Skip to main content
Top
Published in: Cancer and Metastasis Reviews 3-4/2011

01-12-2011

15-Lipoxygenase-1 as a tumor suppressor gene in colon cancer: is the verdict in?

Authors: Sun IL Lee, Xiangsheng Zuo, Imad Shureiqi

Published in: Cancer and Metastasis Reviews | Issue 3-4/2011

Login to get access

Abstract

15-Lipoxygenase-1 (15-LOX-1) is an inducible and highly regulated enzyme in normal human cells that plays a key role in the production of lipid signaling mediators, such as 13-hydroxyoctadecadienoic acid (13-HODE) from linoleic acid. 15-LOX-1 significantly contributes to the resolution of inflammation and to the terminal differentiation of normal cells. 15-LOX-1 is downregulated in human colorectal polyps and cancers. Emerging data support a tumor suppressor role for 15-LOX-1, especially in colon cancer. These data indicate that 15-LOX-1 promotes various anti-tumorigenic events, including cell differentiation and apoptosis, and inhibits chronic inflammation, angiogenesis, and metastasis. The transcriptional repression of 15-LOX-1 in colon cancer cells is complex and involves multiple mechanisms (e.g., histone methylation, transcriptional repressor binding). Re-expression of 15-LOX-1 in colon cancer cells can function as an important therapeutic mechanism and could be further exploited to develop novel treatment approaches for this common cancer.
Literature
1.
go back to reference Kim, Y. S., & Milner, J. A. (2007). Dietary modulation of colon cancer risk. Journal of Nutrition, 137, 2576S–2579.PubMed Kim, Y. S., & Milner, J. A. (2007). Dietary modulation of colon cancer risk. Journal of Nutrition, 137, 2576S–2579.PubMed
2.
go back to reference Chapkin, R. S., McMurray, D. N., & Lupton, J. R. (2007). Colon cancer, fatty acids and anti-inflammatory compounds. Current Opinion in Gastroenterology, 23, 48–54.PubMed Chapkin, R. S., McMurray, D. N., & Lupton, J. R. (2007). Colon cancer, fatty acids and anti-inflammatory compounds. Current Opinion in Gastroenterology, 23, 48–54.PubMed
3.
go back to reference Woutersen, R. A., Appel, M. J., van Garderen-Hoetmer, A., & Wijnands, M. V. W. (1999). Dietary fat and carcinogenesis. Mutation Research, Genetic Toxicology and Environmental Mutagenesis, 443, 111–127. Woutersen, R. A., Appel, M. J., van Garderen-Hoetmer, A., & Wijnands, M. V. W. (1999). Dietary fat and carcinogenesis. Mutation Research, Genetic Toxicology and Environmental Mutagenesis, 443, 111–127.
4.
go back to reference Murff, H. J., Shu, X.-O., Li, H., et al. (2009). A prospective study of dietary polyunsaturated fatty acids and colorectal cancer risk in Chinese women. Cancer Epidemiology, Biomarkers & Prevention, 18, 2283–2291. Murff, H. J., Shu, X.-O., Li, H., et al. (2009). A prospective study of dietary polyunsaturated fatty acids and colorectal cancer risk in Chinese women. Cancer Epidemiology, Biomarkers & Prevention, 18, 2283–2291.
5.
go back to reference Brash, A. R. (1999). Lipoxygenases: Occurrence, functions, catalysis, and acquisition of substrate. Journal of Biological Chemistry, 274, 23679–23682.PubMed Brash, A. R. (1999). Lipoxygenases: Occurrence, functions, catalysis, and acquisition of substrate. Journal of Biological Chemistry, 274, 23679–23682.PubMed
6.
go back to reference Shureiqi, I., Chen, D., Day, R. S., et al. (2010). Profiling lipoxygenase metabolism in specific steps of colorectal tumorigenesis. Cancer Prevention Research (Philadelphia, Pa.), 3, 829–838. Shureiqi, I., Chen, D., Day, R. S., et al. (2010). Profiling lipoxygenase metabolism in specific steps of colorectal tumorigenesis. Cancer Prevention Research (Philadelphia, Pa.), 3, 829–838.
7.
go back to reference Baer, A. N., Costello, P. B., & Green, F. A. (1991). In vivo activation of an omega-6 oxygenase in human skin. Biochemical and Biophysical Research Communications, 180, 98–104.PubMed Baer, A. N., Costello, P. B., & Green, F. A. (1991). In vivo activation of an omega-6 oxygenase in human skin. Biochemical and Biophysical Research Communications, 180, 98–104.PubMed
8.
go back to reference Sigal, E., Grunberger, D., Highland, E., Gross, C., Dixon, R. A., & Craik, C. S. (1990). Expression of cloned human reticulocyte 15-lipoxygenase and immunological evidence that 15-lipoxygenases of different cell types are related. Journal of Biological Chemistry, 265, 5113–5120.PubMed Sigal, E., Grunberger, D., Highland, E., Gross, C., Dixon, R. A., & Craik, C. S. (1990). Expression of cloned human reticulocyte 15-lipoxygenase and immunological evidence that 15-lipoxygenases of different cell types are related. Journal of Biological Chemistry, 265, 5113–5120.PubMed
9.
go back to reference Brash, A. R., Boeglin, W. E., & Chang, M. S. (1997). Discovery of a second 15S-lipoxygenase in humans. Proceedings of the National Academy of Sciences of the United States of America, 94, 6148–6152.PubMed Brash, A. R., Boeglin, W. E., & Chang, M. S. (1997). Discovery of a second 15S-lipoxygenase in humans. Proceedings of the National Academy of Sciences of the United States of America, 94, 6148–6152.PubMed
10.
go back to reference Shureiqi, I., & Lippman, S. M. (2001). Lipoxygenase modulation to reverse carcinogenesis. Cancer Research, 61, 6307–6312.PubMed Shureiqi, I., & Lippman, S. M. (2001). Lipoxygenase modulation to reverse carcinogenesis. Cancer Research, 61, 6307–6312.PubMed
11.
go back to reference Fürstenberger, G., Krieg, P., Müller-Decker, K., & Habenicht, A. J. R. (2006). What are cyclooxygenases and lipoxygenases doing in the driver’s seat of carcinogenesis? International Journal of Cancer, 119, 2247–2254. Fürstenberger, G., Krieg, P., Müller-Decker, K., & Habenicht, A. J. R. (2006). What are cyclooxygenases and lipoxygenases doing in the driver’s seat of carcinogenesis? International Journal of Cancer, 119, 2247–2254.
12.
go back to reference Pidgeon, G., Lysaght, J., Krishnamoorthy, S., et al. (2007). Lipoxygenase metabolism: Roles in tumor progression and survival. Cancer and Metastasis Reviews, 26, 503–524.PubMed Pidgeon, G., Lysaght, J., Krishnamoorthy, S., et al. (2007). Lipoxygenase metabolism: Roles in tumor progression and survival. Cancer and Metastasis Reviews, 26, 503–524.PubMed
13.
go back to reference Serhan, C. N. (2005). Lipoxins and aspirin-triggered 15-epi-lipoxins are the first lipid mediators of endogenous anti-inflammation and resolution. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 73, 141–162.PubMed Serhan, C. N. (2005). Lipoxins and aspirin-triggered 15-epi-lipoxins are the first lipid mediators of endogenous anti-inflammation and resolution. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 73, 141–162.PubMed
14.
go back to reference Serhan, C. N. (2007). Resolution phase of inflammation: Novel endogenous anti-inflammatory and proresolving lipid mediators and pathways. Annual Review of Immunology, 25, 101–137.PubMed Serhan, C. N. (2007). Resolution phase of inflammation: Novel endogenous anti-inflammatory and proresolving lipid mediators and pathways. Annual Review of Immunology, 25, 101–137.PubMed
15.
go back to reference Hong, S., Gronert, K., Devchand, P. R., Moussignac, R.-L., & Serhan, C. N. (2003). Novel docosatrienes and 17S-resolvins generated from docosahexaenoic acid in murine brain, human blood, and glial cells. Autacoids in anti-inflammation. Journal of Biological Chemistry, 278, 14677–14687.PubMed Hong, S., Gronert, K., Devchand, P. R., Moussignac, R.-L., & Serhan, C. N. (2003). Novel docosatrienes and 17S-resolvins generated from docosahexaenoic acid in murine brain, human blood, and glial cells. Autacoids in anti-inflammation. Journal of Biological Chemistry, 278, 14677–14687.PubMed
16.
go back to reference Merched, A. J., Ko, K., Gotlinger, K. H., Serhan, C. N., & Chan, L. (2008). Atherosclerosis: Evidence for impairment of resolution of vascular inflammation governed by specific lipid mediators. The FASEB Journal, 22, 3595–3606.PubMed Merched, A. J., Ko, K., Gotlinger, K. H., Serhan, C. N., & Chan, L. (2008). Atherosclerosis: Evidence for impairment of resolution of vascular inflammation governed by specific lipid mediators. The FASEB Journal, 22, 3595–3606.PubMed
17.
go back to reference Balkwill, F., Charles, K. A., & Mantovani, A. (2005). Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell, 7, 211–217.PubMed Balkwill, F., Charles, K. A., & Mantovani, A. (2005). Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell, 7, 211–217.PubMed
18.
go back to reference Clevers, H. (2004). At the crossroads of inflammation and cancer. Cell, 118, 671–674.PubMed Clevers, H. (2004). At the crossroads of inflammation and cancer. Cell, 118, 671–674.PubMed
19.
go back to reference Serhan, C. N., Jain, A., Marleau, S., et al. (2003). Reduced inflammation and tissue damage in transgenic rabbits overexpressing 15-lipoxygenase and endogenous anti-inflammatory lipid mediators. Journal of Immunology, 171, 6856–6865. Serhan, C. N., Jain, A., Marleau, S., et al. (2003). Reduced inflammation and tissue damage in transgenic rabbits overexpressing 15-lipoxygenase and endogenous anti-inflammatory lipid mediators. Journal of Immunology, 171, 6856–6865.
20.
go back to reference Munger, K. A., Montero, A., Fukunaga, M., et al. (1999). Transfection of rat kidney with human 15-lipoxygenase suppresses inflammation and preserves function in experimental glomerulonephritis. Proceedings of the National Academy of Sciences, 96, 13375–13380. Munger, K. A., Montero, A., Fukunaga, M., et al. (1999). Transfection of rat kidney with human 15-lipoxygenase suppresses inflammation and preserves function in experimental glomerulonephritis. Proceedings of the National Academy of Sciences, 96, 13375–13380.
21.
go back to reference Mangino, M. J., Brounts, L., Harms, B., & Heise, C. (2006). Lipoxin biosynthesis in inflammatory bowel disease. Prostaglandins & Other Lipid Mediators, 79, 84–92. Mangino, M. J., Brounts, L., Harms, B., & Heise, C. (2006). Lipoxin biosynthesis in inflammatory bowel disease. Prostaglandins & Other Lipid Mediators, 79, 84–92.
22.
go back to reference Ligumsky, M., Simon, P. L., Karmeli, F., & Rachmilewitz, D. (1990). Role of interleukin 1 in inflammatory bowel disease—Enhanced production during active disease. Gut, 31, 686–689.PubMed Ligumsky, M., Simon, P. L., Karmeli, F., & Rachmilewitz, D. (1990). Role of interleukin 1 in inflammatory bowel disease—Enhanced production during active disease. Gut, 31, 686–689.PubMed
23.
go back to reference Zuo, X., Wu, Y., Morris, J. S., et al. (2006). Oxidative metabolism of linoleic acid modulates PPAR-beta/delta suppression of PPAR-gamma activity. Oncogene, 25, 1225–1241.PubMed Zuo, X., Wu, Y., Morris, J. S., et al. (2006). Oxidative metabolism of linoleic acid modulates PPAR-beta/delta suppression of PPAR-gamma activity. Oncogene, 25, 1225–1241.PubMed
24.
go back to reference Sasaki, T., Fujii, K., Yoshida, K., et al. (2006). Peritoneal metastasis inhibition by linoleic acid with activation of PPARγ in human gastrointestinal cancer cells. Virchows Archiv, 448, 422–427.PubMed Sasaki, T., Fujii, K., Yoshida, K., et al. (2006). Peritoneal metastasis inhibition by linoleic acid with activation of PPARγ in human gastrointestinal cancer cells. Virchows Archiv, 448, 422–427.PubMed
25.
go back to reference Ricote, M., Li, A. C., Willson, T. M., Kelly, C. J., & Glass, C. K. (1998). The peroxisome proliferator-activated receptor-[gamma] is a negative regulator of macrophage activation. Nature, 391, 79–82.PubMed Ricote, M., Li, A. C., Willson, T. M., Kelly, C. J., & Glass, C. K. (1998). The peroxisome proliferator-activated receptor-[gamma] is a negative regulator of macrophage activation. Nature, 391, 79–82.PubMed
26.
go back to reference Su, C. G., Wen, X., Bailey, S. T., et al. (1999). A novel therapy for colitis utilizing PPAR-gamma ligands to inhibit the epithelial inflammatory response. Journal of Clinical Investigation, 104, 383–389.PubMed Su, C. G., Wen, X., Bailey, S. T., et al. (1999). A novel therapy for colitis utilizing PPAR-gamma ligands to inhibit the epithelial inflammatory response. Journal of Clinical Investigation, 104, 383–389.PubMed
27.
go back to reference Tanaka, T., Kohno, H., S-i, Y., et al. (2001). Ligands for peroxisome proliferator-activated receptors {alpha} and {gamma} inhibit chemically induced colitis and formation of aberrant crypt foci in rats. Cancer Research, 61, 2424–2428.PubMed Tanaka, T., Kohno, H., S-i, Y., et al. (2001). Ligands for peroxisome proliferator-activated receptors {alpha} and {gamma} inhibit chemically induced colitis and formation of aberrant crypt foci in rats. Cancer Research, 61, 2424–2428.PubMed
28.
go back to reference Dubuquoy, L., Rousseaux, C., Thuru, X., et al. (2006). PPARgamma as a new therapeutic target in inflammatory bowel diseases. Gut, 55, 1341–1349.PubMed Dubuquoy, L., Rousseaux, C., Thuru, X., et al. (2006). PPARgamma as a new therapeutic target in inflammatory bowel diseases. Gut, 55, 1341–1349.PubMed
29.
go back to reference Kuhn, H., & O’Donnell, V. B. (2006). Inflammation and immune regulation by 12/15-lipoxygenases. Progress in Lipid Research, 45, 334–356.PubMed Kuhn, H., & O’Donnell, V. B. (2006). Inflammation and immune regulation by 12/15-lipoxygenases. Progress in Lipid Research, 45, 334–356.PubMed
30.
go back to reference Levy, B. D., Clish, C. B., Schmidt, B., Gronert, K., & Serhan, C. N. (2001). Lipid mediator class switching during acute inflammation: Signals in resolution. Nature Immunology, 2, 612–619.PubMed Levy, B. D., Clish, C. B., Schmidt, B., Gronert, K., & Serhan, C. N. (2001). Lipid mediator class switching during acute inflammation: Signals in resolution. Nature Immunology, 2, 612–619.PubMed
31.
go back to reference Ariel, A., Li, P. L., Wang, W., et al. (2005). The docosatriene protectin D1 is produced by TH2 skewing and promotes human T cell apoptosis via lipid raft clustering. Journal of Biological Chemistry, 280, 43079–43086.PubMed Ariel, A., Li, P. L., Wang, W., et al. (2005). The docosatriene protectin D1 is produced by TH2 skewing and promotes human T cell apoptosis via lipid raft clustering. Journal of Biological Chemistry, 280, 43079–43086.PubMed
32.
go back to reference Hudert, C. A., Weylandt, K. H., Lu, Y., et al. (2006). Transgenic mice rich in endogenous omega-3 fatty acids are protected from colitis. Proceedings of the National Academy of Sciences of the United States of America, 103, 11276–11281.PubMed Hudert, C. A., Weylandt, K. H., Lu, Y., et al. (2006). Transgenic mice rich in endogenous omega-3 fatty acids are protected from colitis. Proceedings of the National Academy of Sciences of the United States of America, 103, 11276–11281.PubMed
33.
go back to reference Schewe, T., Halangk, W., Hiebsch, C., & Rapoport, S. (1977). Degradation of mitochondria by cytosolic factors in reticulocytes. Acta Biologica et Medica Germanica, 36, 563–572.PubMed Schewe, T., Halangk, W., Hiebsch, C., & Rapoport, S. (1977). Degradation of mitochondria by cytosolic factors in reticulocytes. Acta Biologica et Medica Germanica, 36, 563–572.PubMed
34.
go back to reference Kuhn, H., & Brash, A. R. (1990). Occurrence of lipoxygenase products in membranes of rabbit reticulocytes. Evidence for a role of the reticulocyte lipoxygenase in the maturation of red cells. Journal of Biological Chemistry, 265, 1454–1458.PubMed Kuhn, H., & Brash, A. R. (1990). Occurrence of lipoxygenase products in membranes of rabbit reticulocytes. Evidence for a role of the reticulocyte lipoxygenase in the maturation of red cells. Journal of Biological Chemistry, 265, 1454–1458.PubMed
35.
go back to reference van Leyen, K., Duvoisin, R. M., Engelhardt, H., & Wiedmann, M. (1998). A function for lipoxygenase in programmed organelle degradation. Nature, 395, 392–395.PubMed van Leyen, K., Duvoisin, R. M., Engelhardt, H., & Wiedmann, M. (1998). A function for lipoxygenase in programmed organelle degradation. Nature, 395, 392–395.PubMed
36.
go back to reference Grullich, C., Duvoisin, R. M., Wiedmann, M., & van Leyen, K. (2001). Inhibition of 15-lipoxygenase leads to delayed organelle degradation in the reticulocyte. FEBS Letters, 489, 51–54.PubMed Grullich, C., Duvoisin, R. M., Wiedmann, M., & van Leyen, K. (2001). Inhibition of 15-lipoxygenase leads to delayed organelle degradation in the reticulocyte. FEBS Letters, 489, 51–54.PubMed
37.
go back to reference Kim, K.-S., Chun, H.-S., Yoon, J.-H., Lee, J. G., Lee, J.-H., & Yoo, J.-B. (2005). Expression of 15-lipoxygenase-1 in human nasal epithelium: Its implication in mucociliary differentiation. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 73, 77–83.PubMed Kim, K.-S., Chun, H.-S., Yoon, J.-H., Lee, J. G., Lee, J.-H., & Yoo, J.-B. (2005). Expression of 15-lipoxygenase-1 in human nasal epithelium: Its implication in mucociliary differentiation. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 73, 77–83.PubMed
38.
go back to reference Hill, E. M., Eling, T., & Nettesheim, P. (1998). Changes in expression of 15-lipoxygenase and prostaglandin-H synthase during differentiation of human tracheobronchial epithelial cells. American Journal of Respiratory Cell and Molecular Biology, 18, 662–669.PubMed Hill, E. M., Eling, T., & Nettesheim, P. (1998). Changes in expression of 15-lipoxygenase and prostaglandin-H synthase during differentiation of human tracheobronchial epithelial cells. American Journal of Respiratory Cell and Molecular Biology, 18, 662–669.PubMed
39.
go back to reference Leszczyniecka, M., Roberts, T., Dent, P., Grant, S., & Fisher, P. B. (2001). Differentiation therapy of human cancer: Basic science and clinical applications. Pharmacology and Therapeutics, 90, 105–156.PubMed Leszczyniecka, M., Roberts, T., Dent, P., Grant, S., & Fisher, P. B. (2001). Differentiation therapy of human cancer: Basic science and clinical applications. Pharmacology and Therapeutics, 90, 105–156.PubMed
40.
go back to reference Jimenez, J. J., & Yunis, A. A. (1987). Tumor cell rejection through terminal cell differentiation. Science, 238, 1278–1280.PubMed Jimenez, J. J., & Yunis, A. A. (1987). Tumor cell rejection through terminal cell differentiation. Science, 238, 1278–1280.PubMed
41.
go back to reference Wicha, M. S., Liu, S., & Dontu, G. (2006). Cancer stem cells: An old idea—A paradigm shift. Cancer Research, 66, 1883–1890.PubMed Wicha, M. S., Liu, S., & Dontu, G. (2006). Cancer stem cells: An old idea—A paradigm shift. Cancer Research, 66, 1883–1890.PubMed
42.
go back to reference Mueller, E., Sarraf, P., Tontonoz, P., et al. (1998). Terminal differentiation of human breast cancer through PPAR[gamma]. Molecular Cell, 1, 465–470.PubMed Mueller, E., Sarraf, P., Tontonoz, P., et al. (1998). Terminal differentiation of human breast cancer through PPAR[gamma]. Molecular Cell, 1, 465–470.PubMed
43.
go back to reference Huang, F., Adelman, J., Jiang, H., Goldstein, N. I., & Fisher, P. B. (1999). Identification and temporal expression pattern of genes modulated during irreversible growth arrest and terminal differentiation in human melanoma cells. Oncogene, 18, 3546–3552.PubMed Huang, F., Adelman, J., Jiang, H., Goldstein, N. I., & Fisher, P. B. (1999). Identification and temporal expression pattern of genes modulated during irreversible growth arrest and terminal differentiation in human melanoma cells. Oncogene, 18, 3546–3552.PubMed
44.
go back to reference Zelent, A., Petrie, K., Chen, Z., et al. (2005). Molecular target-based treatment of human cancer: Summary of the 10th International Conference on Differentiation Therapy. Cancer Research, 65, 1117–1123.PubMed Zelent, A., Petrie, K., Chen, Z., et al. (2005). Molecular target-based treatment of human cancer: Summary of the 10th International Conference on Differentiation Therapy. Cancer Research, 65, 1117–1123.PubMed
45.
go back to reference Sung, M. W., & Waxman, S. (2007). Combination of cytotoxic-differentiation therapy with 5-fluorouracil and phenylbutyrate in patients with advanced colorectal cancer. Anticancer Research, 27, 995–1001.PubMed Sung, M. W., & Waxman, S. (2007). Combination of cytotoxic-differentiation therapy with 5-fluorouracil and phenylbutyrate in patients with advanced colorectal cancer. Anticancer Research, 27, 995–1001.PubMed
46.
go back to reference Glasgow, W. C., & Eling, T. E. (1990). Epidermal growth factor stimulates linoleic acid metabolism in BALB/c 3T3 fibroblast. Molecular Pharmacology, 38, 503–510.PubMed Glasgow, W. C., & Eling, T. E. (1990). Epidermal growth factor stimulates linoleic acid metabolism in BALB/c 3T3 fibroblast. Molecular Pharmacology, 38, 503–510.PubMed
47.
go back to reference Glasgow, W. C., Afshari, C. A., Barrett, J. C., & Eling, T. E. (1992). Modulation of the epidermal growth factor mitogenic response by metabolites of linoleic and arachidonic acid in Syrian hamster embryo fibroblasts. Differential effects in tumor suppressor gene (+) and (−) phenotypes. Journal of Biological Chemistry, 267, 10771–10779.PubMed Glasgow, W. C., Afshari, C. A., Barrett, J. C., & Eling, T. E. (1992). Modulation of the epidermal growth factor mitogenic response by metabolites of linoleic and arachidonic acid in Syrian hamster embryo fibroblasts. Differential effects in tumor suppressor gene (+) and (−) phenotypes. Journal of Biological Chemistry, 267, 10771–10779.PubMed
48.
go back to reference Reddy, N., Everhart, A., Eling, T., & Glasgow, W. (1997). Characterization of 15-lipoxygenase in human breast carcinoma BT-20 cells: Stimulation of 13-HODE formation by TGFα/EGF. Biochemical and Biophysical Research Communications, 231, 111–116.PubMed Reddy, N., Everhart, A., Eling, T., & Glasgow, W. (1997). Characterization of 15-lipoxygenase in human breast carcinoma BT-20 cells: Stimulation of 13-HODE formation by TGFα/EGF. Biochemical and Biophysical Research Communications, 231, 111–116.PubMed
49.
go back to reference Glasgow, W. C., & Everhart, A. L. (1997). The role of linoleic acid metabolism in the proliferative response of cells overexpressing the erbB-2/HER2 oncogene. Advances in Experimental Medicine and Biology, 407, 393–397.PubMed Glasgow, W. C., & Everhart, A. L. (1997). The role of linoleic acid metabolism in the proliferative response of cells overexpressing the erbB-2/HER2 oncogene. Advances in Experimental Medicine and Biology, 407, 393–397.PubMed
50.
go back to reference Bronstein, J. C., & Bull, A. W. (1993). The correlation between 13-hydroxyoctadecadienoate dehydrogenase (13-HODE dehydrogenase) and intestinal cell differentiation. Prostaglandins, 46, 387–395.PubMed Bronstein, J. C., & Bull, A. W. (1993). The correlation between 13-hydroxyoctadecadienoate dehydrogenase (13-HODE dehydrogenase) and intestinal cell differentiation. Prostaglandins, 46, 387–395.PubMed
51.
go back to reference Ikawa, H., Kamitani, H., Calvo, B., Foley, J., & Eling, T. (1999). Expression of 15-lipoxygenase-1 in human colorectal cancer. Cancer Research, 59, 360–366.PubMed Ikawa, H., Kamitani, H., Calvo, B., Foley, J., & Eling, T. (1999). Expression of 15-lipoxygenase-1 in human colorectal cancer. Cancer Research, 59, 360–366.PubMed
52.
go back to reference Kamitani, H., Geller, M., & Eling, T. (1998). Expression of 15-lipoxygenase by human colorectal carcinoma Caco-2 cells during apoptosis and cell differentiation. Journal of Biological Chemistry, 273, 21569–21577.PubMed Kamitani, H., Geller, M., & Eling, T. (1998). Expression of 15-lipoxygenase by human colorectal carcinoma Caco-2 cells during apoptosis and cell differentiation. Journal of Biological Chemistry, 273, 21569–21577.PubMed
53.
go back to reference Kamitani, H., Taniura, S., Ikawa, H., Watanabe, T., Kelavkar, U. P., & Eling, T. E. (2001). Expression of 15-lipoxygenase-1 is regulated by histone acetylation in human colorectal carcinoma. Carcinogenesis, 22, 187–191.PubMed Kamitani, H., Taniura, S., Ikawa, H., Watanabe, T., Kelavkar, U. P., & Eling, T. E. (2001). Expression of 15-lipoxygenase-1 is regulated by histone acetylation in human colorectal carcinoma. Carcinogenesis, 22, 187–191.PubMed
54.
go back to reference Kawajiri, H., Hsi, L. C., Kamitani, H., et al. (2002). Arachidonic and linoleic acid metabolism in mouse intestinal tissue: Evidence for novel lipoxygenase activity. Archives of Biochemistry and Biophysics, 398, 51–60.PubMed Kawajiri, H., Hsi, L. C., Kamitani, H., et al. (2002). Arachidonic and linoleic acid metabolism in mouse intestinal tissue: Evidence for novel lipoxygenase activity. Archives of Biochemistry and Biophysics, 398, 51–60.PubMed
55.
go back to reference Shureiqi, I., Wojno, K. J., Poore, J. A., et al. (1999). Decreased 13-S-hydroxyoctadecadienoic acid levels and 15-lipoxygenase-1 expression in human colon cancers. Carcinogenesis, 20, 1985–1995.PubMed Shureiqi, I., Wojno, K. J., Poore, J. A., et al. (1999). Decreased 13-S-hydroxyoctadecadienoic acid levels and 15-lipoxygenase-1 expression in human colon cancers. Carcinogenesis, 20, 1985–1995.PubMed
56.
go back to reference Bull, A. W., Earls, S. M., & Blackburn, M. L. (1993). Regulation of the induction of ornithine decaroxylase in short-term rat colon organ culture by dexamethasone and 13-hydroxyoctadecadienoic acid (13-HODE). Life Sciences, 53, 337–385. Bull, A. W., Earls, S. M., & Blackburn, M. L. (1993). Regulation of the induction of ornithine decaroxylase in short-term rat colon organ culture by dexamethasone and 13-hydroxyoctadecadienoic acid (13-HODE). Life Sciences, 53, 337–385.
57.
go back to reference Miller, C. C., & Ziboh, V. A. (1990). Induction of epidermal hyperproliferation by topical n-3 polyunsaturated fatty acids on guinea pig skin linked to decrease levels of 13-hydroxyocatdecadienoic acid (13-HODE). The Journal of Investigative Dermatology, 94, 354–358. Miller, C. C., & Ziboh, V. A. (1990). Induction of epidermal hyperproliferation by topical n-3 polyunsaturated fatty acids on guinea pig skin linked to decrease levels of 13-hydroxyocatdecadienoic acid (13-HODE). The Journal of Investigative Dermatology, 94, 354–358.
58.
go back to reference Sandstrom, P. A., Pardi, D., Tebbey, P. W., et al. (1995). Lipid hydroperoxide-induced apoptosis: Lack of inhibition by Bcl-2 over-expression. FEBS Letters, 365, 66–70.PubMed Sandstrom, P. A., Pardi, D., Tebbey, P. W., et al. (1995). Lipid hydroperoxide-induced apoptosis: Lack of inhibition by Bcl-2 over-expression. FEBS Letters, 365, 66–70.PubMed
59.
go back to reference Nixon, J. B., Kim, K. S., Lamb, P. W., Bottone, F. G., & Eling, T. E. (2004). 15-Lipoxygenase-1 has anti-tumorigenic effects in colorectal cancer. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 70, 7–15.PubMed Nixon, J. B., Kim, K. S., Lamb, P. W., Bottone, F. G., & Eling, T. E. (2004). 15-Lipoxygenase-1 has anti-tumorigenic effects in colorectal cancer. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 70, 7–15.PubMed
60.
go back to reference Yuri, M., Sasahira, T., Nakai, K., Ishimaru, S., Ohmori, H., & Kuniyasu, H. (2007). Reversal of expression of 15-lipoxygenase-1 to cyclooxygenase-2 is associated with development of colonic cancer. Histopathology, 51, 520–527.PubMed Yuri, M., Sasahira, T., Nakai, K., Ishimaru, S., Ohmori, H., & Kuniyasu, H. (2007). Reversal of expression of 15-lipoxygenase-1 to cyclooxygenase-2 is associated with development of colonic cancer. Histopathology, 51, 520–527.PubMed
61.
go back to reference Heslin, M. J., Hawkins, A., Boedefeld, W., et al. (2005). Tumor-associated down-regulation of 15-lipoxygenase-1 is reversed by celecoxib in colorectal cancer. Annals of Surgery, 241, 941–946. discussion 946–947.PubMed Heslin, M. J., Hawkins, A., Boedefeld, W., et al. (2005). Tumor-associated down-regulation of 15-lipoxygenase-1 is reversed by celecoxib in colorectal cancer. Annals of Surgery, 241, 941–946. discussion 946–947.PubMed
62.
go back to reference Vogelstein, B., Fearon, E. R., Hamilton, S. R., et al. (1988). Genetic alterations during colorectal-tumor development. The New England Journal of Medicine, 319, 525–532.PubMed Vogelstein, B., Fearon, E. R., Hamilton, S. R., et al. (1988). Genetic alterations during colorectal-tumor development. The New England Journal of Medicine, 319, 525–532.PubMed
63.
go back to reference Shureiqi, I., Wu, Y., Chen, D., et al. (2005). The critical role of 15-lipoxygenase-1 in colorectal epithelial cell terminal differentiation and tumorigenesis. Cancer Research, 65, 11486–11492.PubMed Shureiqi, I., Wu, Y., Chen, D., et al. (2005). The critical role of 15-lipoxygenase-1 in colorectal epithelial cell terminal differentiation and tumorigenesis. Cancer Research, 65, 11486–11492.PubMed
64.
go back to reference Shureiqi, I., Jiang, W., Zuo, X., et al. (2003). The 15-lipoxygenase-1 product 13-S-hydroxyoctadecadienoic acid down-regulates PPAR-delta to induce apoptosis in colorectal cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 100, 9968–9973.PubMed Shureiqi, I., Jiang, W., Zuo, X., et al. (2003). The 15-lipoxygenase-1 product 13-S-hydroxyoctadecadienoic acid down-regulates PPAR-delta to induce apoptosis in colorectal cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 100, 9968–9973.PubMed
65.
go back to reference Nixon, J. B., Kamitani, H., Baek, S. J., & Eling, T. E. (2003). Evaluation of eicosanoids and NSAIDs as PPARgamma ligands in colorectal carcinoma cells. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 68, 323–330.PubMed Nixon, J. B., Kamitani, H., Baek, S. J., & Eling, T. E. (2003). Evaluation of eicosanoids and NSAIDs as PPARgamma ligands in colorectal carcinoma cells. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 68, 323–330.PubMed
66.
go back to reference Jonkers, J., & Berns, A. (2002). Conditional mouse models of sporadic cancer. Nature Reviews. Cancer, 2, 251–265.PubMed Jonkers, J., & Berns, A. (2002). Conditional mouse models of sporadic cancer. Nature Reviews. Cancer, 2, 251–265.PubMed
67.
go back to reference Muller, K., Siebert, M., Heidt, M., Marks, F., Krieg, P., & Furstenberger, G. (2002). Modulation of epidermal tumor development caused by targeted overexpression of epidermis-type 12S-lipoxygenase. Cancer Research, 62, 4610–4616.PubMed Muller, K., Siebert, M., Heidt, M., Marks, F., Krieg, P., & Furstenberger, G. (2002). Modulation of epidermal tumor development caused by targeted overexpression of epidermis-type 12S-lipoxygenase. Cancer Research, 62, 4610–4616.PubMed
68.
go back to reference Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100, 57–70.PubMed Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100, 57–70.PubMed
69.
go back to reference Viita, H., Markkanen, J., Eriksson, E., et al. (2008). 15-Lipoxygenase-1 prevents vascular endothelial growth factor A- and placental growth factor-induced angiogenic effects in rabbit skeletal muscles via reduction in growth factor mRNA levels, NO bioactivity, and downregulation of VEGF receptor 2 expression. Circulation Research, 102, 177–184.PubMed Viita, H., Markkanen, J., Eriksson, E., et al. (2008). 15-Lipoxygenase-1 prevents vascular endothelial growth factor A- and placental growth factor-induced angiogenic effects in rabbit skeletal muscles via reduction in growth factor mRNA levels, NO bioactivity, and downregulation of VEGF receptor 2 expression. Circulation Research, 102, 177–184.PubMed
70.
go back to reference Mochizuki, N., & Kwon, Y.-G. (2008). 15-Lipoxygenase-1 in the vasculature: Expanding roles in angiogenesis. Circulation Research, 102, 143–145.PubMed Mochizuki, N., & Kwon, Y.-G. (2008). 15-Lipoxygenase-1 in the vasculature: Expanding roles in angiogenesis. Circulation Research, 102, 143–145.PubMed
71.
go back to reference Kelavkar, U. P., Nixon, J. B., Cohen, C., Dillehay, D., Eling, T. E., & Badr, K. F. (2001). Overexpression of 15-lipoxygenase-1 in PC-3 human prostate cancer cells increases tumorigenesis. Carcinogenesis, 22, 1765–1773.PubMed Kelavkar, U. P., Nixon, J. B., Cohen, C., Dillehay, D., Eling, T. E., & Badr, K. F. (2001). Overexpression of 15-lipoxygenase-1 in PC-3 human prostate cancer cells increases tumorigenesis. Carcinogenesis, 22, 1765–1773.PubMed
72.
go back to reference Grossi, M. I., Fitzgerald, A. L., Umbrager, K. K. N., Diglio, A. C. A., Taylor, D. J., & Honn, V. K. (1989). Bidirectional control of membrane expression and/or activation of the tumor cell IRGPIIB/IIIa receptors and tumor cell adhesion by lipoxygenase products of arachidonic acid and linoleic acid. Cancer Research, 49, 1029–1037.PubMed Grossi, M. I., Fitzgerald, A. L., Umbrager, K. K. N., Diglio, A. C. A., Taylor, D. J., & Honn, V. K. (1989). Bidirectional control of membrane expression and/or activation of the tumor cell IRGPIIB/IIIa receptors and tumor cell adhesion by lipoxygenase products of arachidonic acid and linoleic acid. Cancer Research, 49, 1029–1037.PubMed
73.
go back to reference Bastida, E., Almirall, L., Ordinas, A., et al. (1991). Effects of endothelial cell treatment on 13-HODE and prostacyclin synthesis and its correlation with tumor cell-vascular endothelial cell adhesion. Invasion & Metastasis, 11, 273–280. Bastida, E., Almirall, L., Ordinas, A., et al. (1991). Effects of endothelial cell treatment on 13-HODE and prostacyclin synthesis and its correlation with tumor cell-vascular endothelial cell adhesion. Invasion & Metastasis, 11, 273–280.
74.
go back to reference Bertomeu, M. C., Gallo, S., Lauri, D., et al. (1993). Interleukin 1-induced cancer cell/endothelial cell adhesion in vitro and its relationship to metastasis in vivo: Role of vessel wall 13-HODE synthesis and integrin expression. Clinical & Experimental Metastasis, 11, 243–250. Bertomeu, M. C., Gallo, S., Lauri, D., et al. (1993). Interleukin 1-induced cancer cell/endothelial cell adhesion in vitro and its relationship to metastasis in vivo: Role of vessel wall 13-HODE synthesis and integrin expression. Clinical & Experimental Metastasis, 11, 243–250.
75.
go back to reference Harats, D., Ben-Shushan, D., Cohen, H., et al. (2005). Inhibition of carcinogenesis in transgenic mouse models over-expressing 15-lipoxygenase in the vascular wall under the control of murine preproendothelin-1 promoter. Cancer Letters, 229, 127–134.PubMed Harats, D., Ben-Shushan, D., Cohen, H., et al. (2005). Inhibition of carcinogenesis in transgenic mouse models over-expressing 15-lipoxygenase in the vascular wall under the control of murine preproendothelin-1 promoter. Cancer Letters, 229, 127–134.PubMed
76.
go back to reference Gupta, G. P., & Massagué, J. (2006). Cancer metastasis: Building a framework. Cell, 127, 679–695.PubMed Gupta, G. P., & Massagué, J. (2006). Cancer metastasis: Building a framework. Cell, 127, 679–695.PubMed
77.
go back to reference Çimen, I., Tunçay, S., & Banerjee, S. (2009). 15-Lipoxygenase-1 expression suppresses the invasive properties of colorectal carcinoma cell lines HCT-116 and HT-29. Cancer Science, 100, 2283–2291.PubMed Çimen, I., Tunçay, S., & Banerjee, S. (2009). 15-Lipoxygenase-1 expression suppresses the invasive properties of colorectal carcinoma cell lines HCT-116 and HT-29. Cancer Science, 100, 2283–2291.PubMed
78.
go back to reference Liu, H., Zang, C., Fenner, M. H., Possinger, K., & Elstner, E. (2003). PPARgamma ligands and ATRA inhibit the invasion of human breast cancer cells in vitro. Breast Cancer Research and Treatment, 79, 63–74.PubMed Liu, H., Zang, C., Fenner, M. H., Possinger, K., & Elstner, E. (2003). PPARgamma ligands and ATRA inhibit the invasion of human breast cancer cells in vitro. Breast Cancer Research and Treatment, 79, 63–74.PubMed
79.
go back to reference Yoshizumi, T., Ohta, T., Ninomiya, I., et al. (2004). Thiazolidinedione, a peroxisome proliferator-activated receptor-gamma ligand, inhibits growth and metastasis of HT-29 human colon cancer cells through differentiation-promoting effects. International Journal of Oncology, 25, 631–639.PubMed Yoshizumi, T., Ohta, T., Ninomiya, I., et al. (2004). Thiazolidinedione, a peroxisome proliferator-activated receptor-gamma ligand, inhibits growth and metastasis of HT-29 human colon cancer cells through differentiation-promoting effects. International Journal of Oncology, 25, 631–639.PubMed
80.
go back to reference Bren-Mattison, Y., Van Putten, V., Chan, D., Winn, R., Geraci, M. W., & Nemenoff, R. A. (2005). Peroxisome proliferator-activated receptor-gamma (PPAR(gamma)) inhibits tumorigenesis by reversing the undifferentiated phenotype of metastatic non-small-cell lung cancer cells (NSCLC). Oncogene, 24, 1412–1422.PubMed Bren-Mattison, Y., Van Putten, V., Chan, D., Winn, R., Geraci, M. W., & Nemenoff, R. A. (2005). Peroxisome proliferator-activated receptor-gamma (PPAR(gamma)) inhibits tumorigenesis by reversing the undifferentiated phenotype of metastatic non-small-cell lung cancer cells (NSCLC). Oncogene, 24, 1412–1422.PubMed
81.
go back to reference Terashita, Y., Sasaki, H., Haruki, N., et al. (2002). Decreased peroxisome proliferator-activated receptor gamma gene expression is correlated with poor prognosis in patients with esophageal cancer. Japanese Journal of Clinical Oncology, 32, 238–243.PubMed Terashita, Y., Sasaki, H., Haruki, N., et al. (2002). Decreased peroxisome proliferator-activated receptor gamma gene expression is correlated with poor prognosis in patients with esophageal cancer. Japanese Journal of Clinical Oncology, 32, 238–243.PubMed
82.
go back to reference Hawk, E. T., & Levin, B. (2005). Colorectal cancer prevention. Journal of Clinical Oncology, 23, 378–391.PubMed Hawk, E. T., & Levin, B. (2005). Colorectal cancer prevention. Journal of Clinical Oncology, 23, 378–391.PubMed
83.
go back to reference Shureiqi, I., Chen, D., Lee, J. J., et al. (2000). 15-LOX-1: A novel molecular target of nonsteroidal anti-inflammatory drug-induced apoptosis in colorectal cancer cells. Journal of the National Cancer Institute, 92, 1136–1142.PubMed Shureiqi, I., Chen, D., Lee, J. J., et al. (2000). 15-LOX-1: A novel molecular target of nonsteroidal anti-inflammatory drug-induced apoptosis in colorectal cancer cells. Journal of the National Cancer Institute, 92, 1136–1142.PubMed
84.
go back to reference Shureiqi, I., Chen, D., Lotan, R., et al. (2000). 15-Lipoxygenase-1 mediates nonsteroidal anti-inflammatory drug-induced apoptosis independently of cyclooxygenase-2 in colon cancer cells. Cancer Research 60, 6846–6850.PubMed Shureiqi, I., Chen, D., Lotan, R., et al. (2000). 15-Lipoxygenase-1 mediates nonsteroidal anti-inflammatory drug-induced apoptosis independently of cyclooxygenase-2 in colon cancer cells. Cancer Research 60, 6846–6850.PubMed
85.
go back to reference Deguchi, A., Xing, S. W., Shureiqi, I., et al. (2005). Activation of protein kinase G up-regulates expression of 15-lipoxygenase-1 in human colon cancer cells. Cancer Research, 65, 8442–8447.PubMed Deguchi, A., Xing, S. W., Shureiqi, I., et al. (2005). Activation of protein kinase G up-regulates expression of 15-lipoxygenase-1 in human colon cancer cells. Cancer Research, 65, 8442–8447.PubMed
86.
go back to reference Shureiqi, I., Jiang, W., Fischer, S. M., et al. (2002). GATA-6 transcriptional regulation of 15-lipoxygenase-1 during NSAID-induced apoptosis in colorectal cancer cells. Cancer Research, 62, 1178–1183.PubMed Shureiqi, I., Jiang, W., Fischer, S. M., et al. (2002). GATA-6 transcriptional regulation of 15-lipoxygenase-1 during NSAID-induced apoptosis in colorectal cancer cells. Cancer Research, 62, 1178–1183.PubMed
87.
go back to reference Dokmanovic, M., Clarke, C., & Marks, P. A. (2007). Histone deacetylase inhibitors: Overview and perspectives. Molecular Cancer Research, 5, 981–989.PubMed Dokmanovic, M., Clarke, C., & Marks, P. A. (2007). Histone deacetylase inhibitors: Overview and perspectives. Molecular Cancer Research, 5, 981–989.PubMed
88.
go back to reference Mariadason, J. M. (2008). HDACs and HDAC inhibitors in colon cancer. Epigenetics, 3, 28–37.PubMed Mariadason, J. M. (2008). HDACs and HDAC inhibitors in colon cancer. Epigenetics, 3, 28–37.PubMed
89.
go back to reference Federico, M., & Bagella, L. (2011). Histone deacetylase inhibitors in the treatment of hematological malignancies and solid tumors. Journal of Biomedicine and Biotechnology, 2011, 475641.PubMed Federico, M., & Bagella, L. (2011). Histone deacetylase inhibitors in the treatment of hematological malignancies and solid tumors. Journal of Biomedicine and Biotechnology, 2011, 475641.PubMed
90.
go back to reference Shureiqi, I., Zuo, X., Broaddus, R., et al. (2007). The transcription factor GATA-6 is overexpressed in vivo and contributes to silencing 15-LOX-1 in vitro in human colon cancer. The FASEB Journal, 21, 743–753.PubMed Shureiqi, I., Zuo, X., Broaddus, R., et al. (2007). The transcription factor GATA-6 is overexpressed in vivo and contributes to silencing 15-LOX-1 in vitro in human colon cancer. The FASEB Journal, 21, 743–753.PubMed
91.
go back to reference Zuo, X., Morris, J. S., Broaddus, R., & Shureiqi, I. (2009). 15-LOX-1 transcription suppression through the NuRD complex in colon cancer cells. Oncogene, 28, 1496–1505.PubMed Zuo, X., Morris, J. S., Broaddus, R., & Shureiqi, I. (2009). 15-LOX-1 transcription suppression through the NuRD complex in colon cancer cells. Oncogene, 28, 1496–1505.PubMed
92.
go back to reference Shankaranarayanan, P., Chaitidis, P., Kuhn, H., & Nigam, S. (2001). Acetylation by histone acetyltransferase CREB-binding protein/p300 of STAT6 is required for transcriptional activation of the 15-lipoxygenase-1 gene. Journal of Biological Chemistry, 276, 42753–42760.PubMed Shankaranarayanan, P., Chaitidis, P., Kuhn, H., & Nigam, S. (2001). Acetylation by histone acetyltransferase CREB-binding protein/p300 of STAT6 is required for transcriptional activation of the 15-lipoxygenase-1 gene. Journal of Biological Chemistry, 276, 42753–42760.PubMed
93.
go back to reference Hsi, L. C., Xi, X., Lotan, R., Shureiqi, I., & Lippman, S. M. (2004). The histone deacetylase inhibitor suberoylanilide hydroxamic acid induces apoptosis via induction of 15-lipoxygenase-1 in colorectal cancer cells. Cancer Research, 64, 8778–8781.PubMed Hsi, L. C., Xi, X., Lotan, R., Shureiqi, I., & Lippman, S. M. (2004). The histone deacetylase inhibitor suberoylanilide hydroxamic acid induces apoptosis via induction of 15-lipoxygenase-1 in colorectal cancer cells. Cancer Research, 64, 8778–8781.PubMed
94.
go back to reference Zuo, X., Shen, L., Issa, J.-P., et al. (2008). 15-Lipoxygenase-1 transcriptional silencing by DNA methyltransferase-1 independently of DNA methylation. The FASEB Journal, 22, 1981–1992. Zuo, X., Shen, L., Issa, J.-P., et al. (2008). 15-Lipoxygenase-1 transcriptional silencing by DNA methyltransferase-1 independently of DNA methylation. The FASEB Journal, 22, 1981–1992.
95.
go back to reference Mao, J. T., Nie, W.-X., Tsu, I.-H., et al. (2010). White tea extract induces apoptosis in non-small cell lung cancer cells: The role of peroxisome proliferator-activated receptor-{gamma} and 15-lipoxygenases. Cancer Prevention Research, 3, 1132–1140.PubMed Mao, J. T., Nie, W.-X., Tsu, I.-H., et al. (2010). White tea extract induces apoptosis in non-small cell lung cancer cells: The role of peroxisome proliferator-activated receptor-{gamma} and 15-lipoxygenases. Cancer Prevention Research, 3, 1132–1140.PubMed
96.
go back to reference Liu, S. H., Shen, C. C., Yi, Y. C., et al. (2010). Honokiol inhibits gastric tumourigenesis by activation of 15-lipoxygenase-1 and consequent inhibition of peroxisome proliferator-activated receptor-γ and COX-2-dependent signals. British Journal of Pharmacology, 160, 1963–1972.PubMed Liu, S. H., Shen, C. C., Yi, Y. C., et al. (2010). Honokiol inhibits gastric tumourigenesis by activation of 15-lipoxygenase-1 and consequent inhibition of peroxisome proliferator-activated receptor-γ and COX-2-dependent signals. British Journal of Pharmacology, 160, 1963–1972.PubMed
97.
go back to reference Wu, Y., Fang, B., Yang, X. Q., et al. (2008). Therapeutic molecular targeting of 15-lipoxygenase-1 in colon cancer. Molecular Therapy, 16, 886–892.PubMed Wu, Y., Fang, B., Yang, X. Q., et al. (2008). Therapeutic molecular targeting of 15-lipoxygenase-1 in colon cancer. Molecular Therapy, 16, 886–892.PubMed
98.
go back to reference Wu, Y., Fang, B., Yang, X. Q., Wang, L., Chen, D., & Krasnykh, V. (2008). Therapeutic molecular targeting of 15-lipoxygenase-1 in colon cancer. Molecular Therapy, 16, 886–892.PubMed Wu, Y., Fang, B., Yang, X. Q., Wang, L., Chen, D., & Krasnykh, V. (2008). Therapeutic molecular targeting of 15-lipoxygenase-1 in colon cancer. Molecular Therapy, 16, 886–892.PubMed
99.
go back to reference Kim, J.-S., Baek, S. J., Bottone, F. G., Sali, T., & Eling, T. E. (2005). Overexpression of 15-lipoxygenase-1 induces growth arrest through phosphorylation of p53 in human colorectal cancer cells. Molecular Cancer Research, 3, 511–517.PubMed Kim, J.-S., Baek, S. J., Bottone, F. G., Sali, T., & Eling, T. E. (2005). Overexpression of 15-lipoxygenase-1 induces growth arrest through phosphorylation of p53 in human colorectal cancer cells. Molecular Cancer Research, 3, 511–517.PubMed
100.
go back to reference Zhu, H., Glasgow, W., George, MD., et al. (2008). 15-Lipoxygenase-1 activates tumor suppressor p53 independent of enzymatic activity. International Journal of Cancer. 123, 2741-2749. Zhu, H., Glasgow, W., George, MD., et al. (2008). 15-Lipoxygenase-1 activates tumor suppressor p53 independent of enzymatic activity. International Journal of Cancer. 123, 2741-2749.
101.
go back to reference Ostareck, D. H., Ostareck-Lederer, A., Wilm, M., Thiele, B. J., Mann, M., & Hentze, M. W. (1997). mRNA silencing in erythroid differentiation: hnRNP K and hnRNP E1 regulate 15-lipoxygenase translation from the 3′ end. Cell, 89, 597–606.PubMed Ostareck, D. H., Ostareck-Lederer, A., Wilm, M., Thiele, B. J., Mann, M., & Hentze, M. W. (1997). mRNA silencing in erythroid differentiation: hnRNP K and hnRNP E1 regulate 15-lipoxygenase translation from the 3′ end. Cell, 89, 597–606.PubMed
102.
go back to reference Kamitani, H., Kameda, H., Kelavkar, U. P., & Eling, T. E. (2000). A GATA binding site is involved in the regulation of 15-lipoxygenase-1 expression in human colorectal carcinoma cell line, caco-2. FEBS Letters, 467, 341–347.PubMed Kamitani, H., Kameda, H., Kelavkar, U. P., & Eling, T. E. (2000). A GATA binding site is involved in the regulation of 15-lipoxygenase-1 expression in human colorectal carcinoma cell line, caco-2. FEBS Letters, 467, 341–347.PubMed
103.
go back to reference Zhang, C., Richon, V., Ni, X., Talpur, R., & Duvic, M. (2005). Selective induction of apoptosis by histone deacetylase inhibitor SAHA in cutaneous T-cell lymphoma cells: Relevance to mechanism of therapeutic action. Journal of Investigative Dermatology, 125, 1045–1052.PubMed Zhang, C., Richon, V., Ni, X., Talpur, R., & Duvic, M. (2005). Selective induction of apoptosis by histone deacetylase inhibitor SAHA in cutaneous T-cell lymphoma cells: Relevance to mechanism of therapeutic action. Journal of Investigative Dermatology, 125, 1045–1052.PubMed
104.
go back to reference Zuo, X., Morris, J. S., & Shureiqi, I. (2008). Chromatin modification requirements for 15-lipoxygenase-1 transcriptional reactivation in colon cancer cells. Journal of Biological Chemistry, 283, 31341–31347.PubMed Zuo, X., Morris, J. S., & Shureiqi, I. (2008). Chromatin modification requirements for 15-lipoxygenase-1 transcriptional reactivation in colon cancer cells. Journal of Biological Chemistry, 283, 31341–31347.PubMed
105.
go back to reference Bolden, J. E., Peart, M. J., & Johnstone, R. W. (2006). Anticancer activities of histone deacetylase inhibitors. Nature Reviews. Drug Discovery, 5, 769–784.PubMed Bolden, J. E., Peart, M. J., & Johnstone, R. W. (2006). Anticancer activities of histone deacetylase inhibitors. Nature Reviews. Drug Discovery, 5, 769–784.PubMed
106.
go back to reference Ogryzko, V. V., Schiltz, R. L., Russanova, V., Howard, B. H., & Nakatani, Y. (1996). The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell, 87, 953–959.PubMed Ogryzko, V. V., Schiltz, R. L., Russanova, V., Howard, B. H., & Nakatani, Y. (1996). The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell, 87, 953–959.PubMed
107.
go back to reference Strahl, B. D., & Allis, C. D. (2000). The language of covalent histone modifications. Nature, 403, 41–45.PubMed Strahl, B. D., & Allis, C. D. (2000). The language of covalent histone modifications. Nature, 403, 41–45.PubMed
108.
go back to reference Shi, Y. (2007). Histone lysine demethylases: Emerging roles in development, physiology and disease. Nature Reviews Genetics, 8, 829–833.PubMed Shi, Y. (2007). Histone lysine demethylases: Emerging roles in development, physiology and disease. Nature Reviews Genetics, 8, 829–833.PubMed
109.
go back to reference Jenuwein, T., & Allis, C. D. (2001). Translating the histone code. Science, 293, 1074–1080.PubMed Jenuwein, T., & Allis, C. D. (2001). Translating the histone code. Science, 293, 1074–1080.PubMed
110.
go back to reference Martin, C., & Zhang, Y. (2005). The diverse functions of histone lysine methylation. Nature Reviews Molecular Cell Biology, 6, 838–849.PubMed Martin, C., & Zhang, Y. (2005). The diverse functions of histone lysine methylation. Nature Reviews Molecular Cell Biology, 6, 838–849.PubMed
111.
go back to reference Yamane, K., Toumazou, C., Y-i, T., et al. (2006). JHDM2A, a JmjC-containing H3K9 demethylase, facilitates transcription activation by androgen receptor. Cell, 125, 483–495.PubMed Yamane, K., Toumazou, C., Y-i, T., et al. (2006). JHDM2A, a JmjC-containing H3K9 demethylase, facilitates transcription activation by androgen receptor. Cell, 125, 483–495.PubMed
112.
go back to reference Tachibana, M., Sugimoto, K., Nozaki, M., et al. (2002). G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. Genes & Development, 16, 1779–1791. Tachibana, M., Sugimoto, K., Nozaki, M., et al. (2002). G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. Genes & Development, 16, 1779–1791.
113.
go back to reference Peters, A. H. F. M., Kubicek, S., Mechtler, K., et al. (2003). Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. Molecular Cell, 12, 1577–1589.PubMed Peters, A. H. F. M., Kubicek, S., Mechtler, K., et al. (2003). Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. Molecular Cell, 12, 1577–1589.PubMed
114.
go back to reference Rice, J. C., Briggs, S. D., Ueberheide, B., et al. (2003). Histone methyltransferases direct different degrees of methylation to define distinct chromatin domains. Molecular Cell, 12, 1591–1598.PubMed Rice, J. C., Briggs, S. D., Ueberheide, B., et al. (2003). Histone methyltransferases direct different degrees of methylation to define distinct chromatin domains. Molecular Cell, 12, 1591–1598.PubMed
115.
go back to reference Lee, D. Y., Teyssier, C., Strahl, B. D., & Stallcup, M. R. (2005). Role of protein methylation in regulation of transcription. Endocrine Reviews, 26, 147–170.PubMed Lee, D. Y., Teyssier, C., Strahl, B. D., & Stallcup, M. R. (2005). Role of protein methylation in regulation of transcription. Endocrine Reviews, 26, 147–170.PubMed
116.
go back to reference Tachibana, M., Ueda, J., Fukuda, M., et al. (2005). Histone methyltransferases G9a and GLP form heteromeric complexes and are both crucial for methylation of euchromatin at H3-K9. Genes & Development, 19, 815–826. Tachibana, M., Ueda, J., Fukuda, M., et al. (2005). Histone methyltransferases G9a and GLP form heteromeric complexes and are both crucial for methylation of euchromatin at H3-K9. Genes & Development, 19, 815–826.
117.
go back to reference Kelavkar, U., Wang, S., Montero, A., Murtagh, J., Shah, K., & Badr, K. (1998). Human 15-lipoxygenase gene promoter: Analysis and identification of DNA binding sites for IL-13-induced regulatory factors in monocytes. Molecular Biology Reports, 25, 173–182.PubMed Kelavkar, U., Wang, S., Montero, A., Murtagh, J., Shah, K., & Badr, K. (1998). Human 15-lipoxygenase gene promoter: Analysis and identification of DNA binding sites for IL-13-induced regulatory factors in monocytes. Molecular Biology Reports, 25, 173–182.PubMed
118.
go back to reference Liu, C., Xu, D., Sjoberg, J., Forsell, P., Bjorkholm, M., & Claesson, H. E. (2004). Transcriptional regulation of 15-lipoxygenase expression by promoter methylation. Experimental Cell Research, 297, 61–67.PubMed Liu, C., Xu, D., Sjoberg, J., Forsell, P., Bjorkholm, M., & Claesson, H. E. (2004). Transcriptional regulation of 15-lipoxygenase expression by promoter methylation. Experimental Cell Research, 297, 61–67.PubMed
119.
go back to reference Kelavkar, U. P., Harya, N. S., Hutzley, J., et al. (2007). DNA methylation paradigm shift: 15-Lipoxygenase-1 upregulation in prostatic intraepithelial neoplasia and prostate cancer by atypical promoter hypermethylation. Prostaglandins & Other Lipid Mediators, 82, 185–197. Kelavkar, U. P., Harya, N. S., Hutzley, J., et al. (2007). DNA methylation paradigm shift: 15-Lipoxygenase-1 upregulation in prostatic intraepithelial neoplasia and prostate cancer by atypical promoter hypermethylation. Prostaglandins & Other Lipid Mediators, 82, 185–197.
120.
go back to reference Hsi, L. C., Xi, X., Wu, Y., & Lippman, S. M. (2005). The methyltransferase inhibitor 5-aza-2-deoxycytidine induces apoptosis via induction of 15-lipoxygenase-1 in colorectal cancer cells. Molecular Cancer Therapeutics, 4, 1740–1746.PubMed Hsi, L. C., Xi, X., Wu, Y., & Lippman, S. M. (2005). The methyltransferase inhibitor 5-aza-2-deoxycytidine induces apoptosis via induction of 15-lipoxygenase-1 in colorectal cancer cells. Molecular Cancer Therapeutics, 4, 1740–1746.PubMed
121.
go back to reference Rhee, I., Bachman, K. E., Park, B. H., et al. (2002). DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature, 416, 552–556.PubMed Rhee, I., Bachman, K. E., Park, B. H., et al. (2002). DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature, 416, 552–556.PubMed
122.
go back to reference Fuks, F., Burgers, W. A., Brehm, A., Hughes-Davies, L., & Kouzarides, T. (2000). DNA methyltransferase Dnmt1 associates with histone deacetylase activity. Nature Genetics, 24, 88–91.PubMed Fuks, F., Burgers, W. A., Brehm, A., Hughes-Davies, L., & Kouzarides, T. (2000). DNA methyltransferase Dnmt1 associates with histone deacetylase activity. Nature Genetics, 24, 88–91.PubMed
123.
go back to reference Robertson, K. D., Ait-Si-Ali, S., Yokochi, T., Wade, P. A., Jones, P. L., & Wolffe, A. P. (2000). DNMT1 forms a complex with Rb, E2F1 and HDAC1 and represses transcription from E2F-responsive promoters. Nature Genetics, 25, 338–342.PubMed Robertson, K. D., Ait-Si-Ali, S., Yokochi, T., Wade, P. A., Jones, P. L., & Wolffe, A. P. (2000). DNMT1 forms a complex with Rb, E2F1 and HDAC1 and represses transcription from E2F-responsive promoters. Nature Genetics, 25, 338–342.PubMed
124.
go back to reference Rountree, M. R., Bachman, K. E., & Baylin, S. B. (2000). DNMT1 binds HDAC2 and a new co-repressor, DMAP1, to form a complex at replication foci. Nature Genetics, 25, 269–277.PubMed Rountree, M. R., Bachman, K. E., & Baylin, S. B. (2000). DNMT1 binds HDAC2 and a new co-repressor, DMAP1, to form a complex at replication foci. Nature Genetics, 25, 269–277.PubMed
125.
go back to reference O’Malley, B. W. (2007). Coregulators: From whence came these “master genes”. Molecular Endocrinology, 21, 1009–1013.PubMed O’Malley, B. W. (2007). Coregulators: From whence came these “master genes”. Molecular Endocrinology, 21, 1009–1013.PubMed
126.
go back to reference Shureiqi, I., Xu, X., Chen, D., et al. (2001). Nonsteroidal anti-inflammatory drugs induce apoptosis in esophageal cancer cells by restoring 15-lipoxygenase-1 expression. Cancer Research, 61, 4879–4884.PubMed Shureiqi, I., Xu, X., Chen, D., et al. (2001). Nonsteroidal anti-inflammatory drugs induce apoptosis in esophageal cancer cells by restoring 15-lipoxygenase-1 expression. Cancer Research, 61, 4879–4884.PubMed
127.
go back to reference Jiang, W. G., Watkins, G., Douglas-Jones, A., & Mansel, R. E. (2006). Reduction of isoforms of 15-lipoxygenase (15-LOX)-1 and 15-LOX-2 in human breast cancer. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 74, 235–245.PubMed Jiang, W. G., Watkins, G., Douglas-Jones, A., & Mansel, R. E. (2006). Reduction of isoforms of 15-lipoxygenase (15-LOX)-1 and 15-LOX-2 in human breast cancer. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 74, 235–245.PubMed
128.
go back to reference Hennig, R., Kehl, T., Noor, S., et al. (2007). 15-Lipoxygenase-1 production is lost in pancreatic cancer and overexpression of the gene inhibits tumor cell growth. Neoplasia, 9, 917–926.PubMed Hennig, R., Kehl, T., Noor, S., et al. (2007). 15-Lipoxygenase-1 production is lost in pancreatic cancer and overexpression of the gene inhibits tumor cell growth. Neoplasia, 9, 917–926.PubMed
129.
go back to reference Philips, B. J., Dhir, R., Hutzley, J., Sen, M., & Kelavkar, U. P. (2008). Polyunsaturated fatty acid metabolizing 15-Lipoxygenase-1 (15-LO-1) expression in normal and tumorigenic human bladder tissues. Applied Immunohistochemistry & Molecular Morphology, 16, 159–164. Philips, B. J., Dhir, R., Hutzley, J., Sen, M., & Kelavkar, U. P. (2008). Polyunsaturated fatty acid metabolizing 15-Lipoxygenase-1 (15-LO-1) expression in normal and tumorigenic human bladder tissues. Applied Immunohistochemistry & Molecular Morphology, 16, 159–164.
130.
go back to reference Yuan, H., Li, M.-Y., Ma, L. T., et al. (2010). 15-Lipoxygenases and its metabolites 15(S)-HETE and 13(S)-HODE in the development of non-small cell lung cancer. Thorax, 65, 321–326.PubMed Yuan, H., Li, M.-Y., Ma, L. T., et al. (2010). 15-Lipoxygenases and its metabolites 15(S)-HETE and 13(S)-HODE in the development of non-small cell lung cancer. Thorax, 65, 321–326.PubMed
131.
go back to reference Kerjaschki, D., Bago-Horvath, Z., Rudas, M., et al. (2011). Lipoxygenase mediates invasion of intrametastatic lymphatic vessels and propagates lymph node metastasis of human mammary carcinoma xenografts in mouse. The Journal of Clinical Investigation, 121, 2000–2012.PubMed Kerjaschki, D., Bago-Horvath, Z., Rudas, M., et al. (2011). Lipoxygenase mediates invasion of intrametastatic lymphatic vessels and propagates lymph node metastasis of human mammary carcinoma xenografts in mouse. The Journal of Clinical Investigation, 121, 2000–2012.PubMed
132.
go back to reference Jostarndt, K., Gellert, N., Rubic, T., et al. (2002). Dissociation of apoptosis induction and CD36 upregulation by enzymatically modified low-density lipoprotein in monocytic cells. Biochemical and Biophysical Research Communications, 290, 988–993.PubMed Jostarndt, K., Gellert, N., Rubic, T., et al. (2002). Dissociation of apoptosis induction and CD36 upregulation by enzymatically modified low-density lipoprotein in monocytic cells. Biochemical and Biophysical Research Communications, 290, 988–993.PubMed
133.
go back to reference Wu, J., Xia, H. H., Tu, S. P., et al. (2003). 15-Lipoxygenase-1 mediates cyclooxygenase-2 inhibitor-induced apoptosis in gastric cancer. Carcinogenesis, 24, 243–247.PubMed Wu, J., Xia, H. H., Tu, S. P., et al. (2003). 15-Lipoxygenase-1 mediates cyclooxygenase-2 inhibitor-induced apoptosis in gastric cancer. Carcinogenesis, 24, 243–247.PubMed
134.
go back to reference Kim, J. H., Chang, J. H., Yoon, J.-H., Lee, J. G., Bae, J. H., & Kim, K.-S. (2006). 15-Lipoxygenase-1 induced by interleukin-4 mediates apoptosis in oral cavity cancer cells. Oral Oncology, 42, 825–830.PubMed Kim, J. H., Chang, J. H., Yoon, J.-H., Lee, J. G., Bae, J. H., & Kim, K.-S. (2006). 15-Lipoxygenase-1 induced by interleukin-4 mediates apoptosis in oral cavity cancer cells. Oral Oncology, 42, 825–830.PubMed
Metadata
Title
15-Lipoxygenase-1 as a tumor suppressor gene in colon cancer: is the verdict in?
Authors
Sun IL Lee
Xiangsheng Zuo
Imad Shureiqi
Publication date
01-12-2011
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 3-4/2011
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-011-9321-0

Other articles of this Issue 3-4/2011

Cancer and Metastasis Reviews 3-4/2011 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine