Skip to main content
Top
Published in: Cancer and Metastasis Reviews 1-2/2012

Open Access 01-06-2012 | NON-THEMATIC REVIEW

Significance of vascular endothelial growth factor in growth and peritoneal dissemination of ovarian cancer

Authors: Samar Masoumi Moghaddam, Afshin Amini, David L. Morris, Mohammad H. Pourgholami

Published in: Cancer and Metastasis Reviews | Issue 1-2/2012

Login to get access

Abstract

Vascular endothelial growth factor (VEGF) is a key regulator of angiogenesis which drives endothelial cell survival, proliferation, and migration while increasing vascular permeability. Playing an important role in the physiology of normal ovaries, VEGF has also been implicated in the pathogenesis of ovarian cancer. Essentially by promoting tumor angiogenesis and enhancing vascular permeability, VEGF contributes to the development of peritoneal carcinomatosis associated with malignant ascites formation, the characteristic feature of advanced ovarian cancer at diagnosis. In both experimental and clinical studies, VEGF levels have been inversely correlated with survival. Moreover, VEGF inhibition has been shown to inhibit tumor growth and ascites production and to suppress tumor invasion and metastasis. These findings have laid the basis for the clinical evaluation of agents targeting VEGF signaling pathway in patients with ovarian cancer. In this review, we will focus on VEGF involvement in the pathophysiology of ovarian cancer and its contribution to the disease progression and dissemination.
Literature
2.
go back to reference Geva, E., & Jaffe, R. B. (2000). Role of vascular endothelial growth factor in ovarian physiology and pathology. Fertility and Sterility, 74(3), 429–438.PubMedCrossRef Geva, E., & Jaffe, R. B. (2000). Role of vascular endothelial growth factor in ovarian physiology and pathology. Fertility and Sterility, 74(3), 429–438.PubMedCrossRef
3.
go back to reference Ferlay, J., Shin, H. R., Bray, F., Forman, D., Mathers, C., & Parkin, D. M. (2010). Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. International Journal of Cancer, 127(12), 2893–2917. doi:10.1002/ijc.25516.CrossRef Ferlay, J., Shin, H. R., Bray, F., Forman, D., Mathers, C., & Parkin, D. M. (2010). Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. International Journal of Cancer, 127(12), 2893–2917. doi:10.​1002/​ijc.​25516.CrossRef
5.
go back to reference Nakanishi, Y., Kodama, J., Yoshinouchi, M., Tokumo, K., Kamimura, S., Okuda, H., et al. (1997). The expression of vascular endothelial growth factor and transforming growth factor-beta associates with angiogenesis in epithelial ovarian cancer. International Journal of Gynecological Pathology, 16(3), 256–262.PubMedCrossRef Nakanishi, Y., Kodama, J., Yoshinouchi, M., Tokumo, K., Kamimura, S., Okuda, H., et al. (1997). The expression of vascular endothelial growth factor and transforming growth factor-beta associates with angiogenesis in epithelial ovarian cancer. International Journal of Gynecological Pathology, 16(3), 256–262.PubMedCrossRef
6.
go back to reference Mu, J., Abe, Y., Tsutsui, T., Yamamoto, N., Tai, X.-G., Niwa, O., et al. (1996). Inhibition of growth and metastasis of ovarian carcinoma by administering a drug capable of interfering with vascular endothelial growth factor activity. Cancer Science, 87(9), 963–971.CrossRef Mu, J., Abe, Y., Tsutsui, T., Yamamoto, N., Tai, X.-G., Niwa, O., et al. (1996). Inhibition of growth and metastasis of ovarian carcinoma by administering a drug capable of interfering with vascular endothelial growth factor activity. Cancer Science, 87(9), 963–971.CrossRef
7.
go back to reference Yamamoto, S., Konishi, I., Mandai, M., Kuroda, H., Komatsu, T., Nanbu, K., et al. (1997). Expression of vascular endothelial growth factor (VEGF) in epithelial ovarian neoplasms: correlation with clinicopathology and patient survival, and analysis of serum VEGF levels. British Journal of Cancer, 76(9), 1221–1227.PubMedCrossRef Yamamoto, S., Konishi, I., Mandai, M., Kuroda, H., Komatsu, T., Nanbu, K., et al. (1997). Expression of vascular endothelial growth factor (VEGF) in epithelial ovarian neoplasms: correlation with clinicopathology and patient survival, and analysis of serum VEGF levels. British Journal of Cancer, 76(9), 1221–1227.PubMedCrossRef
8.
go back to reference Hartenbach, E. M., Olson, T. A., Goswitz, J. J., Mohanraj, D., Twiggs, L. B., Carson, L. F., et al. (1997). Vascular endothelial growth factor (VEGF) expression and survival in human epithelial ovarian carcinomas. Cancer Letters, 121(2), 169–175.PubMedCrossRef Hartenbach, E. M., Olson, T. A., Goswitz, J. J., Mohanraj, D., Twiggs, L. B., Carson, L. F., et al. (1997). Vascular endothelial growth factor (VEGF) expression and survival in human epithelial ovarian carcinomas. Cancer Letters, 121(2), 169–175.PubMedCrossRef
10.
go back to reference Munoz-Casares, F. C., Rufian, S., Arjona-Sanchez, A., Rubio, M. J., Diaz, R., Casado, A., et al. (2011). Neoadjuvant intraperitoneal chemotherapy with paclitaxel for the radical surgical treatment of peritoneal carcinomatosis in ovarian cancer: a prospective pilot study. Cancer Chemotherapy and Pharmacology, 68(1), 267–274. doi:10.1007/s00280-011-1646-4.PubMedCrossRef Munoz-Casares, F. C., Rufian, S., Arjona-Sanchez, A., Rubio, M. J., Diaz, R., Casado, A., et al. (2011). Neoadjuvant intraperitoneal chemotherapy with paclitaxel for the radical surgical treatment of peritoneal carcinomatosis in ovarian cancer: a prospective pilot study. Cancer Chemotherapy and Pharmacology, 68(1), 267–274. doi:10.​1007/​s00280-011-1646-4.PubMedCrossRef
11.
go back to reference Meunier, L., Puiffe, M. L., Le Page, C., Filali-Mouhim, A., Chevrette, M., Tonin, P. N., et al. (2010). Effect of ovarian cancer ascites on cell migration and gene expression in an epithelial ovarian cancer in vitro model. Transl Oncol, 3(4), 230–238.PubMed Meunier, L., Puiffe, M. L., Le Page, C., Filali-Mouhim, A., Chevrette, M., Tonin, P. N., et al. (2010). Effect of ovarian cancer ascites on cell migration and gene expression in an epithelial ovarian cancer in vitro model. Transl Oncol, 3(4), 230–238.PubMed
12.
go back to reference Roszkowski, P., Wronkowski, Z., Szamborski, J., & Romejko, M. (1993). Evaluation of selected prognostic factors in ovarian cancer. European Journal of Gynaecological Oncology, 14(Suppl), 140–145.PubMed Roszkowski, P., Wronkowski, Z., Szamborski, J., & Romejko, M. (1993). Evaluation of selected prognostic factors in ovarian cancer. European Journal of Gynaecological Oncology, 14(Suppl), 140–145.PubMed
13.
go back to reference Zang, R. Y., Harter, P., Chi, D. S., Sehouli, J., Jiang, R., Trope, C. G., et al. (2011). Predictors of survival in patients with recurrent ovarian cancer undergoing secondary cytoreductive surgery based on the pooled analysis of an international collaborative cohort. British Journal of Cancer, 105(7), 890–896.PubMedCrossRef Zang, R. Y., Harter, P., Chi, D. S., Sehouli, J., Jiang, R., Trope, C. G., et al. (2011). Predictors of survival in patients with recurrent ovarian cancer undergoing secondary cytoreductive surgery based on the pooled analysis of an international collaborative cohort. British Journal of Cancer, 105(7), 890–896.PubMedCrossRef
14.
go back to reference Senger, D. R., Galli, S. J., Dvorak, A. M., Perruzzi, C. A., Harvey, V. S., & Dvorak, H. F. (1983). Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science, 219(4587), 983–985.PubMedCrossRef Senger, D. R., Galli, S. J., Dvorak, A. M., Perruzzi, C. A., Harvey, V. S., & Dvorak, H. F. (1983). Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science, 219(4587), 983–985.PubMedCrossRef
15.
go back to reference Ferrara, N., & Henzel, W. J. (1989). Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochemical and Biophysical Research Communications, 161(2), 851–858.PubMedCrossRef Ferrara, N., & Henzel, W. J. (1989). Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochemical and Biophysical Research Communications, 161(2), 851–858.PubMedCrossRef
16.
go back to reference Connolly, D. T., Olander, J. V., Heuvelman, D., Nelson, R., Monsell, R., Siegel, N., et al. (1989). Human vascular permeability factor. Isolation from U937 cells. Journal of Biological Chemistry, 26(33), 20017–20024. Connolly, D. T., Olander, J. V., Heuvelman, D., Nelson, R., Monsell, R., Siegel, N., et al. (1989). Human vascular permeability factor. Isolation from U937 cells. Journal of Biological Chemistry, 26(33), 20017–20024.
17.
go back to reference Keck, P. J., Hauser, S. D., Krivi, G., Sanzo, K., Warren, T., Feder, J., et al. (1989). Vascular permeability factor, an endothelial cell mitogen related to PDGF. Science, 246(4935), 1309–1312.PubMedCrossRef Keck, P. J., Hauser, S. D., Krivi, G., Sanzo, K., Warren, T., Feder, J., et al. (1989). Vascular permeability factor, an endothelial cell mitogen related to PDGF. Science, 246(4935), 1309–1312.PubMedCrossRef
18.
go back to reference Leung, D. W., Cachianes, G., Kuang, W. J., Goeddel, D. V., & Ferrara, N. (1989). Vascular endothelial growth factor is a secreted angiogenic mitogen. Science, 246(4935), 1306–1309.PubMedCrossRef Leung, D. W., Cachianes, G., Kuang, W. J., Goeddel, D. V., & Ferrara, N. (1989). Vascular endothelial growth factor is a secreted angiogenic mitogen. Science, 246(4935), 1306–1309.PubMedCrossRef
23.
go back to reference Ferrara, N. (2010). Binding to the extracellular matrix and proteolytic processing: two key mechanisms regulating vascular endothelial growth factor action. Molecular Biology of the Cell, 21(5), 687–690. doi:10.1091/mbc.E09-07-0590.PubMedCrossRef Ferrara, N. (2010). Binding to the extracellular matrix and proteolytic processing: two key mechanisms regulating vascular endothelial growth factor action. Molecular Biology of the Cell, 21(5), 687–690. doi:10.​1091/​mbc.​E09-07-0590.PubMedCrossRef
24.
go back to reference Olsson, A. K., Dimberg, A., Kreuger, J., & Claesson-Welsh, L. (2006). VEGF receptor signalling—in control of vascular function. Nature Reviews Molecular Cell Biology, 7(5), 359–371. doi:10.1038/nrm1911.PubMedCrossRef Olsson, A. K., Dimberg, A., Kreuger, J., & Claesson-Welsh, L. (2006). VEGF receptor signalling—in control of vascular function. Nature Reviews Molecular Cell Biology, 7(5), 359–371. doi:10.​1038/​nrm1911.PubMedCrossRef
25.
go back to reference Robinson, C. J., & Stringer, S. E. (2001). The splice variants of vascular endothelial growth factor (VEGF) and their receptors. Journal of Cell Science, 114(Pt 5), 853–865.PubMed Robinson, C. J., & Stringer, S. E. (2001). The splice variants of vascular endothelial growth factor (VEGF) and their receptors. Journal of Cell Science, 114(Pt 5), 853–865.PubMed
26.
go back to reference Jakeman, L. B., Winer, J., Bennett, G. L., Altar, C. A., & Ferrara, N. (1992). Binding sites for vascular endothelial growth factor are localized on endothelial cells in adult rat tissues. The Journal of Clinical Investigation, 89(1), 244–253. doi:10.1172/jci115568.PubMedCrossRef Jakeman, L. B., Winer, J., Bennett, G. L., Altar, C. A., & Ferrara, N. (1992). Binding sites for vascular endothelial growth factor are localized on endothelial cells in adult rat tissues. The Journal of Clinical Investigation, 89(1), 244–253. doi:10.​1172/​jci115568.PubMedCrossRef
27.
go back to reference Jakeman, L. B., Armanini, M., Phillips, H. S., & Ferrara, N. (1993). Developmental expression of binding sites and messenger ribonucleic acid for vascular endothelial growth factor suggests a role for this protein in vasculogenesis and angiogenesis. Endocrinology, 133(2), 848–859.PubMedCrossRef Jakeman, L. B., Armanini, M., Phillips, H. S., & Ferrara, N. (1993). Developmental expression of binding sites and messenger ribonucleic acid for vascular endothelial growth factor suggests a role for this protein in vasculogenesis and angiogenesis. Endocrinology, 133(2), 848–859.PubMedCrossRef
28.
go back to reference Shen, H., Clauss, M., Ryan, J., Schmidt, A. M., Tijburg, P., Borden, L., et al. (1993). Characterization of vascular permeability factor/vascular endothelial growth factor receptors on mononuclear phagocytes. Blood, 81(10), 2767–2773.PubMed Shen, H., Clauss, M., Ryan, J., Schmidt, A. M., Tijburg, P., Borden, L., et al. (1993). Characterization of vascular permeability factor/vascular endothelial growth factor receptors on mononuclear phagocytes. Blood, 81(10), 2767–2773.PubMed
29.
go back to reference Cross, M. J., Dixelius, J., Matsumoto, T., & Claesson-Welsh, L. (2003). VEGF-receptor signal transduction. Trends in Biochemical Sciences, 28(9), 488–494.PubMedCrossRef Cross, M. J., Dixelius, J., Matsumoto, T., & Claesson-Welsh, L. (2003). VEGF-receptor signal transduction. Trends in Biochemical Sciences, 28(9), 488–494.PubMedCrossRef
31.
go back to reference Makinen, T., Veikkola, T., Mustjoki, S., Karpanen, T., Catimel, B., Nice, E. C., et al. (2001). Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3. EMBO Journal, 20(17), 4762–4773. doi:10.1093/emboj/20.17.4762.PubMedCrossRef Makinen, T., Veikkola, T., Mustjoki, S., Karpanen, T., Catimel, B., Nice, E. C., et al. (2001). Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3. EMBO Journal, 20(17), 4762–4773. doi:10.​1093/​emboj/​20.​17.​4762.PubMedCrossRef
32.
go back to reference Gerber, H. P., McMurtrey, A., Kowalski, J., Yan, M., Keyt, B. A., Dixit, V., et al. (1998). Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3'-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. Journal of Biological Chemistry, 273(46), 30336–30343.PubMedCrossRef Gerber, H. P., McMurtrey, A., Kowalski, J., Yan, M., Keyt, B. A., Dixit, V., et al. (1998). Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3'-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. Journal of Biological Chemistry, 273(46), 30336–30343.PubMedCrossRef
33.
go back to reference Gerber, H. P., Dixit, V., & Ferrara, N. (1998). Vascular endothelial growth factor induces expression of the antiapoptotic proteins Bcl-2 and A1 in vascular endothelial cells. Journal of Biological Chemistry, 273(21), 13313–13316.PubMedCrossRef Gerber, H. P., Dixit, V., & Ferrara, N. (1998). Vascular endothelial growth factor induces expression of the antiapoptotic proteins Bcl-2 and A1 in vascular endothelial cells. Journal of Biological Chemistry, 273(21), 13313–13316.PubMedCrossRef
34.
go back to reference Tran, J., Rak, J., Sheehan, C., Saibil, S. D., LaCasse, E., Korneluk, R. G., et al. (1999). Marked induction of the IAP family antiapoptotic proteins survivin and XIAP by VEGF in vascular endothelial cells. Biochemical and Biophysical Research Communications, 264(3), 781–788. doi:10.1006/bbrc.1999.1589.PubMedCrossRef Tran, J., Rak, J., Sheehan, C., Saibil, S. D., LaCasse, E., Korneluk, R. G., et al. (1999). Marked induction of the IAP family antiapoptotic proteins survivin and XIAP by VEGF in vascular endothelial cells. Biochemical and Biophysical Research Communications, 264(3), 781–788. doi:10.​1006/​bbrc.​1999.​1589.PubMedCrossRef
35.
36.
go back to reference Bates, D. O., & Harper, S. J. (2002). Regulation of vascular permeability by vascular endothelial growth factors. Vascular Pharmacology, 39(4–5), 225–237.PubMedCrossRef Bates, D. O., & Harper, S. J. (2002). Regulation of vascular permeability by vascular endothelial growth factors. Vascular Pharmacology, 39(4–5), 225–237.PubMedCrossRef
37.
go back to reference Issbrucker, K., Marti, H. H., Hippenstiel, S., Springmann, G., Voswinckel, R., Gaumann, A., et al. (2003). p38 MAP kinase—a molecular switch between VEGF-induced angiogenesis and vascular hyperpermeability. The FASEB Journal, 17(2), 262–264. doi:10.1096/fj.02-0329fje. Issbrucker, K., Marti, H. H., Hippenstiel, S., Springmann, G., Voswinckel, R., Gaumann, A., et al. (2003). p38 MAP kinase—a molecular switch between VEGF-induced angiogenesis and vascular hyperpermeability. The FASEB Journal, 17(2), 262–264. doi:10.​1096/​fj.​02-0329fje.
