Satoh K, Yanaka I, Kihira K, Ishino Y, et al. Aberrant expression of CDX2 in Barrett’s epithelium and inflammatory esophageal mucosa. J Gastroenterol. 2003;38:14–22.PubMedCrossRef
28.
go back to reference Silberg DG, Furth EE, Taylor JK, Schuck T, Chiou T, Traber PG. CDX1 protein expression in normal, metaplastic, and neoplastic human alimentary tract epithelium. Gastroenterology. 1997;113:478–86.PubMedCrossRef Silberg DG, Furth EE, Taylor JK, Schuck T, Chiou T, Traber PG. CDX1 protein expression in normal, metaplastic, and neoplastic human alimentary tract epithelium. Gastroenterology. 1997;113:478–86.PubMedCrossRef
29.
go back to reference Chen X, Qin R, Liu B, Ma Y, Su Y, Yang CS, et al. Multilayered epithelium in a rat model and human Barrett’s esophagus: similar expression patterns of transcription factors and differentiation markers. BMC Gastroenterol. 2008;8:1.PubMedCrossRef Chen X, Qin R, Liu B, Ma Y, Su Y, Yang CS, et al. Multilayered epithelium in a rat model and human Barrett’s esophagus: similar expression patterns of transcription factors and differentiation markers. BMC Gastroenterol. 2008;8:1.PubMedCrossRef
30.
go back to reference Milano F, van Baal JW, Buttar NS, Rygiel AM, de Kort F, DeMars CJ, et al. Bone morphogenetic protein 4 expressed in esophagitis induces a columnar phenotype in esophageal squamous cells. Gastroenterology. 2007;132:2412–21.PubMedCrossRef Milano F, van Baal JW, Buttar NS, Rygiel AM, de Kort F, DeMars CJ, et al. Bone morphogenetic protein 4 expressed in esophagitis induces a columnar phenotype in esophageal squamous cells. Gastroenterology. 2007;132:2412–21.PubMedCrossRef
31.
go back to reference Slack JM, Tosh D. Transdifferentiation and metaplasia—switching cell types. Curr Opin Genet Dev. 2001;11:581–6.PubMedCrossRef Slack JM, Tosh D. Transdifferentiation and metaplasia—switching cell types. Curr Opin Genet Dev. 2001;11:581–6.PubMedCrossRef
32.
go back to reference Brabender J, Marjoram P, Salonga D, Metzger R, Schneider PM, Park JM, et al. A multigene expression panel for the molecular diagnosis of Barrett’s esophagus and Barrett’s adenocarcinoma of the esophagus. Oncogene. 2004;23:4780–8.PubMedCrossRef Brabender J, Marjoram P, Salonga D, Metzger R, Schneider PM, Park JM, et al. A multigene expression panel for the molecular diagnosis of Barrett’s esophagus and Barrett’s adenocarcinoma of the esophagus. Oncogene. 2004;23:4780–8.PubMedCrossRef
33.
go back to reference Glickman JN, Blount PL, Sanchez CA, Cowan DS, Wongsurawat VJ, Reid BJ, et al. Mucin core polypeptide expression in the progression of neoplasia in Barrett’s esophagus. Hum Pathol. 2006;37:1304–15.PubMedCrossRef Glickman JN, Blount PL, Sanchez CA, Cowan DS, Wongsurawat VJ, Reid BJ, et al. Mucin core polypeptide expression in the progression of neoplasia in Barrett’s esophagus. Hum Pathol. 2006;37:1304–15.PubMedCrossRef
34.
go back to reference Jovov B, Van Itallie CM, Shaheen NJ, Carson JL, Gambling TM, Anderson JM, et al. Claudin-18: a dominant tight junction protein in Barrett’s esophagus and likely contributor to its acid resistance. Am J Physiol Gastrointest Liver Physiol. 2007;293:G1106–13.PubMedCrossRef Jovov B, Van Itallie CM, Shaheen NJ, Carson JL, Gambling TM, Anderson JM, et al. Claudin-18: a dominant tight junction protein in Barrett’s esophagus and likely contributor to its acid resistance. Am J Physiol Gastrointest Liver Physiol. 2007;293:G1106–13.PubMedCrossRef
35.
go back to reference Kumble S, Omary MB, Fajardo LF, Triadafilopoulos G. Multifocal heterogeneity in villin and Ep-CAM expression in Barrett’s esophagus. Int J Cancer. 1996;66:48–54.PubMedCrossRef Kumble S, Omary MB, Fajardo LF, Triadafilopoulos G. Multifocal heterogeneity in villin and Ep-CAM expression in Barrett’s esophagus. Int J Cancer. 1996;66:48–54.PubMedCrossRef
36.
go back to reference Madsen J, Nielsen O, Tornoe I, Thim L, Holmskov U. Tissue localization of human trefoil factors 1, 2, and 3. J Histochem Cytochem. 2007;55:505–13.PubMedCrossRef Madsen J, Nielsen O, Tornoe I, Thim L, Holmskov U. Tissue localization of human trefoil factors 1, 2, and 3. J Histochem Cytochem. 2007;55:505–13.PubMedCrossRef
37.
go back to reference Mitas M, Almeida JS, Mikhitarian K, Gillanders WE, Lewin DN, Spyropoulos DD, et al. Accurate discrimination of Barrett’s esophagus and esophageal adenocarcinoma using a quantitative three-tiered algorithm and multimarker real-time reverse transcription-PCR. Clin Cancer Res. 2005;11:2205–14.PubMedCrossRef Mitas M, Almeida JS, Mikhitarian K, Gillanders WE, Lewin DN, Spyropoulos DD, et al. Accurate discrimination of Barrett’s esophagus and esophageal adenocarcinoma using a quantitative three-tiered algorithm and multimarker real-time reverse transcription-PCR. Clin Cancer Res. 2005;11:2205–14.PubMedCrossRef
38.
go back to reference van Baal JW, Bozikas A, Pronk R, Ten Kate FJ, Milano F, Rygiel AM, et al. Cytokeratin and CDX-2 expression in Barrett’s esophagus. Scand J Gastroenterol. 2008;43:132–40.PubMedCrossRef van Baal JW, Bozikas A, Pronk R, Ten Kate FJ, Milano F, Rygiel AM, et al. Cytokeratin and CDX-2 expression in Barrett’s esophagus. Scand J Gastroenterol. 2008;43:132–40.PubMedCrossRef
39.
go back to reference Wong NA, Warren BF, Piris J, Maynard N, Marshall R, Bodmer WF. EpCAM and gpA33 are markers of Barrett’s metaplasia. J Clin Pathol. 2006;59:260–3.PubMedCrossRef Wong NA, Warren BF, Piris J, Maynard N, Marshall R, Bodmer WF. EpCAM and gpA33 are markers of Barrett’s metaplasia. J Clin Pathol. 2006;59:260–3.PubMedCrossRef
40.
go back to reference Christie KN, Thomson C. The distribution of carbonic anhydrase II in human, pig and rat oesophageal epithelium. Histochem J. 2000;32:753–7.PubMedCrossRef Christie KN, Thomson C. The distribution of carbonic anhydrase II in human, pig and rat oesophageal epithelium. Histochem J. 2000;32:753–7.PubMedCrossRef
41.
go back to reference Xia SH, Hu LP, Hu H, Ying WT, Xu X, Cai Y, et al. Three isoforms of annexin I are preferentially expressed in normal esophageal epithelia but down-regulated in esophageal squamous cell carcinomas. Oncogene. 2002;21:6641–8.PubMedCrossRef Xia SH, Hu LP, Hu H, Ying WT, Xu X, Cai Y, et al. Three isoforms of annexin I are preferentially expressed in normal esophageal epithelia but down-regulated in esophageal squamous cell carcinomas. Oncogene. 2002;21:6641–8.PubMedCrossRef
42.
go back to reference Mobasheri A, Wray S, Marples D. Distribution of AQP2 and AQP3 water channels in human tissue microarrays. J Mol Histol. 2005;36:1–14.PubMedCrossRef Mobasheri A, Wray S, Marples D. Distribution of AQP2 and AQP3 water channels in human tissue microarrays. J Mol Histol. 2005;36:1–14.PubMedCrossRef
43.
go back to reference Chu PG, Weiss LM. Keratin expression in human tissues and neoplasms. Histopathology. 2002;40:403–39.PubMedCrossRef Chu PG, Weiss LM. Keratin expression in human tissues and neoplasms. Histopathology. 2002;40:403–39.PubMedCrossRef
44.
go back to reference Gerber JK, Richter T, Kremmer E, Adamski J, Hofler H, Balling R, et al. Progressive loss of PAX9 expression correlates with increasing malignancy of dysplastic and cancerous epithelium of the human oesophagus. J Pathol. 2002;197:293–7.PubMedCrossRef Gerber JK, Richter T, Kremmer E, Adamski J, Hofler H, Balling R, et al. Progressive loss of PAX9 expression correlates with increasing malignancy of dysplastic and cancerous epithelium of the human oesophagus. J Pathol. 2002;197:293–7.PubMedCrossRef
45.
go back to reference Ihrie RA, Marques MR, Nguyen BT, Horner JS, Papazoglu C, Bronson RT, et al. Perp is a p63-regulated gene essential for epithelial integrity. Cell. 2005;120:843–56.PubMedCrossRef Ihrie RA, Marques MR, Nguyen BT, Horner JS, Papazoglu C, Bronson RT, et al. Perp is a p63-regulated gene essential for epithelial integrity. Cell. 2005;120:843–56.PubMedCrossRef
46.
go back to reference South AP. Plakophilin 1: an important stabilizer of desmosomes. Clin Exp Dermatol. 2004;29:161–7.PubMedCrossRef South AP. Plakophilin 1: an important stabilizer of desmosomes. Clin Exp Dermatol. 2004;29:161–7.PubMedCrossRef
47.
go back to reference Nishimori T, Tomonaga T, Matsushita K, Oh-Ishi M, Kodera Y, Maeda T, et al. Proteomic analysis of primary esophageal squamous cell carcinoma reveals downregulation of a cell adhesion protein, periplakin. Proteomics. 2006;6:1011–8.PubMedCrossRef Nishimori T, Tomonaga T, Matsushita K, Oh-Ishi M, Kodera Y, Maeda T, et al. Proteomic analysis of primary esophageal squamous cell carcinoma reveals downregulation of a cell adhesion protein, periplakin. Proteomics. 2006;6:1011–8.PubMedCrossRef
48.
go back to reference Mori-Akiyama Y, van den Born M, van Es JH, Hamilton SR, Adams HP, Zhang J, et al. SOX9 is required for the differentiation of paneth cells in the intestinal epithelium. Gastroenterology. 2007;133:539–46.PubMedCrossRef Mori-Akiyama Y, van den Born M, van Es JH, Hamilton SR, Adams HP, Zhang J, et al. SOX9 is required for the differentiation of paneth cells in the intestinal epithelium. Gastroenterology. 2007;133:539–46.PubMedCrossRef
49.
go back to reference Niimi T, Nagashima K, Ward JM, Minoo P, Zimonjic DB, Popescu NC. Claudin-18, a novel downstream target gene for the T/EBP/NKX2.1 homeodomain transcription factor, encodes lung- and stomach-specific isoforms through alternative splicing. Mol Cell Biol. 2001;21:7380–90.PubMedCrossRef Niimi T, Nagashima K, Ward JM, Minoo P, Zimonjic DB, Popescu NC. Claudin-18, a novel downstream target gene for the T/EBP/NKX2.1 homeodomain transcription factor, encodes lung- and stomach-specific isoforms through alternative splicing. Mol Cell Biol. 2001;21:7380–90.PubMedCrossRef
50.
go back to reference Haveri H, Westerholm-Ormio M, Lindfors K, Maki M, Savilahti E, Andersson LC, et al. Transcription factors GATA-4 and GATA-6 in normal and neoplastic human gastrointestinal mucosa. BMC Gastroenterol. 2008;8:9.PubMedCrossRef Haveri H, Westerholm-Ormio M, Lindfors K, Maki M, Savilahti E, Andersson LC, et al. Transcription factors GATA-4 and GATA-6 in normal and neoplastic human gastrointestinal mucosa. BMC Gastroenterol. 2008;8:9.PubMedCrossRef
51.
go back to reference Calon A, Gross I, Lhermitte B, Martin E, Beck F, Duclos B, et al. Different effects of the Cdx1 and Cdx2 homeobox genes in a murine model of intestinal inflammation. Gut. 2007;56:1688–95.PubMedCrossRef Calon A, Gross I, Lhermitte B, Martin E, Beck F, Duclos B, et al. Different effects of the Cdx1 and Cdx2 homeobox genes in a murine model of intestinal inflammation. Gut. 2007;56:1688–95.PubMedCrossRef
52.
go back to reference Barros R, Pereira B, Duluc I, Azevedo M, Mendes N, Camilo V, et al. Key elements of the BMP/SMAD pathway co-localize with CDX2 in intestinal metaplasia and regulate CDX2 expression in human gastric cell lines. J Pathol. 2008. Barros R, Pereira B, Duluc I, Azevedo M, Mendes N, Camilo V, et al. Key elements of the BMP/SMAD pathway co-localize with CDX2 in intestinal metaplasia and regulate CDX2 expression in human gastric cell lines. J Pathol. 2008.
Metadata
Title
Differential gene expression in normal esophagus and Barrett’s esophagus
Authors
Jacob Wang
Rong Qin
Yan Ma
Huiyun Wu
Heiko Peters
Matthew Tyska
Nicholas J. Shaheen
Xiaoxin Chen
Publication date
01-09-2009
Publisher
Springer Japan
Published in
Journal of Gastroenterology / Issue 9/2009
Print ISSN: 0944-1174
Electronic ISSN: 1435-5922
DOI
https://doi.org/10.1007/s00535-009-0082-2

Other articles of this Issue 9/2009

Journal of Gastroenterology 9/2009 Go to the issue