38.
go back to reference Kroll, J., & Waltenberger, J. (1999). A novel function of VEGF receptor-2 (KDR): rapid release of nitric oxide in response to VEGF-A stimulation in endothelial cells. Biochemical and Biophysical Research Communications, 265(3), 636–639. doi:10.1006/bbrc.1999.1729.PubMedCrossRef Kroll, J., & Waltenberger, J. (1999). A novel function of VEGF receptor-2 (KDR): rapid release of nitric oxide in response to VEGF-A stimulation in endothelial cells. Biochemical and Biophysical Research Communications, 265(3), 636–639. doi:10.​1006/​bbrc.​1999.​1729.PubMedCrossRef
39.
go back to reference Yla-Herttuala, S., Rissanen, T. T., Vajanto, I., & Hartikainen, J. (2007). Vascular endothelial growth factors: biology and current status of clinical applications in cardiovascular medicine. Journal of the American College of Cardiology, 49(10), 1015–1026. doi:10.1016/j.jacc.2006.09.053.PubMedCrossRef Yla-Herttuala, S., Rissanen, T. T., Vajanto, I., & Hartikainen, J. (2007). Vascular endothelial growth factors: biology and current status of clinical applications in cardiovascular medicine. Journal of the American College of Cardiology, 49(10), 1015–1026. doi:10.​1016/​j.​jacc.​2006.​09.​053.PubMedCrossRef
40.
go back to reference Ferrara, N. (2001). Role of vascular endothelial growth factor in regulation of physiological angiogenesis. American Journal of Physiology. Cell Physiology, 280(6), C1358–C1366.PubMed Ferrara, N. (2001). Role of vascular endothelial growth factor in regulation of physiological angiogenesis. American Journal of Physiology. Cell Physiology, 280(6), C1358–C1366.PubMed
41.
go back to reference Brown, L. F., Yeo, K. T., Berse, B., Yeo, T. K., Senger, D. R., Dvorak, H. F., et al. (1992). Expression of vascular permeability factor (vascular endothelial growth factor) by epidermal keratinocytes during wound healing. The Journal of Experimental Medicine, 176(5), 1375–1379.PubMedCrossRef Brown, L. F., Yeo, K. T., Berse, B., Yeo, T. K., Senger, D. R., Dvorak, H. F., et al. (1992). Expression of vascular permeability factor (vascular endothelial growth factor) by epidermal keratinocytes during wound healing. The Journal of Experimental Medicine, 176(5), 1375–1379.PubMedCrossRef
42.
go back to reference Kumar, I., Staton, C. A., Cross, S. S., Reed, M. W., & Brown, N. J. (2009). Angiogenesis, vascular endothelial growth factor and its receptors in human surgical wounds. British Journal of Surgery, 96(12), 1484–1491. doi:10.1002/bjs.6778.PubMedCrossRef Kumar, I., Staton, C. A., Cross, S. S., Reed, M. W., & Brown, N. J. (2009). Angiogenesis, vascular endothelial growth factor and its receptors in human surgical wounds. British Journal of Surgery, 96(12), 1484–1491. doi:10.​1002/​bjs.​6778.PubMedCrossRef
43.
go back to reference Westenbrink, B. D., Ruifrok, W. P., Voors, A. A., Tilton, R. G., van Veldhuisen, D. J., Schoemaker, R. G., et al. (2010). Vascular endothelial growth factor is crucial for erythropoietin-induced improvement of cardiac function in heart failure. Cardiovascular Research, 87(1), 30–39. doi:10.1093/cvr/cvq041.PubMedCrossRef Westenbrink, B. D., Ruifrok, W. P., Voors, A. A., Tilton, R. G., van Veldhuisen, D. J., Schoemaker, R. G., et al. (2010). Vascular endothelial growth factor is crucial for erythropoietin-induced improvement of cardiac function in heart failure. Cardiovascular Research, 87(1), 30–39. doi:10.​1093/​cvr/​cvq041.PubMedCrossRef
44.
go back to reference Lee, C., & Agoston, D. V. (2010). Vascular endothelial growth factor is involved in mediating increased de novo hippocampal neurogenesis in response to traumatic brain injury. Journal of Neurotrauma, 27(3), 541–553. doi:10.1089/neu.2009.0905.PubMedCrossRef Lee, C., & Agoston, D. V. (2010). Vascular endothelial growth factor is involved in mediating increased de novo hippocampal neurogenesis in response to traumatic brain injury. Journal of Neurotrauma, 27(3), 541–553. doi:10.​1089/​neu.​2009.​0905.PubMedCrossRef
45.
go back to reference Olfert, I. M., Howlett, R. A., Wagner, P. D., & Breen, E. C. (2010). Myocyte vascular endothelial growth factor is required for exercise-induced skeletal muscle angiogenesis. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology, 299(4), R1059–R1067. doi:10.1152/ajpregu.00347.2010.PubMedCrossRef Olfert, I. M., Howlett, R. A., Wagner, P. D., & Breen, E. C. (2010). Myocyte vascular endothelial growth factor is required for exercise-induced skeletal muscle angiogenesis. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology, 299(4), R1059–R1067. doi:10.​1152/​ajpregu.​00347.​2010.PubMedCrossRef
46.
go back to reference Taylor, P. D., Wilson, H., Hillier, S. G., Wiegand, S. J., & Fraser, H. M. (2007). Effects of inhibition of vascular endothelial growth factor at time of selection on follicular angiogenesis, expansion, development and atresia in the marmoset. Molecular Human Reproduction, 13(10), 729–736. doi:10.1093/molehr/gam056.PubMedCrossRef Taylor, P. D., Wilson, H., Hillier, S. G., Wiegand, S. J., & Fraser, H. M. (2007). Effects of inhibition of vascular endothelial growth factor at time of selection on follicular angiogenesis, expansion, development and atresia in the marmoset. Molecular Human Reproduction, 13(10), 729–736. doi:10.​1093/​molehr/​gam056.PubMedCrossRef
48.
go back to reference Zimmermann, R. C., Xiao, E., Husami, N., Sauer, M. V., Lobo, R., Kitajewski, J., et al. (2001). Short-term administration of antivascular endothelial growth factor antibody in the late follicular phase delays follicular development in the rhesus monkey. Journal of Clinical Endocrinology and Metabolism, 86(2), 768–772.PubMedCrossRef Zimmermann, R. C., Xiao, E., Husami, N., Sauer, M. V., Lobo, R., Kitajewski, J., et al. (2001). Short-term administration of antivascular endothelial growth factor antibody in the late follicular phase delays follicular development in the rhesus monkey. Journal of Clinical Endocrinology and Metabolism, 86(2), 768–772.PubMedCrossRef
49.
go back to reference Wulff, C., Wiegand, S. J., Saunders, P. T., Scobie, G. A., & Fraser, H. M. (2001). Angiogenesis during follicular development in the primate and its inhibition by treatment with truncated Flt-1-Fc (vascular endothelial growth factor Trap(A40)). Endocrinology, 142(7), 3244–3254.PubMedCrossRef Wulff, C., Wiegand, S. J., Saunders, P. T., Scobie, G. A., & Fraser, H. M. (2001). Angiogenesis during follicular development in the primate and its inhibition by treatment with truncated Flt-1-Fc (vascular endothelial growth factor Trap(A40)). Endocrinology, 142(7), 3244–3254.PubMedCrossRef
50.
go back to reference Zimmermann, R. C., Xiao, E., Bohlen, P., & Ferin, M. (2002). Administration of antivascular endothelial growth factor receptor 2 antibody in the early follicular phase delays follicular selection and development in the rhesus monkey. Endocrinology, 143(7), 2496–2502.PubMedCrossRef Zimmermann, R. C., Xiao, E., Bohlen, P., & Ferin, M. (2002). Administration of antivascular endothelial growth factor receptor 2 antibody in the early follicular phase delays follicular selection and development in the rhesus monkey. Endocrinology, 143(7), 2496–2502.PubMedCrossRef
51.
go back to reference Zimmermann, R. C., Hartman, T., Kavic, S., Pauli, S. A., Bohlen, P., Sauer, M. V., et al. (2003). Vascular endothelial growth factor receptor 2-mediated angiogenesis is essential for gonadotropin-dependent follicle development. The Journal of Clinical Investigation, 112(5), 659–669. doi:10.1172/jci18740.PubMed Zimmermann, R. C., Hartman, T., Kavic, S., Pauli, S. A., Bohlen, P., Sauer, M. V., et al. (2003). Vascular endothelial growth factor receptor 2-mediated angiogenesis is essential for gonadotropin-dependent follicle development. The Journal of Clinical Investigation, 112(5), 659–669. doi:10.​1172/​jci18740.PubMed
52.
go back to reference Fraser, H. M., Wilson, H., Rudge, J. S., & Wiegand, S. J. (2005). Single injections of vascular endothelial growth factor trap block ovulation in the macaque and produce a prolonged, dose-related suppression of ovarian function. Journal of Clinical Endocrinology and Metabolism, 90(2), 1114–1122. doi:10.1210/jc.2004-1572.PubMedCrossRef Fraser, H. M., Wilson, H., Rudge, J. S., & Wiegand, S. J. (2005). Single injections of vascular endothelial growth factor trap block ovulation in the macaque and produce a prolonged, dose-related suppression of ovarian function. Journal of Clinical Endocrinology and Metabolism, 90(2), 1114–1122. doi:10.​1210/​jc.​2004-1572.PubMedCrossRef
53.
go back to reference Koos, R. D. (1995). Increased expression of vascular endothelial growth/permeability factor in the rat ovary following an ovulatory gonadotropin stimulus: potential roles in follicle rupture. Biology of Reproduction, 52(6), 1426–1435.PubMedCrossRef Koos, R. D. (1995). Increased expression of vascular endothelial growth/permeability factor in the rat ovary following an ovulatory gonadotropin stimulus: potential roles in follicle rupture. Biology of Reproduction, 52(6), 1426–1435.PubMedCrossRef
54.
go back to reference Ferrara, N., Chen, H., Davis-Smyth, T., Gerber, H. P., Nguyen, T. N., Peers, D., et al. (1998). Vascular endothelial growth factor is essential for corpus luteum angiogenesis. Nature Medicine, 4(3), 336–340.PubMedCrossRef Ferrara, N., Chen, H., Davis-Smyth, T., Gerber, H. P., Nguyen, T. N., Peers, D., et al. (1998). Vascular endothelial growth factor is essential for corpus luteum angiogenesis. Nature Medicine, 4(3), 336–340.PubMedCrossRef
57.
go back to reference Greenaway, J., Connor, K., Pedersen, H. G., Coomber, B. L., LaMarre, J., & Petrik, J. (2004). Vascular endothelial growth factor and its receptor, Flk-1/KDR, are cytoprotective in the extravascular compartment of the ovarian follicle. Endocrinology, 145(6), 2896–2905. doi:10.1210/en.2003-1620.PubMedCrossRef Greenaway, J., Connor, K., Pedersen, H. G., Coomber, B. L., LaMarre, J., & Petrik, J. (2004). Vascular endothelial growth factor and its receptor, Flk-1/KDR, are cytoprotective in the extravascular compartment of the ovarian follicle. Endocrinology, 145(6), 2896–2905. doi:10.​1210/​en.​2003-1620.PubMedCrossRef
59.
go back to reference Rolaki, A., Coukos, G., Loutradis, D., DeLisser, H. M., Coutifaris, C., & Makrigiannakis, A. (2007). Luteogenic hormones act through a vascular endothelial growth factor-dependent mechanism to up-regulate α5β1 and αvβ3 integrins, promoting the migration and survival of human luteinized granulosa cells. American Journal of Pathology, 170(5), 1561–1572. doi:10.2353/ajpath.2007.060926.PubMedCrossRef Rolaki, A., Coukos, G., Loutradis, D., DeLisser, H. M., Coutifaris, C., & Makrigiannakis, A. (2007). Luteogenic hormones act through a vascular endothelial growth factor-dependent mechanism to up-regulate α5β1 and αvβ3 integrins, promoting the migration and survival of human luteinized granulosa cells. American Journal of Pathology, 170(5), 1561–1572. doi:10.​2353/​ajpath.​2007.​060926.PubMedCrossRef
60.
go back to reference Scott, A., Powner, M. B., Gandhi, P., Clarkin, C., Gutmann, D. H., Johnson, R. S., et al. (2010). Astrocyte-derived vascular endothelial growth factor stabilizes vessels in the developing retinal vasculature. PloS One, 5(7), e11863. doi:10.1371/journal.pone.0011863.PubMedCrossRef Scott, A., Powner, M. B., Gandhi, P., Clarkin, C., Gutmann, D. H., Johnson, R. S., et al. (2010). Astrocyte-derived vascular endothelial growth factor stabilizes vessels in the developing retinal vasculature. PloS One, 5(7), e11863. doi:10.​1371/​journal.​pone.​0011863.PubMedCrossRef
61.
go back to reference Smith, L. E. (2008). Through the eyes of a child: understanding retinopathy through ROP the Friedenwald lecture. Investigative Ophthalmology & Visual Science, 49(12), 5177–5182. doi:10.1167/iovs.08-2584.CrossRef Smith, L. E. (2008). Through the eyes of a child: understanding retinopathy through ROP the Friedenwald lecture. Investigative Ophthalmology & Visual Science, 49(12), 5177–5182. doi:10.​1167/​iovs.​08-2584.CrossRef
62.
go back to reference Mahdy, R. A., Nada, W. M., Hadhoud, K. M., & El-Tarhony, S. A. (2010). The role of vascular endothelial growth factor in the progression of diabetic vascular complications. Eye (London, England), 24(10), 1576–1584. doi:10.1038/eye.2010.86.CrossRef Mahdy, R. A., Nada, W. M., Hadhoud, K. M., & El-Tarhony, S. A. (2010). The role of vascular endothelial growth factor in the progression of diabetic vascular complications. Eye (London, England), 24(10), 1576–1584. doi:10.​1038/​eye.​2010.​86.CrossRef
63.
go back to reference Yasuda, S., Kachi, S., Kondo, M., Ushida, H., Uetani, R., Terui, T., et al. (2011). Significant correlation between electroretinogram parameters and ocular vascular endothelial growth factor concentration in central retinal vein occlusion eyes. Investigative Ophthalmology & Visual Science, 52(8), 5737–5742. doi:10.1167/iovs.10-6923.CrossRef Yasuda, S., Kachi, S., Kondo, M., Ushida, H., Uetani, R., Terui, T., et al. (2011). Significant correlation between electroretinogram parameters and ocular vascular endothelial growth factor concentration in central retinal vein occlusion eyes. Investigative Ophthalmology & Visual Science, 52(8), 5737–5742. doi:10.​1167/​iovs.​10-6923.CrossRef
66.
go back to reference Kurosaka, D., Hirai, K., Nishioka, M., Miyamoto, Y., Yoshida, K., Noda, K., et al. (2010). Clinical significance of serum levels of vascular endothelial growth factor, angiopoietin-1, and angiopoietin-2 in patients with rheumatoid arthritis. Journal of Rheumatology, 37(6), 1121–1128. doi:10.3899/jrheum.090941.PubMedCrossRef Kurosaka, D., Hirai, K., Nishioka, M., Miyamoto, Y., Yoshida, K., Noda, K., et al. (2010). Clinical significance of serum levels of vascular endothelial growth factor, angiopoietin-1, and angiopoietin-2 in patients with rheumatoid arthritis. Journal of Rheumatology, 37(6), 1121–1128. doi:10.​3899/​jrheum.​090941.PubMedCrossRef
67.
go back to reference Murata, M., Yudoh, K., & Masuko, K. (2008). The potential role of vascular endothelial growth factor (VEGF) in cartilage: how the angiogenic factor could be involved in the pathogenesis of osteoarthritis? Osteoarthritis and Cartilage, 16(3), 279–286. doi:10.1016/j.joca.2007.09.003.PubMedCrossRef Murata, M., Yudoh, K., & Masuko, K. (2008). The potential role of vascular endothelial growth factor (VEGF) in cartilage: how the angiogenic factor could be involved in the pathogenesis of osteoarthritis? Osteoarthritis and Cartilage, 16(3), 279–286. doi:10.​1016/​j.​joca.​2007.​09.​003.PubMedCrossRef
68.
go back to reference Otto, K., Duchrow, M., Broll, R., Bruch, H. P., & Strik, M. W. (2002). Expression of vascular endothelial growth factor mRNA and protein in human chronic renal allograft rejection. Transplantation Proceedings, 34(8), 3134–3137.PubMedCrossRef Otto, K., Duchrow, M., Broll, R., Bruch, H. P., & Strik, M. W. (2002). Expression of vascular endothelial growth factor mRNA and protein in human chronic renal allograft rejection. Transplantation Proceedings, 34(8), 3134–3137.PubMedCrossRef
72.
go back to reference Celletti, F. L., Waugh, J. M., Amabile, P. G., Brendolan, A., Hilfiker, P. R., & Dake, M. D. (2001). Vascular endothelial growth factor enhances atherosclerotic plaque progression. Nature Medicine, 7(4), 425–429. doi:10.1038/86490.PubMedCrossRef Celletti, F. L., Waugh, J. M., Amabile, P. G., Brendolan, A., Hilfiker, P. R., & Dake, M. D. (2001). Vascular endothelial growth factor enhances atherosclerotic plaque progression. Nature Medicine, 7(4), 425–429. doi:10.​1038/​86490.PubMedCrossRef
73.
go back to reference Nordlie, M. A., Wold, L. E., Simkhovich, B. Z., Sesti, C., & Kloner, R. A. (2006). Molecular aspects of ischemic heart disease: ischemia/reperfusion-induced genetic changes and potential applications of gene and RNA interference therapy. Journal of Cardiovascular Pharmacology and Therapeutics, 11(1), 17–30.PubMedCrossRef Nordlie, M. A., Wold, L. E., Simkhovich, B. Z., Sesti, C., & Kloner, R. A. (2006). Molecular aspects of ischemic heart disease: ischemia/reperfusion-induced genetic changes and potential applications of gene and RNA interference therapy. Journal of Cardiovascular Pharmacology and Therapeutics, 11(1), 17–30.PubMedCrossRef
74.
77.
78.
go back to reference Murakami, Y., Kobayashi, T., Omatsu, K., Suzuki, M., Ohashi, R., Matsuura, T., et al. (2005). Exogenous vascular endothelial growth factor can induce preeclampsia-like symptoms in pregnant mice. Seminars in Thrombosis and Hemostasis, 31(3), 307–313. doi:10.1055/s-2005-872437.PubMedCrossRef Murakami, Y., Kobayashi, T., Omatsu, K., Suzuki, M., Ohashi, R., Matsuura, T., et al. (2005). Exogenous vascular endothelial growth factor can induce preeclampsia-like symptoms in pregnant mice. Seminars in Thrombosis and Hemostasis, 31(3), 307–313. doi:10.​1055/​s-2005-872437.PubMedCrossRef
79.
81.
go back to reference Volm, M., Koomagi, R., Mattern, J., & Stammler, G. (1997). Angiogenic growth factors and their receptors in non-small cell lung carcinomas and their relationships to drug response in vitro. Anticancer Research, 17(1A), 99–103.PubMed Volm, M., Koomagi, R., Mattern, J., & Stammler, G. (1997). Angiogenic growth factors and their receptors in non-small cell lung carcinomas and their relationships to drug response in vitro. Anticancer Research, 17(1A), 99–103.PubMed
82.
go back to reference Brown, L. F., Berse, B., Jackman, R. W., Tognazzi, K., Guidi, A. J., Dvorak, H. F., et al. (1995). Expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in breast cancer. Human Pathology, 26(1), 86–91.PubMedCrossRef Brown, L. F., Berse, B., Jackman, R. W., Tognazzi, K., Guidi, A. J., Dvorak, H. F., et al. (1995). Expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in breast cancer. Human Pathology, 26(1), 86–91.PubMedCrossRef
83.
go back to reference Brown, L. F., Berse, B., Jackman, R. W., Tognazzi, K., Manseau, E. J., Senger, D. R., et al. (1993). Expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in adenocarcinomas of the gastrointestinal tract. Cancer Research, 53(19), 4727–4735.PubMed Brown, L. F., Berse, B., Jackman, R. W., Tognazzi, K., Manseau, E. J., Senger, D. R., et al. (1993). Expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in adenocarcinomas of the gastrointestinal tract. Cancer Research, 53(19), 4727–4735.PubMed
84.
go back to reference Brown, L. F., Berse, B., Jackman, R. W., Tognazzi, K., Manseau, E. J., Dvorak, H. F., et al. (1993). Increased expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in kidney and bladder carcinomas. American Journal of Pathology, 143(5), 1255–1262.PubMed Brown, L. F., Berse, B., Jackman, R. W., Tognazzi, K., Manseau, E. J., Dvorak, H. F., et al. (1993). Increased expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in kidney and bladder carcinomas. American Journal of Pathology, 143(5), 1255–1262.PubMed
85.
go back to reference Guidi, A. J., Abu-Jawdeh, G., Tognazzi, K., Dvorak, H. F., & Brown, L. F. (1996). Expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in endometrial carcinoma. Cancer, 78(3), 454–460. doi:10.1002/(sici)1097-0142(19960801)78:3<454::aid-cncr12>3.0.co;2-y.PubMedCrossRef Guidi, A. J., Abu-Jawdeh, G., Tognazzi, K., Dvorak, H. F., & Brown, L. F. (1996). Expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in endometrial carcinoma. Cancer, 78(3), 454–460. doi:10.1002/(sici)1097-0142(19960801)78:3<454::aid-cncr12>3.0.co;2-y.PubMedCrossRef
87.
go back to reference Turner, H. E., Harris, A. L., Melmed, S., & Wass, J. A. (2003). Angiogenesis in endocrine tumors. Endocrine Reviews, 24(5), 600–632.PubMedCrossRef Turner, H. E., Harris, A. L., Melmed, S., & Wass, J. A. (2003). Angiogenesis in endocrine tumors. Endocrine Reviews, 24(5), 600–632.PubMedCrossRef
88.
go back to reference Fukumura, D., Xavier, R., Sugiura, T., Chen, Y., Park, E. C., Lu, N., et al. (1998). Tumor induction of VEGF promoter activity in stromal cells. Cell, 94(6), 715–725.PubMedCrossRef Fukumura, D., Xavier, R., Sugiura, T., Chen, Y., Park, E. C., Lu, N., et al. (1998). Tumor induction of VEGF promoter activity in stromal cells. Cell, 94(6), 715–725.PubMedCrossRef
89.
go back to reference Gerber, H. P., Kowalski, J., Sherman, D., Eberhard, D. A., & Ferrara, N. (2000). Complete inhibition of rhabdomyosarcoma xenograft growth and neovascularization requires blockade of both tumor and host vascular endothelial growth factor. Cancer Research, 60(22), 6253–6258.PubMed Gerber, H. P., Kowalski, J., Sherman, D., Eberhard, D. A., & Ferrara, N. (2000). Complete inhibition of rhabdomyosarcoma xenograft growth and neovascularization requires blockade of both tumor and host vascular endothelial growth factor. Cancer Research, 60(22), 6253–6258.PubMed
92.
go back to reference Kamba, T., Tam, B. Y., Hashizume, H., Haskell, A., Sennino, B., Mancuso, M. R., et al. (2006). VEGF-dependent plasticity of fenestrated capillaries in the normal adult microvasculature. American Journal of Physiology - Heart and Circulatory Physiology, 290(2), H560–H576. doi:10.1152/ajpheart.00133.2005.PubMedCrossRef Kamba, T., Tam, B. Y., Hashizume, H., Haskell, A., Sennino, B., Mancuso, M. R., et al. (2006). VEGF-dependent plasticity of fenestrated capillaries in the normal adult microvasculature. American Journal of Physiology - Heart and Circulatory Physiology, 290(2), H560–H576. doi:10.​1152/​ajpheart.​00133.​2005.PubMedCrossRef
93.
go back to reference Nor, J. E., Christensen, J., Liu, J., Peters, M., Mooney, D. J., Strieter, R. M., et al. (2001). Up-regulation of Bcl-2 in microvascular endothelial cells enhances intratumoral angiogenesis and accelerates tumor growth. Cancer Research, 61(5), 2183–2188.PubMed Nor, J. E., Christensen, J., Liu, J., Peters, M., Mooney, D. J., Strieter, R. M., et al. (2001). Up-regulation of Bcl-2 in microvascular endothelial cells enhances intratumoral angiogenesis and accelerates tumor growth. Cancer Research, 61(5), 2183–2188.PubMed
94.
95.
go back to reference Dvorak, H. F., Brown, L. F., Detmar, M., & Dvorak, A. M. (1995). Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. American Journal of Pathology, 146(5), 1029–1039.PubMed Dvorak, H. F., Brown, L. F., Detmar, M., & Dvorak, A. M. (1995). Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. American Journal of Pathology, 146(5), 1029–1039.PubMed
96.
go back to reference Unemori, E. N., Ferrara, N., Bauer, E. A., & Amento, E. P. (1992). Vascular endothelial growth factor induces interstitial collagenase expression in human endothelial cells. Journal of Cellular Physiology, 153(3), 557–562. doi:10.1002/jcp.1041530317.PubMedCrossRef Unemori, E. N., Ferrara, N., Bauer, E. A., & Amento, E. P. (1992). Vascular endothelial growth factor induces interstitial collagenase expression in human endothelial cells. Journal of Cellular Physiology, 153(3), 557–562. doi:10.​1002/​jcp.​1041530317.PubMedCrossRef
97.
go back to reference Bamberger, E. S., & Perrett, C. W. (2002). Angiogenesis in epithelian ovarian cancer. Molecular Pathology, 55(6), 348–359.PubMedCrossRef Bamberger, E. S., & Perrett, C. W. (2002). Angiogenesis in epithelian ovarian cancer. Molecular Pathology, 55(6), 348–359.PubMedCrossRef
98.
go back to reference Lichtenberger, B. M., Tan, P. K., Niederleithner, H., Ferrara, N., Petzelbauer, P., & Sibilia, M. (2010). Autocrine VEGF signaling synergizes with EGFR in tumor cells to promote epithelial cancer development. Cell, 140(2), 268–279. doi:10.1016/j.cell.2009.12.046.PubMedCrossRef Lichtenberger, B. M., Tan, P. K., Niederleithner, H., Ferrara, N., Petzelbauer, P., & Sibilia, M. (2010). Autocrine VEGF signaling synergizes with EGFR in tumor cells to promote epithelial cancer development. Cell, 140(2), 268–279. doi:10.​1016/​j.​cell.​2009.​12.​046.PubMedCrossRef
100.
go back to reference Gabrilovich, D. I., Chen, H. L., Girgis, K. R., Cunningham, H. T., Meny, G. M., Nadaf, S., et al. (1996). Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nature Medicine, 2(10), 1096–1103.PubMedCrossRef Gabrilovich, D. I., Chen, H. L., Girgis, K. R., Cunningham, H. T., Meny, G. M., Nadaf, S., et al. (1996). Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nature Medicine, 2(10), 1096–1103.PubMedCrossRef
101.
go back to reference Oyama, T., Ran, S., Ishida, T., Nadaf, S., Kerr, L., Carbone, D. P., et al. (1998). Vascular endothelial growth factor affects dendritic cell maturation through the inhibition of nuclear factor-kappa B activation in hemopoietic progenitor cells. Journal of Immunology, 160(3), 1224–1232. Oyama, T., Ran, S., Ishida, T., Nadaf, S., Kerr, L., Carbone, D. P., et al. (1998). Vascular endothelial growth factor affects dendritic cell maturation through the inhibition of nuclear factor-kappa B activation in hemopoietic progenitor cells. Journal of Immunology, 160(3), 1224–1232.
102.
go back to reference Kaplan, R. N., Riba, R. D., Zacharoulis, S., Bramley, A. H., Vincent, L., Costa, C., et al. (2005). VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature, 438(7069), 820–827. doi:10.1038/nature04186.PubMedCrossRef Kaplan, R. N., Riba, R. D., Zacharoulis, S., Bramley, A. H., Vincent, L., Costa, C., et al. (2005). VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature, 438(7069), 820–827. doi:10.​1038/​nature04186.PubMedCrossRef
103.
104.
go back to reference Medinger, M., Fischer, N., & Tzankov, A. (2010). Vascular endothelial growth factor-related pathways in hemato-lymphoid malignancies. Journal Oncology, 2010, 729725. doi:10.1155/2010/729725. Medinger, M., Fischer, N., & Tzankov, A. (2010). Vascular endothelial growth factor-related pathways in hemato-lymphoid malignancies. Journal Oncology, 2010, 729725. doi:10.​1155/​2010/​729725.
105.
go back to reference Olson, T. A., Mohanraj, D., Carson, L. F., & Ramakrishnan, S. (1994). Vascular permeability factor gene expression in normal and neoplastic human ovaries. Cancer Research, 54(1), 276–280.PubMed Olson, T. A., Mohanraj, D., Carson, L. F., & Ramakrishnan, S. (1994). Vascular permeability factor gene expression in normal and neoplastic human ovaries. Cancer Research, 54(1), 276–280.PubMed
106.
go back to reference Abu-Jawdeh, G. M., Faix, J. D., Niloff, J., Tognazzi, K., Manseau, E., Dvorak, H. F., et al. (1996). Strong expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in ovarian borderline and malignant neoplasms. Laboratory Investigation, 74(6), 1105–1115.PubMed Abu-Jawdeh, G. M., Faix, J. D., Niloff, J., Tognazzi, K., Manseau, E., Dvorak, H. F., et al. (1996). Strong expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in ovarian borderline and malignant neoplasms. Laboratory Investigation, 74(6), 1105–1115.PubMed
107.
go back to reference Hazelton, D., Nicosia, R. F., & Nicosia, S. V. (1999). Vascular endothelial growth factor levels in ovarian cyst fluid correlate with malignancy. Clinical Cancer Research, 5(4), 823–829.PubMed Hazelton, D., Nicosia, R. F., & Nicosia, S. V. (1999). Vascular endothelial growth factor levels in ovarian cyst fluid correlate with malignancy. Clinical Cancer Research, 5(4), 823–829.PubMed
108.
go back to reference Schumacher, J. J., Dings, R. P., Cosin, J., Subramanian, I. V., Auersperg, N., & Ramakrishnan, S. (2007). Modulation of angiogenic phenotype alters tumorigenicity in rat ovarian epithelial cells. Cancer Research, 67(8), 3683–3690. doi:10.1158/0008-5472.can-06-3608.PubMedCrossRef Schumacher, J. J., Dings, R. P., Cosin, J., Subramanian, I. V., Auersperg, N., & Ramakrishnan, S. (2007). Modulation of angiogenic phenotype alters tumorigenicity in rat ovarian epithelial cells. Cancer Research, 67(8), 3683–3690. doi:10.​1158/​0008-5472.​can-06-3608.PubMedCrossRef
109.
go back to reference Santin, A. D., Hermonat, P. L., Ravaggi, A., Cannon, M. J., Pecorelli, S., & Parham, G. P. (1999). Secretion of vascular endothelial growth factor in ovarian cancer. European Journal of Gynaecological Oncology, 20(3), 177–181.PubMed Santin, A. D., Hermonat, P. L., Ravaggi, A., Cannon, M. J., Pecorelli, S., & Parham, G. P. (1999). Secretion of vascular endothelial growth factor in ovarian cancer. European Journal of Gynaecological Oncology, 20(3), 177–181.PubMed
110.
go back to reference Paley, P. J., Staskus, K. A., Gebhard, K., Mohanraj, D., Twiggs, L. B., Carson, L. F., et al. (1997). Vascular endothelial growth factor expression in early stage ovarian carcinoma. Cancer, 80(1), 98–106.PubMedCrossRef Paley, P. J., Staskus, K. A., Gebhard, K., Mohanraj, D., Twiggs, L. B., Carson, L. F., et al. (1997). Vascular endothelial growth factor expression in early stage ovarian carcinoma. Cancer, 80(1), 98–106.PubMedCrossRef
111.
go back to reference Kassim, S. K., El-Salahy, E. M., Fayed, S. T., Helal, S. A., Helal, T., Azzam Eel, D., et al. (2004). Vascular endothelial growth factor and interleukin-8 are associated with poor prognosis in epithelial ovarian cancer patients. Clinical Biochemistry, 37(5), 363–369. doi:10.1016/j.clinbiochem.2004.01.014.PubMedCrossRef Kassim, S. K., El-Salahy, E. M., Fayed, S. T., Helal, S. A., Helal, T., Azzam Eel, D., et al. (2004). Vascular endothelial growth factor and interleukin-8 are associated with poor prognosis in epithelial ovarian cancer patients. Clinical Biochemistry, 37(5), 363–369. doi:10.​1016/​j.​clinbiochem.​2004.​01.​014.PubMedCrossRef
112.
go back to reference Chambers, S. K., Clouser, M. C., Baker, A. F., Roe, D. J., Cui, H., Brewer, M. A., et al. (2010). Overexpression of tumor vascular endothelial growth factor A may portend an increased likelihood of progression in a phase II trial of bevacizumab and erlotinib in resistant ovarian cancer. Clinical Cancer Research, 16(21), 5320–5328. doi:10.1158/1078-0432.ccr-10-0974.PubMedCrossRef Chambers, S. K., Clouser, M. C., Baker, A. F., Roe, D. J., Cui, H., Brewer, M. A., et al. (2010). Overexpression of tumor vascular endothelial growth factor A may portend an increased likelihood of progression in a phase II trial of bevacizumab and erlotinib in resistant ovarian cancer. Clinical Cancer Research, 16(21), 5320–5328. doi:10.​1158/​1078-0432.​ccr-10-0974.PubMedCrossRef
113.
go back to reference Siddiqui, G. K., Elmasry, K., Wong Te Fong, A. C., Perrett, C., Morris, R., Crow, J. C., et al. (2010). Prognostic significance of intratumoral vascular endothelial growth factor as a marker of tumour angiogenesis in epithelial ovarian cancer. European Journal of Gynaecological Oncology, 31(2), 156–159.PubMed Siddiqui, G. K., Elmasry, K., Wong Te Fong, A. C., Perrett, C., Morris, R., Crow, J. C., et al. (2010). Prognostic significance of intratumoral vascular endothelial growth factor as a marker of tumour angiogenesis in epithelial ovarian cancer. European Journal of Gynaecological Oncology, 31(2), 156–159.PubMed
114.
go back to reference Siddiqui, G. K., Wong Te Fong, L. F., Rolfe, K. J., Hadjat, S., Reid, W. M. N., Maclean, A. B., et al. (2001). Abstracts presented at the Scientific Meeting, Portsmouth, 10th and 11th November 2000. BJOG: An International Journal of Obstetrics and Gynaecology, 108(5), 547–557. doi:10.1111/j.1471-0528.2001.00126.x.CrossRef Siddiqui, G. K., Wong Te Fong, L. F., Rolfe, K. J., Hadjat, S., Reid, W. M. N., Maclean, A. B., et al. (2001). Abstracts presented at the Scientific Meeting, Portsmouth, 10th and 11th November 2000. BJOG: An International Journal of Obstetrics and Gynaecology, 108(5), 547–557. doi:10.​1111/​j.​1471-0528.​2001.​00126.​x.CrossRef
115.
go back to reference Zebrowski, B. K., Liu, W., Ramirez, K., Akagi, Y., Mills, G. B., & Ellis, L. M. (1999). Markedly elevated levels of vascular endothelial growth factor in malignant ascites. Annals of Surgical Oncology, 6(4), 373–378.PubMedCrossRef Zebrowski, B. K., Liu, W., Ramirez, K., Akagi, Y., Mills, G. B., & Ellis, L. M. (1999). Markedly elevated levels of vascular endothelial growth factor in malignant ascites. Annals of Surgical Oncology, 6(4), 373–378.PubMedCrossRef
116.
go back to reference Bamias, A., Koutsoukou, V., Terpos, E., Tsiatas, M. L., Liakos, C., Tsitsilonis, O., et al. (2008). Correlation of NK T-like CD3+CD56+ cells and CD4+CD25+(hi) regulatory T cells with VEGF and TNFalpha in ascites from advanced ovarian cancer: association with platinum resistance and prognosis in patients receiving first-line, platinum-based chemotherapy. Gynecologic Oncology, 108(2), 421–427. doi:10.1016/j.ygyno.2007.10.018.PubMedCrossRef Bamias, A., Koutsoukou, V., Terpos, E., Tsiatas, M. L., Liakos, C., Tsitsilonis, O., et al. (2008). Correlation of NK T-like CD3+CD56+ cells and CD4+CD25+(hi) regulatory T cells with VEGF and TNFalpha in ascites from advanced ovarian cancer: association with platinum resistance and prognosis in patients receiving first-line, platinum-based chemotherapy. Gynecologic Oncology, 108(2), 421–427. doi:10.​1016/​j.​ygyno.​2007.​10.​018.PubMedCrossRef
117.
go back to reference Cooper, B. C., Ritchie, J. M., Broghammer, C. L., Coffin, J., Sorosky, J. I., Buller, R. E., et al. (2002). Preoperative serum vascular endothelial growth factor levels: significance in ovarian cancer. Clinical Cancer Research, 8(10), 3193–3197.PubMed Cooper, B. C., Ritchie, J. M., Broghammer, C. L., Coffin, J., Sorosky, J. I., Buller, R. E., et al. (2002). Preoperative serum vascular endothelial growth factor levels: significance in ovarian cancer. Clinical Cancer Research, 8(10), 3193–3197.PubMed
118.
go back to reference Li, L., Wang, L., Zhang, W., Tang, B., Zhang, J., Song, H., et al. (2004). Correlation of serum VEGF levels with clinical stage, therapy efficacy, tumor metastasis and patient survival in ovarian cancer. Anticancer Research, 24(3b), 1973–1979.PubMed Li, L., Wang, L., Zhang, W., Tang, B., Zhang, J., Song, H., et al. (2004). Correlation of serum VEGF levels with clinical stage, therapy efficacy, tumor metastasis and patient survival in ovarian cancer. Anticancer Research, 24(3b), 1973–1979.PubMed
119.
go back to reference Hefler, L. A., Zeillinger, R., Grimm, C., Sood, A. K., Cheng, W. F., Gadducci, A., et al. (2006). Preoperative serum vascular endothelial growth factor as a prognostic parameter in ovarian cancer. Gynecologic Oncology, 103(2), 512–517. doi:10.1016/j.ygyno.2006.03.058.PubMedCrossRef Hefler, L. A., Zeillinger, R., Grimm, C., Sood, A. K., Cheng, W. F., Gadducci, A., et al. (2006). Preoperative serum vascular endothelial growth factor as a prognostic parameter in ovarian cancer. Gynecologic Oncology, 103(2), 512–517. doi:10.​1016/​j.​ygyno.​2006.​03.​058.PubMedCrossRef
121.
go back to reference Osada, R., Horiuchi, A., Kikuchi, N., Ohira, S., Ota, M., Katsuyama, Y., et al. (2006). Expression of semaphorins, vascular endothelial growth factor, and their common receptor neuropilins and alleic loss of semaphorin locus in epithelial ovarian neoplasms: increased ratio of vascular endothelial growth factor to semaphorin is a poor prognostic factor in ovarian carcinomas. Human Pathology, 37(11), 1414–1425. doi:10.1016/j.humpath.2006.04.031.PubMedCrossRef Osada, R., Horiuchi, A., Kikuchi, N., Ohira, S., Ota, M., Katsuyama, Y., et al. (2006). Expression of semaphorins, vascular endothelial growth factor, and their common receptor neuropilins and alleic loss of semaphorin locus in epithelial ovarian neoplasms: increased ratio of vascular endothelial growth factor to semaphorin is a poor prognostic factor in ovarian carcinomas. Human Pathology, 37(11), 1414–1425. doi:10.​1016/​j.​humpath.​2006.​04.​031.PubMedCrossRef
122.
go back to reference Hefler, L. A., Mustea, A., Konsgen, D., Concin, N., Tanner, B., Strick, R., et al. (2007). Vascular endothelial growth factor gene polymorphisms are associated with prognosis in ovarian cancer. Clinical Cancer Research, 13(3), 898–901. doi:10.1158/1078-0432.ccr-06-1008.PubMedCrossRef Hefler, L. A., Mustea, A., Konsgen, D., Concin, N., Tanner, B., Strick, R., et al. (2007). Vascular endothelial growth factor gene polymorphisms are associated with prognosis in ovarian cancer. Clinical Cancer Research, 13(3), 898–901. doi:10.​1158/​1078-0432.​ccr-06-1008.PubMedCrossRef
123.
go back to reference Horiuchi, A., Imai, T., Shimizu, M., Oka, K., Wang, C., Nikaido, T., et al. (2002). Hypoxia-induced changes in the expression of VEGF, HIF-1 alpha and cell cycle-related molecules in ovarian cancer cells. Anticancer Research, 22(5), 2697–2702.PubMed Horiuchi, A., Imai, T., Shimizu, M., Oka, K., Wang, C., Nikaido, T., et al. (2002). Hypoxia-induced changes in the expression of VEGF, HIF-1 alpha and cell cycle-related molecules in ovarian cancer cells. Anticancer Research, 22(5), 2697–2702.PubMed
124.
go back to reference Skinner, H. D., Zheng, J. Z., Fang, J., Agani, F., & Jiang, B.-H. (2004). Vascular endothelial growth factor transcriptional activation is mediated by hypoxia-inducible factor 1α, HDM2, and p70S6K1 in response to phosphatidylinositol 3-kinase/AKT signaling. Journal of Biological Chemistry, 279(44), 45643–45651. doi:10.1074/jbc.M404097200.PubMedCrossRef Skinner, H. D., Zheng, J. Z., Fang, J., Agani, F., & Jiang, B.-H. (2004). Vascular endothelial growth factor transcriptional activation is mediated by hypoxia-inducible factor 1α, HDM2, and p70S6K1 in response to phosphatidylinositol 3-kinase/AKT signaling. Journal of Biological Chemistry, 279(44), 45643–45651. doi:10.​1074/​jbc.​M404097200.PubMedCrossRef
125.
go back to reference Kryczek, I., Lange, A., Mottram, P., Alvarez, X., Cheng, P., Hogan, M., et al. (2005). CXCL12 and vascular endothelial growth factor synergistically induce neoangiogenesis in human ovarian cancers. Cancer Research, 65(2), 465–472.PubMed Kryczek, I., Lange, A., Mottram, P., Alvarez, X., Cheng, P., Hogan, M., et al. (2005). CXCL12 and vascular endothelial growth factor synergistically induce neoangiogenesis in human ovarian cancers. Cancer Research, 65(2), 465–472.PubMed
126.
go back to reference Cao, Z., Fang, J., Xia, C., Shi, X., & Jiang, B.-H. (2004). trans-3,4,5′-Trihydroxystibene inhibits hypoxia-inducible factor 1α and vascular endothelial growth factor expression in human ovarian cancer cells. Clinical Cancer Research, 10(15), 5253–5263. doi:10.1158/1078-0432.ccr-03-0588.PubMedCrossRef Cao, Z., Fang, J., Xia, C., Shi, X., & Jiang, B.-H. (2004). trans-3,4,5′-Trihydroxystibene inhibits hypoxia-inducible factor 1α and vascular endothelial growth factor expression in human ovarian cancer cells. Clinical Cancer Research, 10(15), 5253–5263. doi:10.​1158/​1078-0432.​ccr-03-0588.PubMedCrossRef
127.
go back to reference Liu, L.-Z., Hu, X.-W., Xia, C., He, J., Zhou, Q., Shi, X., et al. (2006). Reactive oxygen species regulate epidermal growth factor-induced vascular endothelial growth factor and hypoxia-inducible factor-1α expression through activation of AKT and P70S6K1 in human ovarian cancer cells. Free Radical Biology & Medicine, 41(10), 1521–1533. doi:10.1016/j.freeradbiomed.2006.08.003.CrossRef Liu, L.-Z., Hu, X.-W., Xia, C., He, J., Zhou, Q., Shi, X., et al. (2006). Reactive oxygen species regulate epidermal growth factor-induced vascular endothelial growth factor and hypoxia-inducible factor-1α expression through activation of AKT and P70S6K1 in human ovarian cancer cells. Free Radical Biology & Medicine, 41(10), 1521–1533. doi:10.​1016/​j.​freeradbiomed.​2006.​08.​003.CrossRef
128.
go back to reference Matei, D., Kelich, S., Cao, L., Menning, N., Emerson, R. E., Rao, J., et al. (2007). PDGF BB induces VEGF secretion in ovarian cancer. Cancer Biology & Therapy, 6(12), 1951–1959.CrossRef Matei, D., Kelich, S., Cao, L., Menning, N., Emerson, R. E., Rao, J., et al. (2007). PDGF BB induces VEGF secretion in ovarian cancer. Cancer Biology & Therapy, 6(12), 1951–1959.CrossRef
129.
go back to reference Liao, S., Liu, J., Lin, P., Shi, T., Jain, R. K., & Xu, L. (2011). TGF-beta blockade controls ascites by preventing abnormalization of lymphatic vessels in orthotopic human ovarian carcinoma models. Clinical Cancer Research, 17(6), 1415–1424. doi:10.1158/1078-0432.ccr-10-2429.PubMedCrossRef Liao, S., Liu, J., Lin, P., Shi, T., Jain, R. K., & Xu, L. (2011). TGF-beta blockade controls ascites by preventing abnormalization of lymphatic vessels in orthotopic human ovarian carcinoma models. Clinical Cancer Research, 17(6), 1415–1424. doi:10.​1158/​1078-0432.​ccr-10-2429.PubMedCrossRef
130.
go back to reference Kulbe, H., Thompson, R., Wilson, J. L., Robinson, S., Hagemann, T., Fatah, R., et al. (2007). The inflammatory cytokine tumor necrosis factor-alpha generates an autocrine tumor-promoting network in epithelial ovarian cancer cells. Cancer Research, 67(2), 585–592. doi:10.1158/0008-5472.can-06-2941.PubMedCrossRef Kulbe, H., Thompson, R., Wilson, J. L., Robinson, S., Hagemann, T., Fatah, R., et al. (2007). The inflammatory cytokine tumor necrosis factor-alpha generates an autocrine tumor-promoting network in epithelial ovarian cancer cells. Cancer Research, 67(2), 585–592. doi:10.​1158/​0008-5472.​can-06-2941.PubMedCrossRef
132.
go back to reference Stadlmann, S., Amberger, A., Pollheimer, J., Gastl, G., Offner, F. A., Margreiter, R., et al. (2005). Ovarian carcinoma cells and IL-1beta-activated human peritoneal mesothelial cells are possible sources of vascular endothelial growth factor in inflammatory and malignant peritoneal effusions. Gynecologic Oncology, 97(3), 784–789. doi:10.1016/j.ygyno.2005.02.017.PubMedCrossRef Stadlmann, S., Amberger, A., Pollheimer, J., Gastl, G., Offner, F. A., Margreiter, R., et al. (2005). Ovarian carcinoma cells and IL-1beta-activated human peritoneal mesothelial cells are possible sources of vascular endothelial growth factor in inflammatory and malignant peritoneal effusions. Gynecologic Oncology, 97(3), 784–789. doi:10.​1016/​j.​ygyno.​2005.​02.​017.PubMedCrossRef
133.
go back to reference Coward, J., Kulbe, H., Chakravarty, P., Leader, D. A., Vassileva, V., Leinster, D. A., et al. (2011). Interleukin-6 as a therapeutic target in human ovarian cancer. Clinical Cancer Research. doi:10.1158/1078-0432.ccr-11-0945. Coward, J., Kulbe, H., Chakravarty, P., Leader, D. A., Vassileva, V., Leinster, D. A., et al. (2011). Interleukin-6 as a therapeutic target in human ovarian cancer. Clinical Cancer Research. doi:10.​1158/​1078-0432.​ccr-11-0945.
134.
135.
go back to reference Kandalaft, L. E., Motz, G. T., Duraiswamy, J., & Coukos, G. (2011). Tumor immune surveillance and ovarian cancer: lessons on immune mediated tumor rejection or tolerance. Cancer and Metastasis Reviews, 30(1), 141–151.PubMedCrossRef Kandalaft, L. E., Motz, G. T., Duraiswamy, J., & Coukos, G. (2011). Tumor immune surveillance and ovarian cancer: lessons on immune mediated tumor rejection or tolerance. Cancer and Metastasis Reviews, 30(1), 141–151.PubMedCrossRef
136.
go back to reference Yokoyama, Y., Xin, B., Shigeto, T., & Mizunuma, H. (2011). Combination of ciglitazone, a peroxisome proliferator-activated receptor gamma ligand, and cisplatin enhances the inhibition of growth of human ovarian cancers. Journal of Cancer Research and Clinical Oncology, 137(8), 1219–1228. doi:10.1007/s00432-011-0993-1.PubMedCrossRef Yokoyama, Y., Xin, B., Shigeto, T., & Mizunuma, H. (2011). Combination of ciglitazone, a peroxisome proliferator-activated receptor gamma ligand, and cisplatin enhances the inhibition of growth of human ovarian cancers. Journal of Cancer Research and Clinical Oncology, 137(8), 1219–1228. doi:10.​1007/​s00432-011-0993-1.PubMedCrossRef
137.
go back to reference Schiffenbauer, Y. S., Abramovitch, R., Meir, G., Nevo, N., Holzinger, M., Itin, A., et al. (1997). Loss of ovarian function promotes angiogenesis in human ovarian carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 94(24), 13203–13208.PubMedCrossRef Schiffenbauer, Y. S., Abramovitch, R., Meir, G., Nevo, N., Holzinger, M., Itin, A., et al. (1997). Loss of ovarian function promotes angiogenesis in human ovarian carcinoma. Proceedings of the National Academy of Sciences of the United States of America, 94(24), 13203–13208.PubMedCrossRef
138.
go back to reference Wang, J., Luo, F., Lu, J. J., Chen, P. K., Liu, P., & Zheng, W. (2002). VEGF expression and enhanced production by gonadotropins in ovarian epithelial tumors. International Journal of Cancer, 97(2), 163–167.CrossRef Wang, J., Luo, F., Lu, J. J., Chen, P. K., Liu, P., & Zheng, W. (2002). VEGF expression and enhanced production by gonadotropins in ovarian epithelial tumors. International Journal of Cancer, 97(2), 163–167.CrossRef
139.
go back to reference Gao, N., Nester, R. A., & Sarkar, M. A. (2004). 4-Hydroxy estradiol but not 2-hydroxy estradiol induces expression of hypoxia-inducible factor 1alpha and vascular endothelial growth factor A through phosphatidylinositol 3-kinase/Akt/FRAP pathway in OVCAR-3 and A2780-CP70 human ovarian carcinoma cells. Toxicology and Applied Pharmacology, 196(1), 124–135. doi:10.1016/j.taap.2003.12.002.PubMedCrossRef Gao, N., Nester, R. A., & Sarkar, M. A. (2004). 4-Hydroxy estradiol but not 2-hydroxy estradiol induces expression of hypoxia-inducible factor 1alpha and vascular endothelial growth factor A through phosphatidylinositol 3-kinase/Akt/FRAP pathway in OVCAR-3 and A2780-CP70 human ovarian carcinoma cells. Toxicology and Applied Pharmacology, 196(1), 124–135. doi:10.​1016/​j.​taap.​2003.​12.​002.PubMedCrossRef
140.
go back to reference Belotti, D., Paganoni, P., Manenti, L., Garofalo, A., Marchini, S., Taraboletti, G., et al. (2003). Matrix metalloproteinases (MMP9 and MMP2) induce the release of vascular endothelial growth factor (VEGF) by ovarian carcinoma cells: implications for ascites formation. Cancer Research, 63(17), 5224–5229.PubMed Belotti, D., Paganoni, P., Manenti, L., Garofalo, A., Marchini, S., Taraboletti, G., et al. (2003). Matrix metalloproteinases (MMP9 and MMP2) induce the release of vascular endothelial growth factor (VEGF) by ovarian carcinoma cells: implications for ascites formation. Cancer Research, 63(17), 5224–5229.PubMed
141.
go back to reference Xia, C., Meng, Q., Liu, L. Z., Rojanasakul, Y., Wang, X. R., & Jiang, B. H. (2007). Reactive oxygen species regulate angiogenesis and tumor growth through vascular endothelial growth factor. Cancer Research, 67(22), 10823–10830. doi:10.1158/0008-5472.can-07-0783.PubMedCrossRef Xia, C., Meng, Q., Liu, L. Z., Rojanasakul, Y., Wang, X. R., & Jiang, B. H. (2007). Reactive oxygen species regulate angiogenesis and tumor growth through vascular endothelial growth factor. Cancer Research, 67(22), 10823–10830. doi:10.​1158/​0008-5472.​can-07-0783.PubMedCrossRef
142.
go back to reference Gupta, R. A., Tejada, L. V., Tong, B. J., Das, S. K., Morrow, J. D., Dey, S. K., et al. (2003). Cyclooxygenase-1 is overexpressed and promotes angiogenic growth factor production in ovarian cancer. Cancer Research, 63(5), 906–911.PubMed Gupta, R. A., Tejada, L. V., Tong, B. J., Das, S. K., Morrow, J. D., Dey, S. K., et al. (2003). Cyclooxygenase-1 is overexpressed and promotes angiogenic growth factor production in ovarian cancer. Cancer Research, 63(5), 906–911.PubMed
143.
go back to reference Xin, B., Yokoyama, Y., Shigeto, T., Futagami, M., & Mizunuma, H. (2007). Inhibitory effect of meloxicam, a selective cyclooxygenase-2 inhibitor, and ciglitazone, a peroxisome proliferator-activated receptor gamma ligand, on the growth of human ovarian cancers. Cancer, 110(4), 791–800. doi:10.1002/cncr.22854.PubMedCrossRef Xin, B., Yokoyama, Y., Shigeto, T., Futagami, M., & Mizunuma, H. (2007). Inhibitory effect of meloxicam, a selective cyclooxygenase-2 inhibitor, and ciglitazone, a peroxisome proliferator-activated receptor gamma ligand, on the growth of human ovarian cancers. Cancer, 110(4), 791–800. doi:10.​1002/​cncr.​22854.PubMedCrossRef
144.
go back to reference Hu, Y. L., Tee, M. K., Goetzl, E. J., Auersperg, N., Mills, G. B., Ferrara, N., et al. (2001). Lysophosphatidic acid induction of vascular endothelial growth factor expression in human ovarian cancer cells. Journal of the National Cancer Institute, 93(10), 762–768.PubMedCrossRef Hu, Y. L., Tee, M. K., Goetzl, E. J., Auersperg, N., Mills, G. B., Ferrara, N., et al. (2001). Lysophosphatidic acid induction of vascular endothelial growth factor expression in human ovarian cancer cells. Journal of the National Cancer Institute, 93(10), 762–768.PubMedCrossRef
145.
go back to reference Dutta, S., Wang, F. Q., Wu, H. S., Mukherjee, T. J., & Fishman, D. A. (2011). The NF-kappaB pathway mediates lysophosphatidic acid (LPA)-induced VEGF signaling and cell invasion in epithelial ovarian cancer (EOC). Gynecologic Oncology. doi:10.1016/j.ygyno.2011.06.006. Dutta, S., Wang, F. Q., Wu, H. S., Mukherjee, T. J., & Fishman, D. A. (2011). The NF-kappaB pathway mediates lysophosphatidic acid (LPA)-induced VEGF signaling and cell invasion in epithelial ovarian cancer (EOC). Gynecologic Oncology. doi:10.​1016/​j.​ygyno.​2011.​06.​006.
146.
go back to reference Zhang, L., Yang, N., Katsaros, D., Huang, W., Park, J. W., Fracchioli, S., et al. (2003). The oncogene phosphatidylinositol 3′-kinase catalytic subunit alpha promotes angiogenesis via vascular endothelial growth factor in ovarian carcinoma. Cancer Research, 63(14), 4225–4231.PubMed Zhang, L., Yang, N., Katsaros, D., Huang, W., Park, J. W., Fracchioli, S., et al. (2003). The oncogene phosphatidylinositol 3′-kinase catalytic subunit alpha promotes angiogenesis via vascular endothelial growth factor in ovarian carcinoma. Cancer Research, 63(14), 4225–4231.PubMed
147.
go back to reference Yang, G., Cai, K. Q., Thompson-Lanza, J. A., Bast, R. C., Jr., & Liu, J. (2004). Inhibition of breast and ovarian tumor growth through multiple signaling pathways by using retrovirus-mediated small interfering RNA against Her-2/neu gene expression. Journal of Biological Chemistry, 279(6), 4339–4345. doi:10.1074/jbc.M311153200.PubMedCrossRef Yang, G., Cai, K. Q., Thompson-Lanza, J. A., Bast, R. C., Jr., & Liu, J. (2004). Inhibition of breast and ovarian tumor growth through multiple signaling pathways by using retrovirus-mediated small interfering RNA against Her-2/neu gene expression. Journal of Biological Chemistry, 279(6), 4339–4345. doi:10.​1074/​jbc.​M311153200.PubMedCrossRef
148.
go back to reference Hennessy, B. T., Coleman, R. L., & Markman, M. (2009). Ovarian cancer. The Lancet, 374(9698), 1371–1382.CrossRef Hennessy, B. T., Coleman, R. L., & Markman, M. (2009). Ovarian cancer. The Lancet, 374(9698), 1371–1382.CrossRef
149.
150.
go back to reference Zhang, L., Yang, N., Park, J. W., Katsaros, D., Fracchioli, S., Cao, G., et al. (2003). Tumor-derived vascular endothelial growth factor up-regulates angiopoietin-2 in host endothelium and destabilizes host vasculature, supporting angiogenesis in ovarian cancer. Cancer Research, 63(12), 3403–3412.PubMed Zhang, L., Yang, N., Park, J. W., Katsaros, D., Fracchioli, S., Cao, G., et al. (2003). Tumor-derived vascular endothelial growth factor up-regulates angiopoietin-2 in host endothelium and destabilizes host vasculature, supporting angiogenesis in ovarian cancer. Cancer Research, 63(12), 3403–3412.PubMed
151.
go back to reference Xia, C., Meng, Q., Cao, Z., Shi, X., & Jiang, B. H. (2006). Regulation of angiogenesis and tumor growth by p110 alpha and AKT1 via VEGF expression. Journal of Cellular Physiology, 209(1), 56–66. doi:10.1002/jcp.20707.PubMedCrossRef Xia, C., Meng, Q., Cao, Z., Shi, X., & Jiang, B. H. (2006). Regulation of angiogenesis and tumor growth by p110 alpha and AKT1 via VEGF expression. Journal of Cellular Physiology, 209(1), 56–66. doi:10.​1002/​jcp.​20707.PubMedCrossRef
152.
go back to reference Liby, T. A., Spyropoulos, P., Buff Lindner, H., Eldridge, J., Beeson, C., Hsu, T., et al. (2011). Akt3 controls vascular endothelial growth factor secretion and angiogenesis in ovarian cancer cells. International Journal of Cancer. doi:10.1002/ijc.26010. Liby, T. A., Spyropoulos, P., Buff Lindner, H., Eldridge, J., Beeson, C., Hsu, T., et al. (2011). Akt3 controls vascular endothelial growth factor secretion and angiogenesis in ovarian cancer cells. International Journal of Cancer. doi:10.​1002/​ijc.​26010.
153.
go back to reference Boocock, C. A., Charnock-Jones, D. S., Sharkey, A. M., McLaren, J., Barker, P. J., Wright, K. A., et al. (1995). Expression of vascular endothelial growth factor and its receptors flt and KDR in ovarian carcinoma. Journal of the National Cancer Institute, 87(7), 506–516.PubMedCrossRef Boocock, C. A., Charnock-Jones, D. S., Sharkey, A. M., McLaren, J., Barker, P. J., Wright, K. A., et al. (1995). Expression of vascular endothelial growth factor and its receptors flt and KDR in ovarian carcinoma. Journal of the National Cancer Institute, 87(7), 506–516.PubMedCrossRef
154.
go back to reference Mattern, J., Stammler, G., Koomagi, R., Wallwiener, D., Kaufmann, M., & Volm, M. (1997). Association of vascular endothelial growth factor expression with tumor cell proliferation in ovarian carcinoma. Anticancer Research, 17(1B), 621–624.PubMed Mattern, J., Stammler, G., Koomagi, R., Wallwiener, D., Kaufmann, M., & Volm, M. (1997). Association of vascular endothelial growth factor expression with tumor cell proliferation in ovarian carcinoma. Anticancer Research, 17(1B), 621–624.PubMed
156.
go back to reference Spannuth, W. A., Nick, A. M., Jennings, N. B., Armaiz-Pena, G. N., Mangala, L. S., Danes, C. G., et al. (2009). Functional significance of VEGFR-2 on ovarian cancer cells. International Journal of Cancer, 124(5), 1045–1053. doi:10.1002/ijc.24028.CrossRef Spannuth, W. A., Nick, A. M., Jennings, N. B., Armaiz-Pena, G. N., Mangala, L. S., Danes, C. G., et al. (2009). Functional significance of VEGFR-2 on ovarian cancer cells. International Journal of Cancer, 124(5), 1045–1053. doi:10.​1002/​ijc.​24028.CrossRef
157.
go back to reference Sher, I., Adham, S. A., Petrik, J., & Coomber, B. L. (2009). Autocrine VEGF-A/KDR loop protects epithelial ovarian carcinoma cells from anoikis. International Journal of Cancer, 124(3), 553–561. doi:10.1002/ijc.23963.CrossRef Sher, I., Adham, S. A., Petrik, J., & Coomber, B. L. (2009). Autocrine VEGF-A/KDR loop protects epithelial ovarian carcinoma cells from anoikis. International Journal of Cancer, 124(3), 553–561. doi:10.​1002/​ijc.​23963.CrossRef
158.
go back to reference Trinh, X. B., Tjalma, W. A., Vermeulen, P. B., Van den Eynden, G., Van der Auwera, I., Van Laere, S. J., et al. (2009). The VEGF pathway and the AKT/mTOR/p70S6K1 signalling pathway in human epithelial ovarian cancer. British Journal of Cancer, 100(6), 971–978. doi:10.1038/sj.bjc.6604921.PubMedCrossRef Trinh, X. B., Tjalma, W. A., Vermeulen, P. B., Van den Eynden, G., Van der Auwera, I., Van Laere, S. J., et al. (2009). The VEGF pathway and the AKT/mTOR/p70S6K1 signalling pathway in human epithelial ovarian cancer. British Journal of Cancer, 100(6), 971–978. doi:10.​1038/​sj.​bjc.​6604921.PubMedCrossRef
160.
go back to reference Sawano, A., Iwai, S., Sakurai, Y., Ito, M., Shitara, K., Nakahata, T., et al. (2001). Flt-1, vascular endothelial growth factor receptor 1, is a novel cell surface marker for the lineage of monocyte-macrophages in humans. Blood, 97(3), 785–791.PubMedCrossRef Sawano, A., Iwai, S., Sakurai, Y., Ito, M., Shitara, K., Nakahata, T., et al. (2001). Flt-1, vascular endothelial growth factor receptor 1, is a novel cell surface marker for the lineage of monocyte-macrophages in humans. Blood, 97(3), 785–791.PubMedCrossRef
161.
go back to reference Hashizume, H., Baluk, P., Morikawa, S., McLean, J. W., Thurston, G., Roberge, S., et al. (2000). Openings between defective endothelial cells explain tumor vessel leakiness. American Journal of Pathology, 156(4), 1363–1380. doi:10.1016/s0002-9440(10)65006-7.PubMedCrossRef Hashizume, H., Baluk, P., Morikawa, S., McLean, J. W., Thurston, G., Roberge, S., et al. (2000). Openings between defective endothelial cells explain tumor vessel leakiness. American Journal of Pathology, 156(4), 1363–1380. doi:10.​1016/​s0002-9440(10)65006-7.PubMedCrossRef
162.
go back to reference Summy, J. M., & Gallick, G. E. (2003). Src family kinases in tumor progression and metastasis. Cancer and Metastasis Reviews, 22(4), 337–358.PubMedCrossRef Summy, J. M., & Gallick, G. E. (2003). Src family kinases in tumor progression and metastasis. Cancer and Metastasis Reviews, 22(4), 337–358.PubMedCrossRef
163.
go back to reference Weis, S., Cui, J., Barnes, L., & Cheresh, D. (2004). Endothelial barrier disruption by VEGF-mediated Src activity potentiates tumor cell extravasation and metastasis. The Journal of Cell Biology, 167(2), 223–229. doi:10.1083/jcb.200408130.PubMedCrossRef Weis, S., Cui, J., Barnes, L., & Cheresh, D. (2004). Endothelial barrier disruption by VEGF-mediated Src activity potentiates tumor cell extravasation and metastasis. The Journal of Cell Biology, 167(2), 223–229. doi:10.​1083/​jcb.​200408130.PubMedCrossRef
164.
go back to reference Olson, T., Mohanraj, D., & Ramakrishnan, S. (1996). In vivo neutralization of vascular endothelial growth factor (VEGF) vascular permeability factor (VPF) inhibits ovarian carcinoma-associated ascites formation and tumor growth. International Journal of Oncology, 8(3), 505–511.PubMed Olson, T., Mohanraj, D., & Ramakrishnan, S. (1996). In vivo neutralization of vascular endothelial growth factor (VEGF) vascular permeability factor (VPF) inhibits ovarian carcinoma-associated ascites formation and tumor growth. International Journal of Oncology, 8(3), 505–511.PubMed
165.
go back to reference Zhang, L., Yang, N., Garcia, J. R., Mohamed, A., Benencia, F., Rubin, S. C., et al. (2002). Generation of a syngeneic mouse model to study the effects of vascular endothelial growth factor in ovarian carcinoma. American Journal of Pathology, 161(6), 2295–2309.PubMedCrossRef Zhang, L., Yang, N., Garcia, J. R., Mohamed, A., Benencia, F., Rubin, S. C., et al. (2002). Generation of a syngeneic mouse model to study the effects of vascular endothelial growth factor in ovarian carcinoma. American Journal of Pathology, 161(6), 2295–2309.PubMedCrossRef
166.
167.
go back to reference Wang, F. Q., So, J., Reierstad, S., & Fishman, D. A. (2006). Vascular endothelial growth factor-regulated ovarian cancer invasion and migration involves expression and activation of matrix metalloproteinases. International Journal of Cancer, 118(4), 879–888. doi:10.1002/ijc.21421.CrossRef Wang, F. Q., So, J., Reierstad, S., & Fishman, D. A. (2006). Vascular endothelial growth factor-regulated ovarian cancer invasion and migration involves expression and activation of matrix metalloproteinases. International Journal of Cancer, 118(4), 879–888. doi:10.​1002/​ijc.​21421.CrossRef
168.
go back to reference Zhang, A., Meng, L., Wang, Q., Xi, L., Chen, G., Wang, S., et al. (2006). Enhanced in vitro invasiveness of ovarian cancer cells through up-regulation of VEGF and induction of MMP-2. Oncology Reports, 15(4), 831–836.PubMed Zhang, A., Meng, L., Wang, Q., Xi, L., Chen, G., Wang, S., et al. (2006). Enhanced in vitro invasiveness of ovarian cancer cells through up-regulation of VEGF and induction of MMP-2. Oncology Reports, 15(4), 831–836.PubMed
169.
go back to reference Belotti, D., Calcagno, C., Garofalo, A., Caronia, D., Riccardi, E., Giavazzi, R., et al. (2008). Vascular endothelial growth factor stimulates organ-specific host matrix metalloproteinase-9 expression and ovarian cancer invasion. Molecular Cancer Research, 6(4), 525–534. doi:10.1158/1541-7786.mcr-07-0366.PubMedCrossRef Belotti, D., Calcagno, C., Garofalo, A., Caronia, D., Riccardi, E., Giavazzi, R., et al. (2008). Vascular endothelial growth factor stimulates organ-specific host matrix metalloproteinase-9 expression and ovarian cancer invasion. Molecular Cancer Research, 6(4), 525–534. doi:10.​1158/​1541-7786.​mcr-07-0366.PubMedCrossRef
170.
go back to reference Wang, J. Y., Sun, T., Zhao, X. L., Zhang, S. W., Zhang, D. F., Gu, Q., et al. (2008). Functional significance of VEGF-a in human ovarian carcinoma: role in vasculogenic mimicry. Cancer Biology & Therapy, 7(5), 758–766.CrossRef Wang, J. Y., Sun, T., Zhao, X. L., Zhang, S. W., Zhang, D. F., Gu, Q., et al. (2008). Functional significance of VEGF-a in human ovarian carcinoma: role in vasculogenic mimicry. Cancer Biology & Therapy, 7(5), 758–766.CrossRef
171.
172.
go back to reference Ziogas, A. C., Gavalas, N. G., Tsiatas, M., Tsitsilonis, O., Politi, E., Terpos, E., et al. (2011). VEGF directly suppresses activation of T cells from ovarian cancer patients and healthy individuals via VEGF receptor type 2. International Journal of Cancer. doi:10.1002/ijc.26094. Ziogas, A. C., Gavalas, N. G., Tsiatas, M., Tsitsilonis, O., Politi, E., Terpos, E., et al. (2011). VEGF directly suppresses activation of T cells from ovarian cancer patients and healthy individuals via VEGF receptor type 2. International Journal of Cancer. doi:10.​1002/​ijc.​26094.
173.
go back to reference Ahmed, N., Thompson, E. W., & Quinn, M. A. (2007). Epithelial-mesenchymal interconversions in normal ovarian surface epithelium and ovarian carcinomas: an exception to the norm. Journal of Cellular Physiology, 213(3), 581–588. doi:10.1002/jcp.21240.PubMedCrossRef Ahmed, N., Thompson, E. W., & Quinn, M. A. (2007). Epithelial-mesenchymal interconversions in normal ovarian surface epithelium and ovarian carcinomas: an exception to the norm. Journal of Cellular Physiology, 213(3), 581–588. doi:10.​1002/​jcp.​21240.PubMedCrossRef
175.
go back to reference Carmignani, C. P., Sugarbaker, T. A., Bromley, C. M., & Sugarbaker, P. H. (2003). Intraperitoneal cancer dissemination: mechanisms of the patterns of spread. Cancer and Metastasis Reviews, 22(4), 465–472.PubMedCrossRef Carmignani, C. P., Sugarbaker, T. A., Bromley, C. M., & Sugarbaker, P. H. (2003). Intraperitoneal cancer dissemination: mechanisms of the patterns of spread. Cancer and Metastasis Reviews, 22(4), 465–472.PubMedCrossRef
177.
go back to reference Fagotti, A., Gallotta, V., Romano, F., Fanfani, F., Rossitto, C., Naldini, A., et al. (2010). Peritoneal carcinosis of ovarian origin. World Journal Gastrointestinal Oncology, 2(2), 102–108. doi:10.4251/wjgo.v2.i2.102.CrossRef Fagotti, A., Gallotta, V., Romano, F., Fanfani, F., Rossitto, C., Naldini, A., et al. (2010). Peritoneal carcinosis of ovarian origin. World Journal Gastrointestinal Oncology, 2(2), 102–108. doi:10.​4251/​wjgo.​v2.​i2.​102.CrossRef
178.
go back to reference Chereau, E., Ballester, M., Selle, F., Cortez, A., Darai, E., & Rouzier, R. (2010). Comparison of peritoneal carcinomatosis scoring methods in predicting resectability and prognosis in advanced ovarian cancer. American Journal of Obstetrics and Gynecology, 202(2), 178 e171–178 e110. doi:10.1016/j.ajog.2009.10.856.CrossRef Chereau, E., Ballester, M., Selle, F., Cortez, A., Darai, E., & Rouzier, R. (2010). Comparison of peritoneal carcinomatosis scoring methods in predicting resectability and prognosis in advanced ovarian cancer. American Journal of Obstetrics and Gynecology, 202(2), 178 e171–178 e110. doi:10.​1016/​j.​ajog.​2009.​10.​856.CrossRef
179.
go back to reference Parsons, S. L., Lang, M. W., & Steele, R. J. (1996). Malignant ascites: a 2-year review from a teaching hospital. European Journal of Surgical Oncology, 22(3), 237–239.PubMedCrossRef Parsons, S. L., Lang, M. W., & Steele, R. J. (1996). Malignant ascites: a 2-year review from a teaching hospital. European Journal of Surgical Oncology, 22(3), 237–239.PubMedCrossRef
180.
go back to reference Mackey, J. R., & Venner, P. M. (1996). Malignant ascites: demographics, therapeutic efficacy and predictors of survival. The Canadian Journal of Oncology, 6(2), 474–480.PubMed Mackey, J. R., & Venner, P. M. (1996). Malignant ascites: demographics, therapeutic efficacy and predictors of survival. The Canadian Journal of Oncology, 6(2), 474–480.PubMed
181.
go back to reference Wilailak, S., Linasmita, V., & Srivannaboon, S. (1999). Malignant ascites in female patients: a seven-year review. Journal of the Medical Association of Thailand, 82(1), 15–19.PubMed Wilailak, S., Linasmita, V., & Srivannaboon, S. (1999). Malignant ascites in female patients: a seven-year review. Journal of the Medical Association of Thailand, 82(1), 15–19.PubMed
183.
go back to reference Hirabayashi, K., & Graham, J. (1970). Genesis of ascites in ovarian cancer. American Journal of Obstetrics and Gynecology, 106(4), 492–497.PubMed Hirabayashi, K., & Graham, J. (1970). Genesis of ascites in ovarian cancer. American Journal of Obstetrics and Gynecology, 106(4), 492–497.PubMed
184.
go back to reference Byrne, A. T., Ross, L., Holash, J., Nakanishi, M., Hu, L., Hofmann, J. I., et al. (2003). Vascular endothelial growth factor-trap decreases tumor burden, inhibits ascites, and causes dramatic vascular remodeling in an ovarian cancer model. Clinical Cancer Research, 9(15), 5721–5728.PubMed Byrne, A. T., Ross, L., Holash, J., Nakanishi, M., Hu, L., Hofmann, J. I., et al. (2003). Vascular endothelial growth factor-trap decreases tumor burden, inhibits ascites, and causes dramatic vascular remodeling in an ovarian cancer model. Clinical Cancer Research, 9(15), 5721–5728.PubMed
185.
go back to reference Pourgholami, M. H., Yan Cai, Z., Lu, Y., Wang, L., & Morris, D. L. (2006). Albendazole: a potent inhibitor of vascular endothelial growth factor and malignant ascites formation in OVCAR-3 tumor-bearing nude mice. Clinical Cancer Research, 12(6), 1928–1935. doi:10.1158/1078-0432.ccr-05-1181.PubMedCrossRef Pourgholami, M. H., Yan Cai, Z., Lu, Y., Wang, L., & Morris, D. L. (2006). Albendazole: a potent inhibitor of vascular endothelial growth factor and malignant ascites formation in OVCAR-3 tumor-bearing nude mice. Clinical Cancer Research, 12(6), 1928–1935. doi:10.​1158/​1078-0432.​ccr-05-1181.PubMedCrossRef
186.
go back to reference Senger, D. R., Perruzzi, C. A., Feder, J., & Dvorak, H. F. (1986). A highly conserved vascular permeability factor secreted by a variety of human and rodent tumor cell lines. Cancer Research, 46(11), 5629–5632.PubMed Senger, D. R., Perruzzi, C. A., Feder, J., & Dvorak, H. F. (1986). A highly conserved vascular permeability factor secreted by a variety of human and rodent tumor cell lines. Cancer Research, 46(11), 5629–5632.PubMed
187.
go back to reference Yeo, K. T., Wang, H. H., Nagy, J. A., Sioussat, T. M., Ledbetter, S. R., Hoogewerf, A. J., et al. (1993). Vascular permeability factor (vascular endothelial growth factor) in guinea pig and human tumor and inflammatory effusions. Cancer Research, 53(12), 2912–2918.PubMed Yeo, K. T., Wang, H. H., Nagy, J. A., Sioussat, T. M., Ledbetter, S. R., Hoogewerf, A. J., et al. (1993). Vascular permeability factor (vascular endothelial growth factor) in guinea pig and human tumor and inflammatory effusions. Cancer Research, 53(12), 2912–2918.PubMed
188.
go back to reference Nagy, J. A., Masse, E. M., Herzberg, K. T., Meyers, M. S., Yeo, K. T., Yeo, T. K., et al. (1995). Pathogenesis of ascites tumor growth: vascular permeability factor, vascular hyperpermeability, and ascites fluid accumulation. Cancer Research, 55(2), 360–368.PubMed Nagy, J. A., Masse, E. M., Herzberg, K. T., Meyers, M. S., Yeo, K. T., Yeo, T. K., et al. (1995). Pathogenesis of ascites tumor growth: vascular permeability factor, vascular hyperpermeability, and ascites fluid accumulation. Cancer Research, 55(2), 360–368.PubMed
189.
go back to reference Luo, J. C., Yamaguchi, S., Shinkai, A., Shitara, K., & Shibuya, M. (1998). Significant expression of vascular endothelial growth factor/vascular permeability factor in mouse ascites tumors. Cancer Research, 58(12), 2652–2660.PubMed Luo, J. C., Yamaguchi, S., Shinkai, A., Shitara, K., & Shibuya, M. (1998). Significant expression of vascular endothelial growth factor/vascular permeability factor in mouse ascites tumors. Cancer Research, 58(12), 2652–2660.PubMed
190.
go back to reference Hampl, M., Tanaka, T., Albert, P. S., Lee, J., Ferrari, N., & Fine, H. A. (2001). Therapeutic effects of viral vector-mediated antiangiogenic gene transfer in malignant ascites. Human Gene Therapy, 12(14), 1713–1729. doi:10.1089/104303401750476221.PubMedCrossRef Hampl, M., Tanaka, T., Albert, P. S., Lee, J., Ferrari, N., & Fine, H. A. (2001). Therapeutic effects of viral vector-mediated antiangiogenic gene transfer in malignant ascites. Human Gene Therapy, 12(14), 1713–1729. doi:10.​1089/​1043034017504762​21.PubMedCrossRef
191.
go back to reference Xu, L., Yoneda, J., Herrera, C., Wood, J., Killion, J. J., & Fidler, I. J. (2000). Inhibition of malignant ascites and growth of human ovarian carcinoma by oral administration of a potent inhibitor of the vascular endothelial growth factor receptor tyrosine kinases. International Journal of Oncology, 16(3), 445–454.PubMed Xu, L., Yoneda, J., Herrera, C., Wood, J., Killion, J. J., & Fidler, I. J. (2000). Inhibition of malignant ascites and growth of human ovarian carcinoma by oral administration of a potent inhibitor of the vascular endothelial growth factor receptor tyrosine kinases. International Journal of Oncology, 16(3), 445–454.PubMed
192.
go back to reference Hasumi, Y., Mizukami, H., Urabe, M., Kohno, T., Takeuchi, K., Kume, A., et al. (2002). Soluble FLT-1 expression suppresses carcinomatous ascites in nude mice bearing ovarian cancer. Cancer Research, 62(7), 2019–2023.PubMed Hasumi, Y., Mizukami, H., Urabe, M., Kohno, T., Takeuchi, K., Kume, A., et al. (2002). Soluble FLT-1 expression suppresses carcinomatous ascites in nude mice bearing ovarian cancer. Cancer Research, 62(7), 2019–2023.PubMed
193.
go back to reference Dong, W. G., Sun, X. M., Yu, B. P., Luo, H. S., & Yu, J. P. (2003). Role of VEGF and CD44v6 in differentiating benign from malignant ascites. World Journal of Gastroenterology, 9(11), 2596–2600.PubMed Dong, W. G., Sun, X. M., Yu, B. P., Luo, H. S., & Yu, J. P. (2003). Role of VEGF and CD44v6 in differentiating benign from malignant ascites. World Journal of Gastroenterology, 9(11), 2596–2600.PubMed
194.
go back to reference Yabushita, H., Shimazu, M., Noguchi, M., Kishida, T., Narumiya, H., & Sawaguchi, K. (2003). Vascular endothelial growth factor activating matrix metalloproteinase in ascitic fluid during peritoneal dissemination of ovarian cancer. Oncology Reports, 10(1), 89–95.PubMed Yabushita, H., Shimazu, M., Noguchi, M., Kishida, T., Narumiya, H., & Sawaguchi, K. (2003). Vascular endothelial growth factor activating matrix metalloproteinase in ascitic fluid during peritoneal dissemination of ovarian cancer. Oncology Reports, 10(1), 89–95.PubMed
195.
go back to reference Cormio, G., Rossi, C., Cazzolla, A., Resta, L., Loverro, G., Greco, P., et al. (2003). Distant metastases in ovarian carcinoma. International Journal of Gynecological Cancer, 13(2), 125–129.PubMedCrossRef Cormio, G., Rossi, C., Cazzolla, A., Resta, L., Loverro, G., Greco, P., et al. (2003). Distant metastases in ovarian carcinoma. International Journal of Gynecological Cancer, 13(2), 125–129.PubMedCrossRef
196.
go back to reference Akahira, J. I., Yoshikawa, H., Shimizu, Y., Tsunematsu, R., Hirakawa, T., Kuramoto, H., et al. (2001). Prognostic factors of stage IV epithelial ovarian cancer: a multicenter retrospective study. Gynecologic Oncology, 81(3), 398–403. doi:10.1006/gyno.2001.6172.PubMedCrossRef Akahira, J. I., Yoshikawa, H., Shimizu, Y., Tsunematsu, R., Hirakawa, T., Kuramoto, H., et al. (2001). Prognostic factors of stage IV epithelial ovarian cancer: a multicenter retrospective study. Gynecologic Oncology, 81(3), 398–403. doi:10.​1006/​gyno.​2001.​6172.PubMedCrossRef
197.
go back to reference Huang, K. J., & Sui, L. H. (2011). The relevance and role of vascular endothelial growth factor C, matrix metalloproteinase-2 and E-cadherin in epithelial ovarian cancer. Medical Oncology. doi:10.1007/s12032-010-9817-4. Huang, K. J., & Sui, L. H. (2011). The relevance and role of vascular endothelial growth factor C, matrix metalloproteinase-2 and E-cadherin in epithelial ovarian cancer. Medical Oncology. doi:10.​1007/​s12032-010-9817-4.
199.
go back to reference Hu, L., Hofmann, J., Zaloudek, C., Ferrara, N., Hamilton, T., & Jaffe, R. B. (2002). Vascular endothelial growth factor immunoneutralization plus Paclitaxel markedly reduces tumor burden and ascites in athymic mouse model of ovarian cancer. American Journal of Pathology, 161(5), 1917–1924. doi:10.1016/s0002-9440(10)64467-7.PubMedCrossRef Hu, L., Hofmann, J., Zaloudek, C., Ferrara, N., Hamilton, T., & Jaffe, R. B. (2002). Vascular endothelial growth factor immunoneutralization plus Paclitaxel markedly reduces tumor burden and ascites in athymic mouse model of ovarian cancer. American Journal of Pathology, 161(5), 1917–1924. doi:10.​1016/​s0002-9440(10)64467-7.PubMedCrossRef
200.
go back to reference Mabuchi, S., Terai, Y., Morishige, K., Tanabe-Kimura, A., Sasaki, H., Kanemura, M., et al. (2008). Maintenance treatment with bevacizumab prolongs survival in an in vivo ovarian cancer model. Clinical Cancer Research, 14(23), 7781–7789. doi:10.1158/1078-0432.ccr-08-0243.PubMedCrossRef Mabuchi, S., Terai, Y., Morishige, K., Tanabe-Kimura, A., Sasaki, H., Kanemura, M., et al. (2008). Maintenance treatment with bevacizumab prolongs survival in an in vivo ovarian cancer model. Clinical Cancer Research, 14(23), 7781–7789. doi:10.​1158/​1078-0432.​ccr-08-0243.PubMedCrossRef
201.
go back to reference Wulff, C., Wilson, H., Rudge, J. S., Wiegand, S. J., Lunn, S. F., & Fraser, H. M. (2001). Luteal angiogenesis: prevention and intervention by treatment with vascular endothelial growth factor trap(A40). Journal of Clinical Endocrinology and Metabolism, 86(7), 3377–3386.PubMedCrossRef Wulff, C., Wilson, H., Rudge, J. S., Wiegand, S. J., Lunn, S. F., & Fraser, H. M. (2001). Luteal angiogenesis: prevention and intervention by treatment with vascular endothelial growth factor trap(A40). Journal of Clinical Endocrinology and Metabolism, 86(7), 3377–3386.PubMedCrossRef
202.
go back to reference Hu, L., Hofmann, J., Holash, J., Yancopoulos, G. D., Sood, A. K., & Jaffe, R. B. (2005). Vascular endothelial growth factor trap combined with paclitaxel strikingly inhibits tumor and ascites, prolonging survival in a human ovarian cancer model. Clinical Cancer Research, 11(19 Pt 1), 6966–6971. doi:10.1158/1078-0432.ccr-05-0910.PubMedCrossRef Hu, L., Hofmann, J., Holash, J., Yancopoulos, G. D., Sood, A. K., & Jaffe, R. B. (2005). Vascular endothelial growth factor trap combined with paclitaxel strikingly inhibits tumor and ascites, prolonging survival in a human ovarian cancer model. Clinical Cancer Research, 11(19 Pt 1), 6966–6971. doi:10.​1158/​1078-0432.​ccr-05-0910.PubMedCrossRef
203.
go back to reference Krupitskaya, Y., & Wakelee, H. A. (2009). Ramucirumab, a fully human mAb to the transmembrane signaling tyrosine kinase VEGFR-2 for the potential treatment of cancer. Current Opinion in Investigational Drugs, 10(6), 597–605.PubMed Krupitskaya, Y., & Wakelee, H. A. (2009). Ramucirumab, a fully human mAb to the transmembrane signaling tyrosine kinase VEGFR-2 for the potential treatment of cancer. Current Opinion in Investigational Drugs, 10(6), 597–605.PubMed
204.
go back to reference Spratlin, J. L., Cohen, R. B., Eadens, M., Gore, L., Camidge, D. R., Diab, S., et al. (2010). Phase I pharmacologic and biologic study of ramucirumab (IMC-1121B), a fully human immunoglobulin G1 monoclonal antibody targeting the vascular endothelial growth factor receptor-2. Journal of Clinical Oncology, 28(5), 780–787. doi:10.1200/JCO.2009.23.7537.PubMedCrossRef Spratlin, J. L., Cohen, R. B., Eadens, M., Gore, L., Camidge, D. R., Diab, S., et al. (2010). Phase I pharmacologic and biologic study of ramucirumab (IMC-1121B), a fully human immunoglobulin G1 monoclonal antibody targeting the vascular endothelial growth factor receptor-2. Journal of Clinical Oncology, 28(5), 780–787. doi:10.​1200/​JCO.​2009.​23.​7537.PubMedCrossRef
205.
go back to reference Wedge, S. R., Kendrew, J., Hennequin, L. F., Valentine, P. J., Barry, S. T., Brave, S. R., et al. (2005). AZD2171: a highly potent, orally bioavailable, vascular endothelial growth factor receptor-2 tyrosine kinase inhibitor for the treatment of cancer. Cancer Research, 65(10), 4389–4400. doi:10.1158/0008-5472.CAN-04-4409.PubMedCrossRef Wedge, S. R., Kendrew, J., Hennequin, L. F., Valentine, P. J., Barry, S. T., Brave, S. R., et al. (2005). AZD2171: a highly potent, orally bioavailable, vascular endothelial growth factor receptor-2 tyrosine kinase inhibitor for the treatment of cancer. Cancer Research, 65(10), 4389–4400. doi:10.​1158/​0008-5472.​CAN-04-4409.PubMedCrossRef
206.
go back to reference Hirte, H. W., Vidal, L., Fleming, G. F., Sugimoto, A. K., Morgan, R. J., Biagi, J. J., et al. (2008). A phase II study of cediranib (AZD2171) in recurrent or persistent ovarian, peritoneal or fallopian tube cancer: final results of a PMH, Chicago and California consortia trial. Journal Clinical Oncology (Meeting Abstracts), 26(15_suppl), 5521. Hirte, H. W., Vidal, L., Fleming, G. F., Sugimoto, A. K., Morgan, R. J., Biagi, J. J., et al. (2008). A phase II study of cediranib (AZD2171) in recurrent or persistent ovarian, peritoneal or fallopian tube cancer: final results of a PMH, Chicago and California consortia trial. Journal Clinical Oncology (Meeting Abstracts), 26(15_suppl), 5521.
207.
go back to reference Matulonis, U. A., Berlin, S., Ivy, P., Tyburski, K., Krasner, C., Zarwan, C., et al. (2009). Cediranib, an oral inhibitor of vascular endothelial growth factor receptor kinases, is an active drug in recurrent epithelial ovarian, fallopian tube, and peritoneal cancer. Journal of Clinical Oncology, 27(33), 5601–5606. doi:10.1200/JCO.2009.23.2777.PubMedCrossRef Matulonis, U. A., Berlin, S., Ivy, P., Tyburski, K., Krasner, C., Zarwan, C., et al. (2009). Cediranib, an oral inhibitor of vascular endothelial growth factor receptor kinases, is an active drug in recurrent epithelial ovarian, fallopian tube, and peritoneal cancer. Journal of Clinical Oncology, 27(33), 5601–5606. doi:10.​1200/​JCO.​2009.​23.​2777.PubMedCrossRef
208.
go back to reference Holtz, D. O., Krafty, R. T., Mohamed-Hadley, A., Zhang, L., Alagkiozidis, I., Leiby, B., et al. (2008). Should tumor VEGF expression influence decisions on combining low-dose chemotherapy with antiangiogenic therapy? Preclinical modeling in ovarian cancer. Journal of Translational Medicine, 6, 2. doi:10.1186/1479-5876-6-2.PubMedCrossRef Holtz, D. O., Krafty, R. T., Mohamed-Hadley, A., Zhang, L., Alagkiozidis, I., Leiby, B., et al. (2008). Should tumor VEGF expression influence decisions on combining low-dose chemotherapy with antiangiogenic therapy? Preclinical modeling in ovarian cancer. Journal of Translational Medicine, 6, 2. doi:10.​1186/​1479-5876-6-2.PubMedCrossRef
209.
go back to reference Bauerschlag, D. O., Schem, C., Tiwari, S., Egberts, J. H., Weigel, M. T., Kalthoff, H., et al. (2010). Sunitinib (SU11248) inhibits growth of human ovarian cancer in xenografted mice. Anticancer Research, 30(9), 3355–3360.PubMed Bauerschlag, D. O., Schem, C., Tiwari, S., Egberts, J. H., Weigel, M. T., Kalthoff, H., et al. (2010). Sunitinib (SU11248) inhibits growth of human ovarian cancer in xenografted mice. Anticancer Research, 30(9), 3355–3360.PubMed
211.
go back to reference Biagi, J. J., Oza, A. M., Grimshaw, R., Ellard, S. L., Lee, U., Sederias, J., et al. (2008). A phase II study of sunitinib (SU11248) in patients (pts) with recurrent epithelial ovarian, fallopian tube or primary peritoneal carcinoma–NCIC CTG IND 185. ASCO Meeting Abstracts, 26(15_suppl), 5522. Biagi, J. J., Oza, A. M., Grimshaw, R., Ellard, S. L., Lee, U., Sederias, J., et al. (2008). A phase II study of sunitinib (SU11248) in patients (pts) with recurrent epithelial ovarian, fallopian tube or primary peritoneal carcinoma–NCIC CTG IND 185. ASCO Meeting Abstracts, 26(15_suppl), 5522.
213.
go back to reference DeGrendele, H., Chu, E., & Marshall, J. (2003). Activity of the Raf kinase inhibitor BAY 43–9006 in patients with advanced solid tumors. Clinical Colorectal Cancer, 3(1), 16–18.CrossRef DeGrendele, H., Chu, E., & Marshall, J. (2003). Activity of the Raf kinase inhibitor BAY 43–9006 in patients with advanced solid tumors. Clinical Colorectal Cancer, 3(1), 16–18.CrossRef
214.
go back to reference Azad, N. S., Posadas, E. M., Kwitkowski, V. E., Steinberg, S. M., Jain, L., Annunziata, C. M., et al. (2008). Combination targeted therapy with sorafenib and bevacizumab results in enhanced toxicity and antitumor activity. Journal of Clinical Oncology, 26(22), 3709–3714. doi:10.1200/JCO.2007.10.8332.PubMedCrossRef Azad, N. S., Posadas, E. M., Kwitkowski, V. E., Steinberg, S. M., Jain, L., Annunziata, C. M., et al. (2008). Combination targeted therapy with sorafenib and bevacizumab results in enhanced toxicity and antitumor activity. Journal of Clinical Oncology, 26(22), 3709–3714. doi:10.​1200/​JCO.​2007.​10.​8332.PubMedCrossRef
215.
go back to reference Matei, D., Sill, M. W., Lankes, H. A., DeGeest, K., Bristow, R. E., Mutch, D., et al. (2010). Activity of sorafenib in recurrent ovarian cancer and primary peritoneal carcinomatosis: a gynecologic oncology group trial. Journal of Clinical Oncology, 29(1), 69–75. doi:10.1200/JCO.2009.26.7856.PubMedCrossRef Matei, D., Sill, M. W., Lankes, H. A., DeGeest, K., Bristow, R. E., Mutch, D., et al. (2010). Activity of sorafenib in recurrent ovarian cancer and primary peritoneal carcinomatosis: a gynecologic oncology group trial. Journal of Clinical Oncology, 29(1), 69–75. doi:10.​1200/​JCO.​2009.​26.​7856.PubMedCrossRef
216.
go back to reference Schroder, W., Witteveen, E., Abadie, S., Campone, M., Viens, P., Jalava, T., et al. (2005). A phase IB, open label, safety and pharmacokinetic (PK) study of escalating doses of PTK787/ZK 222584 in combination with paclitaxel and carboplatin in patients (PTs) with stage IIC to IV epithelial ovarian cancer. ASCO Meeting Abstracts, 23(16_suppl), 5042. Schroder, W., Witteveen, E., Abadie, S., Campone, M., Viens, P., Jalava, T., et al. (2005). A phase IB, open label, safety and pharmacokinetic (PK) study of escalating doses of PTK787/ZK 222584 in combination with paclitaxel and carboplatin in patients (PTs) with stage IIC to IV epithelial ovarian cancer. ASCO Meeting Abstracts, 23(16_suppl), 5042.
217.
go back to reference Wedge, S. R., Ogilvie, D. J., Dukes, M., Kendrew, J., Chester, R., Jackson, J. A., et al. (2002). ZD6474 inhibits vascular endothelial growth factor signaling, angiogenesis, and tumor growth following oral administration. Cancer Research, 62(16), 4645–4655.PubMed Wedge, S. R., Ogilvie, D. J., Dukes, M., Kendrew, J., Chester, R., Jackson, J. A., et al. (2002). ZD6474 inhibits vascular endothelial growth factor signaling, angiogenesis, and tumor growth following oral administration. Cancer Research, 62(16), 4645–4655.PubMed
218.
go back to reference Annunziata, C. M., Walker, A. J., Minasian, L., Yu, M., Kotz, H., Wood, B. J., et al. (2010). Vandetanib, designed to inhibit VEGFR2 and EGFR signaling, had no clinical activity as monotherapy for recurrent ovarian cancer and no detectable modulation of VEGFR2. Clinical Cancer Research, 16(2), 664–672. doi:10.1158/1078-0432.CCR-09-2308.PubMedCrossRef Annunziata, C. M., Walker, A. J., Minasian, L., Yu, M., Kotz, H., Wood, B. J., et al. (2010). Vandetanib, designed to inhibit VEGFR2 and EGFR signaling, had no clinical activity as monotherapy for recurrent ovarian cancer and no detectable modulation of VEGFR2. Clinical Cancer Research, 16(2), 664–672. doi:10.​1158/​1078-0432.​CCR-09-2308.PubMedCrossRef
219.
go back to reference Hilberg, F., Roth, G. J., Krssak, M., Kautschitsch, S., Sommergruber, W., Tontsch-Grunt, U., et al. (2008). BIBF 1120: triple angiokinase inhibitor with sustained receptor blockade and good antitumor efficacy. Cancer Research, 68(12), 4774–4782. doi:10.1158/0008-5472.CAN-07-6307.PubMedCrossRef Hilberg, F., Roth, G. J., Krssak, M., Kautschitsch, S., Sommergruber, W., Tontsch-Grunt, U., et al. (2008). BIBF 1120: triple angiokinase inhibitor with sustained receptor blockade and good antitumor efficacy. Cancer Research, 68(12), 4774–4782. doi:10.​1158/​0008-5472.​CAN-07-6307.PubMedCrossRef
220.
go back to reference Ledermann, J. A., Rustin, G. J., Hackshaw, A., Kaye, S. B., Jayson, G., Gabra, H., et al. (2009). A randomized phase II placebo-controlled trial using maintenance therapy to evaluate the vascular targeting agent BIBF 1120 following treatment of relapsed ovarian cancer (OC). ASCO Meeting Abstracts, 27(15S), 5501. Ledermann, J. A., Rustin, G. J., Hackshaw, A., Kaye, S. B., Jayson, G., Gabra, H., et al. (2009). A randomized phase II placebo-controlled trial using maintenance therapy to evaluate the vascular targeting agent BIBF 1120 following treatment of relapsed ovarian cancer (OC). ASCO Meeting Abstracts, 27(15S), 5501.
221.
go back to reference Thaker, P. H., Yazici, S., Nilsson, M. B., Yokoi, K., Tsan, R. Z., He, J., et al. (2005). Antivascular therapy for orthotopic human ovarian carcinoma through blockade of the vascular endothelial growth factor and epidermal growth factor receptors. Clinical Cancer Research, 11(13), 4923–4933. doi:10.1158/1078-0432.CCR-04-2060.PubMedCrossRef Thaker, P. H., Yazici, S., Nilsson, M. B., Yokoi, K., Tsan, R. Z., He, J., et al. (2005). Antivascular therapy for orthotopic human ovarian carcinoma through blockade of the vascular endothelial growth factor and epidermal growth factor receptors. Clinical Cancer Research, 11(13), 4923–4933. doi:10.​1158/​1078-0432.​CCR-04-2060.PubMedCrossRef
222.
223.
go back to reference Merritt, W. M., Nick, A. M., Carroll, A. R., Lu, C., Matsuo, K., Dumble, M., et al. (2010). Bridging the gap between cytotoxic and biologic therapy with metronomic topotecan and pazopanib in ovarian cancer. Molecular Cancer Therapeutics, 9(4), 985–995. doi:10.1158/1535-7163.mct-09-0967.PubMedCrossRef Merritt, W. M., Nick, A. M., Carroll, A. R., Lu, C., Matsuo, K., Dumble, M., et al. (2010). Bridging the gap between cytotoxic and biologic therapy with metronomic topotecan and pazopanib in ovarian cancer. Molecular Cancer Therapeutics, 9(4), 985–995. doi:10.​1158/​1535-7163.​mct-09-0967.PubMedCrossRef
224.
go back to reference Friedlander, M., Hancock, K. C., Rischin, D., Messing, M. J., Stringer, C. A., Matthys, G. M., et al. (2010). A phase II, open-label study evaluating pazopanib in patients with recurrent ovarian cancer. Gynecologic Oncology, 119(1), 32–37. doi:10.1016/j.ygyno.2010.05.033.PubMedCrossRef Friedlander, M., Hancock, K. C., Rischin, D., Messing, M. J., Stringer, C. A., Matthys, G. M., et al. (2010). A phase II, open-label study evaluating pazopanib in patients with recurrent ovarian cancer. Gynecologic Oncology, 119(1), 32–37. doi:10.​1016/​j.​ygyno.​2010.​05.​033.PubMedCrossRef
225.
go back to reference Polverino, A., Coxon, A., Starnes, C., Diaz, Z., DeMelfi, T., Wang, L., et al. (2006). AMG 706, an oral, multikinase inhibitor that selectively targets vascular endothelial growth factor, platelet-derived growth factor, and kit receptors, potently inhibits angiogenesis and induces regression in tumor xenografts. Cancer Research, 66(17), 8715–8721. doi:10.1158/0008-5472.can-05-4665.PubMedCrossRef Polverino, A., Coxon, A., Starnes, C., Diaz, Z., DeMelfi, T., Wang, L., et al. (2006). AMG 706, an oral, multikinase inhibitor that selectively targets vascular endothelial growth factor, platelet-derived growth factor, and kit receptors, potently inhibits angiogenesis and induces regression in tumor xenografts. Cancer Research, 66(17), 8715–8721. doi:10.​1158/​0008-5472.​can-05-4665.PubMedCrossRef
226.
go back to reference Hirte, H. W. (2009). Novel developments in angiogenesis cancer therapy. Current Oncology, 16(3), 50–54.PubMedCrossRef Hirte, H. W. (2009). Novel developments in angiogenesis cancer therapy. Current Oncology, 16(3), 50–54.PubMedCrossRef
227.
228.
go back to reference Shojaei, F., Wu, X., Malik, A. K., Zhong, C., Baldwin, M. E., Schanz, S., et al. (2007). Tumor refractoriness to anti-VEGF treatment is mediated by CD11b+Gr1+ myeloid cells. Nature Biotechnology, 25(8), 911–920. doi:10.1038/nbt1323.PubMedCrossRef Shojaei, F., Wu, X., Malik, A. K., Zhong, C., Baldwin, M. E., Schanz, S., et al. (2007). Tumor refractoriness to anti-VEGF treatment is mediated by CD11b+Gr1+ myeloid cells. Nature Biotechnology, 25(8), 911–920. doi:10.​1038/​nbt1323.PubMedCrossRef
230.
go back to reference Paez-Ribes, M., Allen, E., Hudock, J., Takeda, T., Okuyama, H., Vinals, F., et al. (2009). Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell, 15(3), 220–231. doi:10.1016/j.ccr.2009.01.027.PubMedCrossRef Paez-Ribes, M., Allen, E., Hudock, J., Takeda, T., Okuyama, H., Vinals, F., et al. (2009). Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell, 15(3), 220–231. doi:10.​1016/​j.​ccr.​2009.​01.​027.PubMedCrossRef
231.
go back to reference Ebos, J. M., Lee, C. R., Cruz-Munoz, W., Bjarnason, G. A., Christensen, J. G., & Kerbel, R. S. (2009). Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell, 15(3), 232–239. doi:10.1016/j.ccr.2009.01.021.PubMedCrossRef Ebos, J. M., Lee, C. R., Cruz-Munoz, W., Bjarnason, G. A., Christensen, J. G., & Kerbel, R. S. (2009). Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell, 15(3), 232–239. doi:10.​1016/​j.​ccr.​2009.​01.​021.PubMedCrossRef
233.
go back to reference Ocana, A., Amir, E., Vera, F., Eisenhauer, E. A., & Tannock, I. F. (2011). Addition of bevacizumab to chemotherapy for treatment of solid tumors: similar results but different conclusions. Journal of Clinical Oncology, 29(3), 254–256. doi:10.1200/jco.2010.32.0275.PubMedCrossRef Ocana, A., Amir, E., Vera, F., Eisenhauer, E. A., & Tannock, I. F. (2011). Addition of bevacizumab to chemotherapy for treatment of solid tumors: similar results but different conclusions. Journal of Clinical Oncology, 29(3), 254–256. doi:10.​1200/​jco.​2010.​32.​0275.PubMedCrossRef
235.
go back to reference Cohn, D. E., Kim, K. H., Resnick, K. E., O’Malley, D. M., & Straughn, J. M., Jr. (2011). At what cost does a potential survival advantage of bevacizumab make sense for the primary treatment of ovarian cancer? A cost-effectiveness analysis. Journal of Clinical Oncology, 29(10), 1247–1251. doi:10.1200/jco.2010.32.1075.PubMedCrossRef Cohn, D. E., Kim, K. H., Resnick, K. E., O’Malley, D. M., & Straughn, J. M., Jr. (2011). At what cost does a potential survival advantage of bevacizumab make sense for the primary treatment of ovarian cancer? A cost-effectiveness analysis. Journal of Clinical Oncology, 29(10), 1247–1251. doi:10.​1200/​jco.​2010.​32.​1075.PubMedCrossRef
237.
go back to reference Burger, R. A., Sill, M. W., Monk, B. J., Greer, B. E., & Sorosky, J. I. (2007). Phase II trial of bevacizumab in persistent or recurrent epithelial ovarian cancer or primary peritoneal cancer: a Gynecologic Oncology Group Study. Journal of Clinical Oncology, 25(33), 5165–5171. doi:10.1200/JCO.2007.11.5345.PubMedCrossRef Burger, R. A., Sill, M. W., Monk, B. J., Greer, B. E., & Sorosky, J. I. (2007). Phase II trial of bevacizumab in persistent or recurrent epithelial ovarian cancer or primary peritoneal cancer: a Gynecologic Oncology Group Study. Journal of Clinical Oncology, 25(33), 5165–5171. doi:10.​1200/​JCO.​2007.​11.​5345.PubMedCrossRef
238.
go back to reference Cannistra, S. A., Matulonis, U. A., Penson, R. T., Hambleton, J., Dupont, J., Mackey, H., et al. (2007). Phase II study of bevacizumab in patients with platinum-resistant ovarian cancer or peritoneal serous cancer. Journal of Clinical Oncology, 25(33), 5180–5186. doi:10.1200/JCO.2007.12.0782.PubMedCrossRef Cannistra, S. A., Matulonis, U. A., Penson, R. T., Hambleton, J., Dupont, J., Mackey, H., et al. (2007). Phase II study of bevacizumab in patients with platinum-resistant ovarian cancer or peritoneal serous cancer. Journal of Clinical Oncology, 25(33), 5180–5186. doi:10.​1200/​JCO.​2007.​12.​0782.PubMedCrossRef
239.
go back to reference Micha, J. P., Goldstein, B. H., Rettenmaier, M. A., Genesen, M., Graham, C., Bader, K., et al. (2007). A phase II study of outpatient first-line paclitaxel, carboplatin, and bevacizumab for advanced-stage epithelial ovarian, peritoneal, and fallopian tube cancer. International Journal of Gynecological Cancer, 17(4), 771–776. doi:10.1111/j.1525-1438.2007.00886.x.PubMedCrossRef Micha, J. P., Goldstein, B. H., Rettenmaier, M. A., Genesen, M., Graham, C., Bader, K., et al. (2007). A phase II study of outpatient first-line paclitaxel, carboplatin, and bevacizumab for advanced-stage epithelial ovarian, peritoneal, and fallopian tube cancer. International Journal of Gynecological Cancer, 17(4), 771–776. doi:10.​1111/​j.​1525-1438.​2007.​00886.​x.PubMedCrossRef
240.
go back to reference Garcia, A. A., Hirte, H., Fleming, G., Yang, D., Tsao-Wei, D. D., Roman, L., et al. (2008). Phase II clinical trial of bevacizumab and low-dose metronomic oral cyclophosphamide in recurrent ovarian cancer: a trial of the California, Chicago, and Princess Margaret Hospital phase II consortia. Journal of Clinical Oncology, 26(1), 76–82. doi:10.1200/JCO.2007.12.1939.PubMedCrossRef Garcia, A. A., Hirte, H., Fleming, G., Yang, D., Tsao-Wei, D. D., Roman, L., et al. (2008). Phase II clinical trial of bevacizumab and low-dose metronomic oral cyclophosphamide in recurrent ovarian cancer: a trial of the California, Chicago, and Princess Margaret Hospital phase II consortia. Journal of Clinical Oncology, 26(1), 76–82. doi:10.​1200/​JCO.​2007.​12.​1939.PubMedCrossRef
241.
go back to reference Richardson, D. L., Backes, F. J., Seamon, L. G., Zanagnolo, V., O’Malley, D. M., Cohn, D. E., et al. (2008). Combination gemcitabine, platinum, and bevacizumab for the treatment of recurrent ovarian cancer. Gynecologic Oncology, 111(3), 461–466. doi:10.1016/j.ygyno.2008.08.011.PubMedCrossRef Richardson, D. L., Backes, F. J., Seamon, L. G., Zanagnolo, V., O’Malley, D. M., Cohn, D. E., et al. (2008). Combination gemcitabine, platinum, and bevacizumab for the treatment of recurrent ovarian cancer. Gynecologic Oncology, 111(3), 461–466. doi:10.​1016/​j.​ygyno.​2008.​08.​011.PubMedCrossRef
242.
go back to reference Penson, R. T., Dizon, D. S., Cannistra, S. A., Roche, M. R., Krasner, C. N., Berlin, S. T., et al. (2009). Phase II study of carboplatin, paclitaxel, and bevacizumab with maintenance bevacizumab as first-line chemotherapy for advanced mullerian tumors. Journal of Clinical Oncology, 28(1), 154–159. doi:10.1200/JCO.2009.22.7900.PubMedCrossRef Penson, R. T., Dizon, D. S., Cannistra, S. A., Roche, M. R., Krasner, C. N., Berlin, S. T., et al. (2009). Phase II study of carboplatin, paclitaxel, and bevacizumab with maintenance bevacizumab as first-line chemotherapy for advanced mullerian tumors. Journal of Clinical Oncology, 28(1), 154–159. doi:10.​1200/​JCO.​2009.​22.​7900.PubMedCrossRef
243.
go back to reference Rose, P. G., Drake, R., Braly, P. S., Bell, M. C., Wenham, R. M., Hines, J. H., et al. (2009). Preliminary results of a phase II study of oxaliplatin, docetaxel, and bevacizumab as first-line therapy of advanced cancer of the ovary, peritoneum, and fallopian tube. ASCO Meeting Abstracts, 27(15S), 5546. Rose, P. G., Drake, R., Braly, P. S., Bell, M. C., Wenham, R. M., Hines, J. H., et al. (2009). Preliminary results of a phase II study of oxaliplatin, docetaxel, and bevacizumab as first-line therapy of advanced cancer of the ovary, peritoneum, and fallopian tube. ASCO Meeting Abstracts, 27(15S), 5546.
244.
go back to reference Brown, J. V., 3rd, Micha, J. P., Rettenmaier, M. A., Abaid, L. N., Lopez, K. L., & Goldstein, B. H. (2010). A pilot study evaluating a novel regimen comprised of carboplatin, paclitaxel, and bevacizumab for advanced-stage ovarian carcinoma. International Journal of Gynecological Cancer, 20(7), 1132–1136.PubMedCrossRef Brown, J. V., 3rd, Micha, J. P., Rettenmaier, M. A., Abaid, L. N., Lopez, K. L., & Goldstein, B. H. (2010). A pilot study evaluating a novel regimen comprised of carboplatin, paclitaxel, and bevacizumab for advanced-stage ovarian carcinoma. International Journal of Gynecological Cancer, 20(7), 1132–1136.PubMedCrossRef
245.
go back to reference Tillmanns, T. D., Lowe, M. P., Schwartzberg, L. S., Walker, M. S., & Stepanski, E. J. (2010). A phase II study of bevacizumab with nab-paclitaxel in patients with recurrent, platinum-resistant primary epithelial ovarian or primary peritoneal carcinoma. ASCO Meeting Abstracts, 28(15_suppl), 5009. Tillmanns, T. D., Lowe, M. P., Schwartzberg, L. S., Walker, M. S., & Stepanski, E. J. (2010). A phase II study of bevacizumab with nab-paclitaxel in patients with recurrent, platinum-resistant primary epithelial ovarian or primary peritoneal carcinoma. ASCO Meeting Abstracts, 28(15_suppl), 5009.
246.
go back to reference Burger, R. A., Brady, M. F., Bookman, M. A., Walker, J. L., Homesley, H. D., Fowler, J., et al. (2010). Phase III trial of bevacizumab (BEV) in the primary treatment of advanced epithelial ovarian cancer (EOC), primary peritoneal cancer (PPC), or fallopian tube cancer (FTC): A Gynecologic Oncology Group study. ASCO Meeting Abstracts, 28(18_suppl). LBA1. Burger, R. A., Brady, M. F., Bookman, M. A., Walker, J. L., Homesley, H. D., Fowler, J., et al. (2010). Phase III trial of bevacizumab (BEV) in the primary treatment of advanced epithelial ovarian cancer (EOC), primary peritoneal cancer (PPC), or fallopian tube cancer (FTC): A Gynecologic Oncology Group study. ASCO Meeting Abstracts, 28(18_suppl). LBA1.
247.
go back to reference McGonigle, K. F., Muntz, H. G., Vuky, J., Paley, P. J., Veljovich, D. S., Greer, B. E., et al. (2011). Combined weekly topotecan and biweekly bevacizumab in women with platinum-resistant ovarian, peritoneal, or fallopian tube cancer: results of a phase 2 study. Cancer, 117(16), 3731–3740. doi:10.1002/cncr.25967.PubMedCrossRef McGonigle, K. F., Muntz, H. G., Vuky, J., Paley, P. J., Veljovich, D. S., Greer, B. E., et al. (2011). Combined weekly topotecan and biweekly bevacizumab in women with platinum-resistant ovarian, peritoneal, or fallopian tube cancer: results of a phase 2 study. Cancer, 117(16), 3731–3740. doi:10.​1002/​cncr.​25967.PubMedCrossRef
248.
go back to reference del Carmen, M. G., Micha, J. P., Small, L. A., Street, D. G., Londhe, A., & McGowan, T. (2011). Pegylated liposomal doxorubicin and carboplatin plus bevacizumab in patients with platinum sensitive recurrent ovarian, fallopian tube, or primary peritoneal cancers: results of a phase II study. ASCO Meeting Abstracts, 29(15_suppl), 5061. del Carmen, M. G., Micha, J. P., Small, L. A., Street, D. G., Londhe, A., & McGowan, T. (2011). Pegylated liposomal doxorubicin and carboplatin plus bevacizumab in patients with platinum sensitive recurrent ovarian, fallopian tube, or primary peritoneal cancers: results of a phase II study. ASCO Meeting Abstracts, 29(15_suppl), 5061.
249.
go back to reference Horowitz, N. S., Penson, R. T., Duda, D. G., di Tomaso, E., Boucher, Y., Ancukiewicz, M., et al. (2011). Safety, efficacy, and biomarker exploration in a phase ii study of bevacizumab, oxaliplatin, and gemcitabine in recurrent Mullerian carcinoma. Clinical Ovarian Cancer Other Gynecology Malignant, 4(1), 26–33. doi:10.1016/j.cloc.2011.04.003.CrossRef Horowitz, N. S., Penson, R. T., Duda, D. G., di Tomaso, E., Boucher, Y., Ancukiewicz, M., et al. (2011). Safety, efficacy, and biomarker exploration in a phase ii study of bevacizumab, oxaliplatin, and gemcitabine in recurrent Mullerian carcinoma. Clinical Ovarian Cancer Other Gynecology Malignant, 4(1), 26–33. doi:10.​1016/​j.​cloc.​2011.​04.​003.CrossRef
250.
go back to reference Wenham, R., LaPolla, J., Hui-Yi, L., Apte, S., Roberts, W., Lancaster, J., et al. (2011). Phase II trial of docetaxel and bevacizumab in recurrent ovarian cancer within 12 months of prior platinum-based chemotherapy. Gynecologic Oncology, 120(Supplement 1(0)), S83–S84. doi:10.1016/j.ygyno.2010.12.199.CrossRef Wenham, R., LaPolla, J., Hui-Yi, L., Apte, S., Roberts, W., Lancaster, J., et al. (2011). Phase II trial of docetaxel and bevacizumab in recurrent ovarian cancer within 12 months of prior platinum-based chemotherapy. Gynecologic Oncology, 120(Supplement 1(0)), S83–S84. doi:10.​1016/​j.​ygyno.​2010.​12.​199.CrossRef
251.
go back to reference Aghajanian, C., Finkler, N. J., Rutherford, T., Smith, D. A., Yi, J., Parmar, H., et al. (2011). OCEANS: A randomized, double-blinded, placebo-controlled phase III trial of chemotherapy with or without bevacizumab (BEV) in patients with platinum-sensitive recurrent epithelial ovarian (EOC), primary peritoneal (PPC), or fallopian tube cancer (FTC). ASCO Meeting Abstracts, 29(15_suppl), LBA5007. Aghajanian, C., Finkler, N. J., Rutherford, T., Smith, D. A., Yi, J., Parmar, H., et al. (2011). OCEANS: A randomized, double-blinded, placebo-controlled phase III trial of chemotherapy with or without bevacizumab (BEV) in patients with platinum-sensitive recurrent epithelial ovarian (EOC), primary peritoneal (PPC), or fallopian tube cancer (FTC). ASCO Meeting Abstracts, 29(15_suppl), LBA5007.
252.
go back to reference Kristensen, G., Perren, T., Qian, W., Pfisterer, J., Ledermann, J. A., Joly, F., et al. (2011). Result of interim analysis of overall survival in the GCIG ICON7 phase III randomized trial of bevacizumab in women with newly diagnosed ovarian cancer. ASCO Meeting Abstracts, 29(15_suppl), LBA5006. Kristensen, G., Perren, T., Qian, W., Pfisterer, J., Ledermann, J. A., Joly, F., et al. (2011). Result of interim analysis of overall survival in the GCIG ICON7 phase III randomized trial of bevacizumab in women with newly diagnosed ovarian cancer. ASCO Meeting Abstracts, 29(15_suppl), LBA5006.
253.
go back to reference Kudoh, K., Takano, M., Kouta, H., Kikuchi, R., Kita, T., Miyamoto, M., et al. (2011). Effects of bevacizumab and pegylated liposomal doxorubicin for the patients with recurrent or refractory ovarian cancers. Gynecologic Oncology, 122(2), 233–237. doi:10.1016/j.ygyno.2011.04.046.PubMedCrossRef Kudoh, K., Takano, M., Kouta, H., Kikuchi, R., Kita, T., Miyamoto, M., et al. (2011). Effects of bevacizumab and pegylated liposomal doxorubicin for the patients with recurrent or refractory ovarian cancers. Gynecologic Oncology, 122(2), 233–237. doi:10.​1016/​j.​ygyno.​2011.​04.​046.PubMedCrossRef
254.
go back to reference O’Malley, D. M., Richardson, D. L., Rheaume, P. S., Salani, R., Eisenhauer, E. L., McCann, G. A., et al. (2011). Addition of bevacizumab to weekly paclitaxel significantly improves progression-free survival in heavily pretreated recurrent epithelial ovarian cancer. Gynecologic Oncology, 121(2), 269–272. doi:10.1016/j.ygyno.2011.01.009.PubMedCrossRef O’Malley, D. M., Richardson, D. L., Rheaume, P. S., Salani, R., Eisenhauer, E. L., McCann, G. A., et al. (2011). Addition of bevacizumab to weekly paclitaxel significantly improves progression-free survival in heavily pretreated recurrent epithelial ovarian cancer. Gynecologic Oncology, 121(2), 269–272. doi:10.​1016/​j.​ygyno.​2011.​01.​009.PubMedCrossRef
255.
go back to reference Ojeda, B., Casado, A., Tibau, A., Redondo, A., Beltran, M., Garcia-Martinez, E., et al. (2011). Bevacizumab alone or with chemotherapy in highly pretreated, relapsed, epithelial ovarian cancer patients. ASCO Meeting Abstracts, 29(15_suppl), e15590. Ojeda, B., Casado, A., Tibau, A., Redondo, A., Beltran, M., Garcia-Martinez, E., et al. (2011). Bevacizumab alone or with chemotherapy in highly pretreated, relapsed, epithelial ovarian cancer patients. ASCO Meeting Abstracts, 29(15_suppl), e15590.
256.
go back to reference Tew, W. P., Colombo, N., Ray-Coquard, I., Oza, A., del Campo, J., Scambia, G., et al. (2007). VEGF-trap for patients (pts) with recurrent platinum-resistant epithelial ovarian cancer (EOC): preliminary results of a randomized, multicenter phase II study. Journal Clinical Oncology (Meeting Abstracts), 25(18_suppl), 5508. Tew, W. P., Colombo, N., Ray-Coquard, I., Oza, A., del Campo, J., Scambia, G., et al. (2007). VEGF-trap for patients (pts) with recurrent platinum-resistant epithelial ovarian cancer (EOC): preliminary results of a randomized, multicenter phase II study. Journal Clinical Oncology (Meeting Abstracts), 25(18_suppl), 5508.
257.
go back to reference Colombo, N., Mangili, G., Mammoliti, S., Kalling, M., Tholander, B., Sternas, L., et al. (2008). Aflibercept (VEGF Trap) for advanced epithelial ovarian cancer (EOC) patients (pts) with symptomatic malignant ascites: preliminary results of a pilot study. Journal Clinical Oncology (Meeting Abstracts), 26(15_suppl), 14598. Colombo, N., Mangili, G., Mammoliti, S., Kalling, M., Tholander, B., Sternas, L., et al. (2008). Aflibercept (VEGF Trap) for advanced epithelial ovarian cancer (EOC) patients (pts) with symptomatic malignant ascites: preliminary results of a pilot study. Journal Clinical Oncology (Meeting Abstracts), 26(15_suppl), 14598.
258.
go back to reference Coleman, R. L., Duska, L. R., Ramirez, P. T., Modesitt, S. C., Schmeler, K. M., Iyer, R., et al. (2011). Phase II multi-institutional study of docetaxel plus aflibercept (AVE0005, NSC# 724770) in patients with recurrent ovarian, primary peritoneal, and fallopian tube cancer. ASCO Meeting Abstracts, 29(15_suppl), 5017. Coleman, R. L., Duska, L. R., Ramirez, P. T., Modesitt, S. C., Schmeler, K. M., Iyer, R., et al. (2011). Phase II multi-institutional study of docetaxel plus aflibercept (AVE0005, NSC# 724770) in patients with recurrent ovarian, primary peritoneal, and fallopian tube cancer. ASCO Meeting Abstracts, 29(15_suppl), 5017.
Metadata
Title
Significance of vascular endothelial growth factor in growth and peritoneal dissemination of ovarian cancer
Authors
Samar Masoumi Moghaddam
Afshin Amini
David L. Morris
Mohammad H. Pourgholami
Publication date
01-06-2012
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 1-2/2012
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-011-9337-5

Other articles of this Issue 1-2/2012

Cancer and Metastasis Reviews 1-2/2012 Go to the issue

NON-THEMATIC REVIEW

Bee venom in cancer therapy

Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine