Skip to main content
Top
Published in: Cancer and Metastasis Reviews 3-4/2011

01-12-2011

The thromboxane synthase and receptor signaling pathway in cancer: an emerging paradigm in cancer progression and metastasis

Authors: Prasanna Ekambaram, Wanyu Lambiv, Rosanna Cazzolli, Anthony W. Ashton, Kenneth V. Honn

Published in: Cancer and Metastasis Reviews | Issue 3-4/2011

Login to get access

Abstract

Thromboxane A2 (TXA2) is a biologically active metabolite of arachidonic acid formed by the action of the terminal synthase, thromboxane A2 synthase (TXA2S), on prostaglandin endoperoxide (PGH2). TXA2 is responsible for multiple biological processes through its cell surface receptor, the T-prostanoid (TP) receptor. Thromboxane A2 synthase and TP are the two necessary components for the functioning of this potent bioactive lipid. Thromboxane A2 is widely implicated in a range of cardiovascular diseases, owing to its acute and chronic effects in promoting platelet aggregation, vasoconstriction, and proliferation. In recent years, additional functional roles for both TXA2S and TP in cancer progression have been indicated. Increased cyclooxygenase (COX)-2 expression has been described in a variety of human cancers, which has focused attention on TXA2 as a downstream metabolite of the COX-2-derived PGH2. Several studies suggest potential involvement of TXA2S and TP in tumor progression, especially tumor cell proliferation, migration, and invasion that are key steps in cancer progression. In addition, the regulation of neovascularization by TP has been identified as a potent source of control during oncogenesis. There have been several recent reviews of TXA2S and TP but thus far none have discussed its role in cancer progression and metastasis in depth. This review will focus on some of the more recent findings and advances with a significant emphasis on understanding the functional role of TXA2S and TP in cancer progression and metastasis.
Literature
1.
go back to reference Hamberg, M., Svensson, J., & Samuelsson, B. (1975). Thromboxanes: A new group of biologically active compounds derived from prostaglandin endoperoxides. Proceedings of the National Academy of Sciences of the United States of America, 72(8), 2994–2998.PubMed Hamberg, M., Svensson, J., & Samuelsson, B. (1975). Thromboxanes: A new group of biologically active compounds derived from prostaglandin endoperoxides. Proceedings of the National Academy of Sciences of the United States of America, 72(8), 2994–2998.PubMed
2.
go back to reference Moncada, S., Needleman, P., Bunting, S., & Vane, J. R. (1976). Prostaglandin endoperoxide and thromboxane generating systems and their selective inhibition. Prostaglandins, 12(3), 323–335.PubMed Moncada, S., Needleman, P., Bunting, S., & Vane, J. R. (1976). Prostaglandin endoperoxide and thromboxane generating systems and their selective inhibition. Prostaglandins, 12(3), 323–335.PubMed
4.
go back to reference Needleman, P., Minkes, M., & Raz, A. (1976). Thromboxanes: Selective biosynthesis and distinct biological properties. Science, 193(4248), 163–165.PubMed Needleman, P., Minkes, M., & Raz, A. (1976). Thromboxanes: Selective biosynthesis and distinct biological properties. Science, 193(4248), 163–165.PubMed
5.
go back to reference Needleman, P., Moncada, S., Bunting, S., Vane, J. R., Hamberg, M., & Samuelsson, B. (1976). Identification of an enzyme in platelet microsomes which generates thromboxane A2 from prostaglandin endoperoxides. Nature, 261(5561), 558–560.PubMed Needleman, P., Moncada, S., Bunting, S., Vane, J. R., Hamberg, M., & Samuelsson, B. (1976). Identification of an enzyme in platelet microsomes which generates thromboxane A2 from prostaglandin endoperoxides. Nature, 261(5561), 558–560.PubMed
6.
go back to reference Halushka, P. V., Allan, C. J., & Davis-Bruno, K. L. (1995). Thromboxane A2 receptors. Journal of Lipid Mediators and Cell Signalling, 12(2–3), 361–378.PubMed Halushka, P. V., Allan, C. J., & Davis-Bruno, K. L. (1995). Thromboxane A2 receptors. Journal of Lipid Mediators and Cell Signalling, 12(2–3), 361–378.PubMed
7.
go back to reference Jones, R. L., Wilson, N. H., & Armstrong, R. A. (1985). Characterization of thromboxane receptors in human platelets. Advances in Experimental Medicine and Biology, 192, 67–81.PubMed Jones, R. L., Wilson, N. H., & Armstrong, R. A. (1985). Characterization of thromboxane receptors in human platelets. Advances in Experimental Medicine and Biology, 192, 67–81.PubMed
9.
go back to reference Katugampola, S. D., & Davenport, A. P. (2001). Thromboxane receptor density is increased in human cardiovascular disease with evidence for inhibition at therapeutic concentrations by the AT(1) receptor antagonist losartan. British Journal of Pharmacology, 134(7), 1385–1392. doi:10.1038/sj.bjp.0704416.PubMed Katugampola, S. D., & Davenport, A. P. (2001). Thromboxane receptor density is increased in human cardiovascular disease with evidence for inhibition at therapeutic concentrations by the AT(1) receptor antagonist losartan. British Journal of Pharmacology, 134(7), 1385–1392. doi:10.​1038/​sj.​bjp.​0704416.PubMed
10.
go back to reference Neri Serneri, G. G., Gensini, G. F., Abbate, R., Mugnaini, C., Favilla, S., Brunelli, C., et al. (1981). Increased fibrinopeptide A formation and thromboxane A2 production in patients with ischemic heart disease: Relationships to coronary pathoanatomy, risk factors, and clinical manifestations. American Heart Journal, 101(2), 185–194.PubMed Neri Serneri, G. G., Gensini, G. F., Abbate, R., Mugnaini, C., Favilla, S., Brunelli, C., et al. (1981). Increased fibrinopeptide A formation and thromboxane A2 production in patients with ischemic heart disease: Relationships to coronary pathoanatomy, risk factors, and clinical manifestations. American Heart Journal, 101(2), 185–194.PubMed
11.
go back to reference Fuse, S., & Kamiya, T. (1994). Plasma thromboxane B2 concentration in pulmonary hypertension associated with congenital heart disease. Circulation, 90(6), 2952–2955.PubMed Fuse, S., & Kamiya, T. (1994). Plasma thromboxane B2 concentration in pulmonary hypertension associated with congenital heart disease. Circulation, 90(6), 2952–2955.PubMed
12.
go back to reference Gresele, P., Deckmyn, H., Nenci, G. G., & Vermylen, J. (1991). Thromboxane synthase inhibitors, thromboxane receptor antagonists and dual blockers in thrombotic disorders. Trends in Pharmacological Sciences, 12(4), 158–163.PubMed Gresele, P., Deckmyn, H., Nenci, G. G., & Vermylen, J. (1991). Thromboxane synthase inhibitors, thromboxane receptor antagonists and dual blockers in thrombotic disorders. Trends in Pharmacological Sciences, 12(4), 158–163.PubMed
13.
go back to reference Kobayashi, T., Tahara, Y., Matsumoto, M., Iguchi, M., Sano, H., Murayama, T., et al. (2004). Roles of thromboxane A(2) and prostacyclin in the development of atherosclerosis in apoE-deficient mice. The Journal of Clinical Investigation, 114(6), 784–794. doi:10.1172/jci21446.PubMed Kobayashi, T., Tahara, Y., Matsumoto, M., Iguchi, M., Sano, H., Murayama, T., et al. (2004). Roles of thromboxane A(2) and prostacyclin in the development of atherosclerosis in apoE-deficient mice. The Journal of Clinical Investigation, 114(6), 784–794. doi:10.​1172/​jci21446.PubMed
14.
go back to reference Mehta, J. L., Lawson, D., Mehta, P., & Saldeen, T. (1988). Increased prostacyclin and thromboxane A2 biosynthesis in atherosclerosis. Proceedings of the National Academy of Sciences of the United States of America, 85(12), 4511–4515.PubMed Mehta, J. L., Lawson, D., Mehta, P., & Saldeen, T. (1988). Increased prostacyclin and thromboxane A2 biosynthesis in atherosclerosis. Proceedings of the National Academy of Sciences of the United States of America, 85(12), 4511–4515.PubMed
15.
go back to reference Willerson, J. T., Yao, S. K., Ferguson, J. J., Anderson, H. V., Golino, P., & Buja, L. M. (1991). Unstable angina pectoris and the progression to acute myocardial infarction. Role of platelets and platelet-derived mediators. Texas Heart Institute Journal, 18(4), 243–247.PubMed Willerson, J. T., Yao, S. K., Ferguson, J. J., Anderson, H. V., Golino, P., & Buja, L. M. (1991). Unstable angina pectoris and the progression to acute myocardial infarction. Role of platelets and platelet-derived mediators. Texas Heart Institute Journal, 18(4), 243–247.PubMed
16.
go back to reference Lariviere, R., Moreau, C., Rodrigue, M. E., & Lebel, M. (2004). Thromboxane blockade reduces blood pressure and progression of renal failure independent of endothelin-1 in uremic rats. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 71(2), 103–109. doi:10.1016/j.plefa.2003.12.021.PubMed Lariviere, R., Moreau, C., Rodrigue, M. E., & Lebel, M. (2004). Thromboxane blockade reduces blood pressure and progression of renal failure independent of endothelin-1 in uremic rats. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 71(2), 103–109. doi:10.​1016/​j.​plefa.​2003.​12.​021.PubMed
17.
go back to reference Willerson, J. T., & Buja, L. M. (1990). Potential of combined thromboxane A2 and serotonin antagonists to prevent the development of unstable angina and acute myocardial infarction. Texas Heart Institute Journal, 17(3), 157–164.PubMed Willerson, J. T., & Buja, L. M. (1990). Potential of combined thromboxane A2 and serotonin antagonists to prevent the development of unstable angina and acute myocardial infarction. Texas Heart Institute Journal, 17(3), 157–164.PubMed
18.
go back to reference Willerson, J. T., Golino, P., Eidt, J., Yao, S. K., & Buja, L. M. (1990). Potential usefulness of combined thromboxane A2 and serotonin receptor blockade for preventing the conversion from chronic to acute coronary artery disease syndromes. The American Journal of Cardiology, 66(16), 48G–53G.PubMed Willerson, J. T., Golino, P., Eidt, J., Yao, S. K., & Buja, L. M. (1990). Potential usefulness of combined thromboxane A2 and serotonin receptor blockade for preventing the conversion from chronic to acute coronary artery disease syndromes. The American Journal of Cardiology, 66(16), 48G–53G.PubMed
19.
go back to reference Haurand, M., & Ullrich, V. (1985). Isolation and characterization of thromboxane synthase from human platelets as a cytochrome P-450 enzyme. Journal of Biological Chemistry, 260(28), 15059–15067.PubMed Haurand, M., & Ullrich, V. (1985). Isolation and characterization of thromboxane synthase from human platelets as a cytochrome P-450 enzyme. Journal of Biological Chemistry, 260(28), 15059–15067.PubMed
20.
go back to reference Ohashi, K., Ruan, K. H., Kulmacz, R. J., Wu, K. K., & Wang, L. H. (1992). Primary structure of human thromboxane synthase determined from the cDNA sequence. Journal of Biological Chemistry, 267(2), 789–793.PubMed Ohashi, K., Ruan, K. H., Kulmacz, R. J., Wu, K. K., & Wang, L. H. (1992). Primary structure of human thromboxane synthase determined from the cDNA sequence. Journal of Biological Chemistry, 267(2), 789–793.PubMed
21.
go back to reference Shen, R. F., & Tai, H. H. (1998). Thromboxanes: Synthase and receptors. Journal of Biomedical Science, 5(3), 153–172.PubMed Shen, R. F., & Tai, H. H. (1998). Thromboxanes: Synthase and receptors. Journal of Biomedical Science, 5(3), 153–172.PubMed
22.
go back to reference Yokoyama, C., Miyata, A., Ihara, H., Ullrich, V., & Tanabe, T. (1991). Molecular cloning of human platelet thromboxane A synthase. Biochemical and Biophysical Research Communications, 178(3), 1479–1484.PubMed Yokoyama, C., Miyata, A., Ihara, H., Ullrich, V., & Tanabe, T. (1991). Molecular cloning of human platelet thromboxane A synthase. Biochemical and Biophysical Research Communications, 178(3), 1479–1484.PubMed
23.
go back to reference Tanabe, T., & Ullrich, V. (1995). Prostacyclin and thromboxane synthases. Journal of Lipid Mediators and Cell Signalling, 12(2–3), 243–255.PubMed Tanabe, T., & Ullrich, V. (1995). Prostacyclin and thromboxane synthases. Journal of Lipid Mediators and Cell Signalling, 12(2–3), 243–255.PubMed
24.
go back to reference Hirata, M., Hayashi, Y., Ushikubi, F., Yokota, Y., Kageyama, R., Nakanishi, S., et al. (1991). Cloning and expression of cDNA for a human thromboxane A2 receptor. Nature, 349(6310), 617–620. doi:10.1038/349617a0.PubMed Hirata, M., Hayashi, Y., Ushikubi, F., Yokota, Y., Kageyama, R., Nakanishi, S., et al. (1991). Cloning and expression of cDNA for a human thromboxane A2 receptor. Nature, 349(6310), 617–620. doi:10.​1038/​349617a0.PubMed
25.
go back to reference Raychowdhury, M. K., Yukawa, M., Collins, L. J., McGrail, S. H., Kent, K. C., & Ware, J. A. (1994). Alternative splicing produces a divergent cytoplasmic tail in the human endothelial thromboxane A2 receptor. Journal of Biological Chemistry, 269(30), 19256–19261 [Comparative Study].PubMed Raychowdhury, M. K., Yukawa, M., Collins, L. J., McGrail, S. H., Kent, K. C., & Ware, J. A. (1994). Alternative splicing produces a divergent cytoplasmic tail in the human endothelial thromboxane A2 receptor. Journal of Biological Chemistry, 269(30), 19256–19261 [Comparative Study].PubMed
26.
go back to reference Kinsella, B. T. (2001). Thromboxane A2 signalling in humans: A 'Tail' of two receptors. Biochemical Society Transactions, 29(Pt 6), 641–654.PubMed Kinsella, B. T. (2001). Thromboxane A2 signalling in humans: A 'Tail' of two receptors. Biochemical Society Transactions, 29(Pt 6), 641–654.PubMed
27.
go back to reference Miggin, S. M., & Kinsella, B. T. (1998). Expression and tissue distribution of the mRNAs encoding the human thromboxane A2 receptor (TP) alpha and beta isoforms. Biochimica et Biophysica Acta, 1425(3), 543–559 [Research Support, Non-U.S. Gov't].PubMed Miggin, S. M., & Kinsella, B. T. (1998). Expression and tissue distribution of the mRNAs encoding the human thromboxane A2 receptor (TP) alpha and beta isoforms. Biochimica et Biophysica Acta, 1425(3), 543–559 [Research Support, Non-U.S. Gov't].PubMed
29.
go back to reference Namba, T., & Narumiya, S. (1993). Thromboxane A2 receptor; structure, function and tissue distribution. Nihon Rinsho, 51(1), 233–240.PubMed Namba, T., & Narumiya, S. (1993). Thromboxane A2 receptor; structure, function and tissue distribution. Nihon Rinsho, 51(1), 233–240.PubMed
30.
go back to reference Honn, K. V., Bockman, R. S., & Marnett, L. J. (1981). Prostaglandins and cancer: A review of tumor initiation through tumor metastasis. Prostaglandins, 21(5), 833–864.PubMed Honn, K. V., Bockman, R. S., & Marnett, L. J. (1981). Prostaglandins and cancer: A review of tumor initiation through tumor metastasis. Prostaglandins, 21(5), 833–864.PubMed
31.
go back to reference Honn, K. V., Busse, W. D., & Sloane, B. F. (1983). Prostacyclin and thromboxanes. Implications for their role in tumor cell metastasis. Biochemical Pharmacology, 32(1), 1–11.PubMed Honn, K. V., Busse, W. D., & Sloane, B. F. (1983). Prostacyclin and thromboxanes. Implications for their role in tumor cell metastasis. Biochemical Pharmacology, 32(1), 1–11.PubMed
32.
go back to reference Menter, D. G., Neagos, J., Dunn, R., Pallazo, T. T., Chen, T., Taylor, J. D. et al. (1982). Tumor Cell induced Platelet aggregration: Inhibition by prostacylin, thromboxane A2 and phosphodiesterase inhibitors. In T. J. Powles, R. S. Bockman, K. V.Honn, P. W. Ramwell (Ed.), Prostaglandins and cancer (pp. 369–374). New York: Alan Liss, Inc. Menter, D. G., Neagos, J., Dunn, R., Pallazo, T. T., Chen, T., Taylor, J. D. et al. (1982). Tumor Cell induced Platelet aggregration: Inhibition by prostacylin, thromboxane A2 and phosphodiesterase inhibitors. In T. J. Powles, R. S. Bockman, K. V.Honn, P. W. Ramwell (Ed.), Prostaglandins and cancer (pp. 369–374). New York: Alan Liss, Inc.
33.
go back to reference Nie, D., & Honn, K. V. (2002). Cyclooxygenase, lipoxygenase and tumor angiogenesis. Cellular and Molecular Life Sciences, 59(5), 799–807.PubMed Nie, D., & Honn, K. V. (2002). Cyclooxygenase, lipoxygenase and tumor angiogenesis. Cellular and Molecular Life Sciences, 59(5), 799–807.PubMed
34.
go back to reference Honn, K. V., & Meyer, J. (1981). Thromboxanes and prostacyclin: Positive and negative modulators of tumor growth. Biochemical and Biophysical Research Communications, 102(4), 1122–1129.PubMed Honn, K. V., & Meyer, J. (1981). Thromboxanes and prostacyclin: Positive and negative modulators of tumor growth. Biochemical and Biophysical Research Communications, 102(4), 1122–1129.PubMed
35.
go back to reference U.S.C.S.W.Group (2010). United States Cancer Statistics: 1999–2007 Incidence and Mortality Web-based Report: Atlanta: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention and National Cancer Institute. U.S.C.S.W.Group (2010). United States Cancer Statistics: 1999–2007 Incidence and Mortality Web-based Report: Atlanta: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention and National Cancer Institute.
36.
go back to reference Bairati, I., Meyer, F., Fradet, Y., & Moore, L. (1998). Dietary fat and advanced prostate cancer. The Journal of Urology, 159(4), 1271–1275 [Research Support, Non-U.S. Gov't].PubMed Bairati, I., Meyer, F., Fradet, Y., & Moore, L. (1998). Dietary fat and advanced prostate cancer. The Journal of Urology, 159(4), 1271–1275 [Research Support, Non-U.S. Gov't].PubMed
37.
go back to reference Rose, D. P., & Connolly, J. M. (1992). Dietary fat, fatty acids and prostate cancer. Lipids, 27(10), 798–803 [Review].PubMed Rose, D. P., & Connolly, J. M. (1992). Dietary fat, fatty acids and prostate cancer. Lipids, 27(10), 798–803 [Review].PubMed
38.
go back to reference West, D. W., Slattery, M. L., Robison, L. M., French, T. K., & Mahoney, A. W. (1991). Adult dietary intake and prostate cancer risk in Utah: A case-control study with special emphasis on aggressive tumors. Cancer Causes & Control, 2(2), 85–94 [Research Support, U.S. Gov't, P.H.S.]. West, D. W., Slattery, M. L., Robison, L. M., French, T. K., & Mahoney, A. W. (1991). Adult dietary intake and prostate cancer risk in Utah: A case-control study with special emphasis on aggressive tumors. Cancer Causes & Control, 2(2), 85–94 [Research Support, U.S. Gov't, P.H.S.].
39.
go back to reference Gupta, S., Srivastava, M., Ahmad, N., Sakamoto, K., Bostwick, D. G., & Mukhtar, H. (2001). Lipoxygenase-5 is overexpressed in prostate adenocarcinoma. Cancer, 91(4), 737–743.PubMed Gupta, S., Srivastava, M., Ahmad, N., Sakamoto, K., Bostwick, D. G., & Mukhtar, H. (2001). Lipoxygenase-5 is overexpressed in prostate adenocarcinoma. Cancer, 91(4), 737–743.PubMed
40.
go back to reference Nie, D., Che, M., Grignon, D., Tang, K., & Honn, K. V. (2001). Role of eicosanoids in prostate cancer progression. Cancer Metastasis Reviews, 20(3–4), 195–206.PubMed Nie, D., Che, M., Grignon, D., Tang, K., & Honn, K. V. (2001). Role of eicosanoids in prostate cancer progression. Cancer Metastasis Reviews, 20(3–4), 195–206.PubMed
41.
go back to reference Nie, D., Hillman, G. G., Geddes, T., Tang, K., Pierson, C., Grignon, D. J., et al. (1999). Platelet-type 12-lipoxygenase regulates angiogenesis in human prostate carcinoma. Advances in Experimental Medicine and Biology, 469, 623–630.PubMed Nie, D., Hillman, G. G., Geddes, T., Tang, K., Pierson, C., Grignon, D. J., et al. (1999). Platelet-type 12-lipoxygenase regulates angiogenesis in human prostate carcinoma. Advances in Experimental Medicine and Biology, 469, 623–630.PubMed
42.
go back to reference Nie, D., Nemeth, J., Qiao, Y., Zacharek, A., Li, L., Hanna, K., et al. (2003). Increased metastatic potential in human prostate carcinoma cells by overexpression of arachidonate 12-lipoxygenase. Clinical & Experimental Metastasis, 20(7), 657–663. Nie, D., Nemeth, J., Qiao, Y., Zacharek, A., Li, L., Hanna, K., et al. (2003). Increased metastatic potential in human prostate carcinoma cells by overexpression of arachidonate 12-lipoxygenase. Clinical & Experimental Metastasis, 20(7), 657–663.
43.
go back to reference Gupta, S., Srivastava, M., Ahmad, N., Bostwick, D. G., & Mukhtar, H. (2000). Over-expression of cyclooxygenase-2 in human prostate adenocarcinoma. The Prostate, 42(1), 73–78.PubMed Gupta, S., Srivastava, M., Ahmad, N., Bostwick, D. G., & Mukhtar, H. (2000). Over-expression of cyclooxygenase-2 in human prostate adenocarcinoma. The Prostate, 42(1), 73–78.PubMed
44.
go back to reference Lee, L. M., Pan, C. C., Cheng, C. J., Chi, C. W., & Liu, T. Y. (2001). Expression of cyclooxygenase-2 in prostate adenocarcinoma and benign prostatic hyperplasia. Anticancer Research, 21, 1291–1294.PubMed Lee, L. M., Pan, C. C., Cheng, C. J., Chi, C. W., & Liu, T. Y. (2001). Expression of cyclooxygenase-2 in prostate adenocarcinoma and benign prostatic hyperplasia. Anticancer Research, 21, 1291–1294.PubMed
45.
go back to reference Nie, D., Che, M., Zacharek, A., Qiao, Y., Li, L., Li, X., et al. (2004). Differential expression of thromboxane synthase in prostate carcinoma: Role in tumor cell motility. American Journal of Pathology, 164(2), 429–439. doi:10.1016/s0002-9440(10)63133-1.PubMed Nie, D., Che, M., Zacharek, A., Qiao, Y., Li, L., Li, X., et al. (2004). Differential expression of thromboxane synthase in prostate carcinoma: Role in tumor cell motility. American Journal of Pathology, 164(2), 429–439. doi:10.​1016/​s0002-9440(10)63133-1.PubMed
46.
go back to reference Dassesse, T., de Leval, X., de Leval, L., Pirotte, B., Castronovo, V., & Waltregny, D. (2006). Activation of the thromboxane A2 pathway in human prostate cancer correlates with tumor Gleason score and pathologic stage. Eur Urol, 50(5), 1021–1031; discussion 1031, doi:10.1016/j.eururo.2006.01.036. Dassesse, T., de Leval, X., de Leval, L., Pirotte, B., Castronovo, V., & Waltregny, D. (2006). Activation of the thromboxane A2 pathway in human prostate cancer correlates with tumor Gleason score and pathologic stage. Eur Urol, 50(5), 1021–1031; discussion 1031, doi:10.​1016/​j.​eururo.​2006.​01.​036.
47.
go back to reference Villers, A., McNeal, J. E., Redwine, E. A., Freiha, F. S., & Stamey, T. A. (1989). The role of perineural space invasion in the local spread of prostatic adenocarcinoma. Journal of Urology, 142(3), 763–768.PubMed Villers, A., McNeal, J. E., Redwine, E. A., Freiha, F. S., & Stamey, T. A. (1989). The role of perineural space invasion in the local spread of prostatic adenocarcinoma. Journal of Urology, 142(3), 763–768.PubMed
48.
go back to reference Pantel, K., & Brakenhoff, R. H. (2004). Dissecting the metastatic cascade. [Review]. Nature reviews. Cancer, 4(6), 448–456, doi:10.1038/nrc1370. Pantel, K., & Brakenhoff, R. H. (2004). Dissecting the metastatic cascade. [Review]. Nature reviews. Cancer, 4(6), 448–456, doi:10.​1038/​nrc1370.
49.
go back to reference Nie, D., Guo, Y., Yang, D., Tang, Y., Chen, Y., Wang, M. T., et al. (2008). Thromboxane A2 receptors in prostate carcinoma: Expression and its role in regulating cell motility via small GTPase Rho. Cancer Research, 68(1), 115–121. doi:10.1158/0008-5472.can-07-1018.PubMed Nie, D., Guo, Y., Yang, D., Tang, Y., Chen, Y., Wang, M. T., et al. (2008). Thromboxane A2 receptors in prostate carcinoma: Expression and its role in regulating cell motility via small GTPase Rho. Cancer Research, 68(1), 115–121. doi:10.​1158/​0008-5472.​can-07-1018.PubMed
50.
go back to reference Kelly, P., Stemmle, L. N., Madden, J. F., Fields, T. A., Daaka, Y., & Casey, P. J. (2006). A role for the G12 family of heterotrimeric G proteins in prostate cancer invasion. Journal of Biological Chemistry, 281(36), 26483–26490. doi:10.1074/jbc.M604376200.PubMed Kelly, P., Stemmle, L. N., Madden, J. F., Fields, T. A., Daaka, Y., & Casey, P. J. (2006). A role for the G12 family of heterotrimeric G proteins in prostate cancer invasion. Journal of Biological Chemistry, 281(36), 26483–26490. doi:10.​1074/​jbc.​M604376200.PubMed
51.
go back to reference Turner, E. C., Kavanagh, D. J., Mulvaney, E. P., McLean, C., Wikstrom, K., Reid, H. M., et al. (2011). Identification of an interaction between the TPalpha and TPbeta isoforms of the human thromboxane A2 receptor with protein kinase C-related kinase (PRK) 1: Implications for prostate cancer. Journal of Biological Chemistry, 286(17), 15440–15457. doi:10.1074/jbc.M110.181180.PubMed Turner, E. C., Kavanagh, D. J., Mulvaney, E. P., McLean, C., Wikstrom, K., Reid, H. M., et al. (2011). Identification of an interaction between the TPalpha and TPbeta isoforms of the human thromboxane A2 receptor with protein kinase C-related kinase (PRK) 1: Implications for prostate cancer. Journal of Biological Chemistry, 286(17), 15440–15457. doi:10.​1074/​jbc.​M110.​181180.PubMed
52.
go back to reference Watkins, G., Douglas-Jones, A., Mansel, R. E., & Jiang, W. G. (2005). Expression of thromboxane synthase, TBXAS1 and the thromboxane A2 receptor, TBXA2R, in human breast cancer. International Seminars in Surgical Oncology, 2, 23. doi:10.1186/1477-7800-2-23.PubMed Watkins, G., Douglas-Jones, A., Mansel, R. E., & Jiang, W. G. (2005). Expression of thromboxane synthase, TBXAS1 and the thromboxane A2 receptor, TBXA2R, in human breast cancer. International Seminars in Surgical Oncology, 2, 23. doi:10.​1186/​1477-7800-2-23.PubMed
53.
go back to reference Kelly, P., Moeller, B. J., Juneja, J., Booden, M. A., Der, C. J., Daaka, Y., et al. (2006). The G12 family of heterotrimeric G proteins promotes breast cancer invasion and metastasis. Proceedings of the National Academy of Sciences of the United States of America, 103(21), 8173–8178. doi:10.1073/pnas.0510254103.PubMed Kelly, P., Moeller, B. J., Juneja, J., Booden, M. A., Der, C. J., Daaka, Y., et al. (2006). The G12 family of heterotrimeric G proteins promotes breast cancer invasion and metastasis. Proceedings of the National Academy of Sciences of the United States of America, 103(21), 8173–8178. doi:10.​1073/​pnas.​0510254103.PubMed
54.
go back to reference Abraham, J. E., Harrington, P., Driver, K. E., Tyrer, J., Easton, D. F., Dunning, A. M., et al. (2009). Common polymorphisms in the prostaglandin pathway genes and their association with breast cancer susceptibility and survival. Clinical Cancer Research, 15(6), 2181–2191. doi:10.1158/1078-0432.CCR-08-0716.PubMed Abraham, J. E., Harrington, P., Driver, K. E., Tyrer, J., Easton, D. F., Dunning, A. M., et al. (2009). Common polymorphisms in the prostaglandin pathway genes and their association with breast cancer susceptibility and survival. Clinical Cancer Research, 15(6), 2181–2191. doi:10.​1158/​1078-0432.​CCR-08-0716.PubMed
55.
go back to reference Ermert, L., Dierkes, C., & Ermert, M. (2003). Immunohistochemical expression of cyclooxygenase isoenzymes and downstream enzymes in human lung tumors. Clinical Cancer Research, 9(5), 1604–1610.PubMed Ermert, L., Dierkes, C., & Ermert, M. (2003). Immunohistochemical expression of cyclooxygenase isoenzymes and downstream enzymes in human lung tumors. Clinical Cancer Research, 9(5), 1604–1610.PubMed
56.
go back to reference Kreutzer, M., Fauti, T., Kaddatz, K., Seifart, C., Neubauer, A., Schweer, H., et al. (2007). Specific components of prostanoid-signaling pathways are present in non-small cell lung cancer cells. Oncology Reports, 18(2), 497–501.PubMed Kreutzer, M., Fauti, T., Kaddatz, K., Seifart, C., Neubauer, A., Schweer, H., et al. (2007). Specific components of prostanoid-signaling pathways are present in non-small cell lung cancer cells. Oncology Reports, 18(2), 497–501.PubMed
57.
go back to reference Yoshimoto, A., Kasahara, K., Kawashima, A., Fujimura, M., & Nakao, S. (2005). Characterization of the prostaglandin biosynthetic pathway in non-small cell lung cancer: A comparison with small cell lung cancer and correlation with angiogenesis, angiogenic factors and metastases. Oncology Reports, 13(6), 1049–1057.PubMed Yoshimoto, A., Kasahara, K., Kawashima, A., Fujimura, M., & Nakao, S. (2005). Characterization of the prostaglandin biosynthetic pathway in non-small cell lung cancer: A comparison with small cell lung cancer and correlation with angiogenesis, angiogenic factors and metastases. Oncology Reports, 13(6), 1049–1057.PubMed
58.
go back to reference Wei, J., Yan, W., Li, X., Ding, Y., & Tai, H. H. (2010). Thromboxane receptor alpha mediates tumor growth and angiogenesis via induction of vascular endothelial growth factor expression in human lung cancer cells. Lung Cancer, 69(1), 26–32. doi:10.1016/j.lungcan.2009.09.009.PubMed Wei, J., Yan, W., Li, X., Ding, Y., & Tai, H. H. (2010). Thromboxane receptor alpha mediates tumor growth and angiogenesis via induction of vascular endothelial growth factor expression in human lung cancer cells. Lung Cancer, 69(1), 26–32. doi:10.​1016/​j.​lungcan.​2009.​09.​009.PubMed
59.
go back to reference Wei, J., Yan, W., Li, X., Chang, W. C., & Tai, H. H. (2007). Activation of thromboxane receptor alpha induces expression of cyclooxygenase-2 through multiple signaling pathways in A549 human lung adenocarcinoma cells. Biochemical Pharmacology, 74(5), 787–800. doi:10.1016/j.bcp.2007.06.008.PubMed Wei, J., Yan, W., Li, X., Chang, W. C., & Tai, H. H. (2007). Activation of thromboxane receptor alpha induces expression of cyclooxygenase-2 through multiple signaling pathways in A549 human lung adenocarcinoma cells. Biochemical Pharmacology, 74(5), 787–800. doi:10.​1016/​j.​bcp.​2007.​06.​008.PubMed
60.
go back to reference Li, X., & Tai, H. H. (2009). Activation of thromboxane A(2) receptors induces orphan nuclear receptor Nurr1 expression and stimulates cell proliferation in human lung cancer cells. Carcinogenesis, 30(9), 1606–1613. doi:10.1093/carcin/bgp161.PubMed Li, X., & Tai, H. H. (2009). Activation of thromboxane A(2) receptors induces orphan nuclear receptor Nurr1 expression and stimulates cell proliferation in human lung cancer cells. Carcinogenesis, 30(9), 1606–1613. doi:10.​1093/​carcin/​bgp161.PubMed
61.
go back to reference Nie, D., Lamberti, M., Zacharek, A., Li, L., Szekeres, K., Tang, K., et al. (2000). Thromboxane A(2) regulation of endothelial cell migration, angiogenesis, and tumor metastasis. Biochemical and Biophysical Research Communications, 267(1), 245–251. doi:10.1006/bbrc.1999.1840.PubMed Nie, D., Lamberti, M., Zacharek, A., Li, L., Szekeres, K., Tang, K., et al. (2000). Thromboxane A(2) regulation of endothelial cell migration, angiogenesis, and tumor metastasis. Biochemical and Biophysical Research Communications, 267(1), 245–251. doi:10.​1006/​bbrc.​1999.​1840.PubMed
62.
go back to reference Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100(1), 57–70 [Review].PubMed Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100(1), 57–70 [Review].PubMed
63.
go back to reference Fujimura, M., Kasahara, K., Shirasaki, H., Heki, U., Iwasa, K., Ueda, A., et al. (1999). Up-regulation of ICH-1 L protein by thromboxane A2 antagonists enhances cisplatin-induced apoptosis in non-small-cell lung-cancer cell lines. Journal of Cancer Research and Clinical Oncology, 125(7), 389–394.PubMed Fujimura, M., Kasahara, K., Shirasaki, H., Heki, U., Iwasa, K., Ueda, A., et al. (1999). Up-regulation of ICH-1 L protein by thromboxane A2 antagonists enhances cisplatin-induced apoptosis in non-small-cell lung-cancer cell lines. Journal of Cancer Research and Clinical Oncology, 125(7), 389–394.PubMed
64.
go back to reference Leung, K. C., Hsin, M. K., Chan, J. S., Yip, J. H., Li, M., Leung, B. C., et al. (2009). Inhibition of thromboxane synthase induces lung cancer cell death via increasing the nuclear p27. Experimental cell research, 315(17), 2974–2981. doi:10.1016/j.yexcr.2009.06.025 [Research Support, Non-U.S. Gov't].PubMed Leung, K. C., Hsin, M. K., Chan, J. S., Yip, J. H., Li, M., Leung, B. C., et al. (2009). Inhibition of thromboxane synthase induces lung cancer cell death via increasing the nuclear p27. Experimental cell research, 315(17), 2974–2981. doi:10.​1016/​j.​yexcr.​2009.​06.​025 [Research Support, Non-U.S. Gov't].PubMed
65.
go back to reference Leung, K. C., Li, M. Y., Leung, B. C., Hsin, M. K., Mok, T. S., Underwood, M. J., et al. (2010). Thromboxane synthase suppression induces lung cancer cell apoptosis via inhibiting NF-kappaB. Experimental Cell Research, 316(20), 3468–3477.PubMed Leung, K. C., Li, M. Y., Leung, B. C., Hsin, M. K., Mok, T. S., Underwood, M. J., et al. (2010). Thromboxane synthase suppression induces lung cancer cell apoptosis via inhibiting NF-kappaB. Experimental Cell Research, 316(20), 3468–3477.PubMed
66.
go back to reference McLemore, T. L., Hubbard, W. C., Litterst, C. L., Liu, M. C., Miller, S., McMahon, N. A., et al. (1988). Profiles of prostaglandin biosynthesis in normal lung and tumor tissue from lung cancer patients. Cancer Research, 48(11), 3140–3147.PubMed McLemore, T. L., Hubbard, W. C., Litterst, C. L., Liu, M. C., Miller, S., McMahon, N. A., et al. (1988). Profiles of prostaglandin biosynthesis in normal lung and tumor tissue from lung cancer patients. Cancer Research, 48(11), 3140–3147.PubMed
67.
go back to reference Huang, R. Y., Li, M. Y., Hsin, M. K., Underwood, M. J., Ma, L. T., Mok, T. S., et al. (2011). 4-Methylnitrosamino-1-3-pyridyl-1-butanone (NNK) promotes lung cancer cell survival by stimulating thromboxane A2 and its receptor. Oncogene, 30(1), 106–116. doi:10.1038/onc.2010.390 [Research Support, Non-U.S. Gov't].PubMed Huang, R. Y., Li, M. Y., Hsin, M. K., Underwood, M. J., Ma, L. T., Mok, T. S., et al. (2011). 4-Methylnitrosamino-1-3-pyridyl-1-butanone (NNK) promotes lung cancer cell survival by stimulating thromboxane A2 and its receptor. Oncogene, 30(1), 106–116. doi:10.​1038/​onc.​2010.​390 [Research Support, Non-U.S. Gov't].PubMed
68.
go back to reference Cathcart, M. C., Gately, K., Cummins, R., Kay, E., O'Byrne, K. J., & Pidgeon, G. P. (2011). Examination of thromboxane synthase as a prognostic factor and therapeutic target in non-small cell lung cancer. Molecular Cancer, 10, 25.PubMed Cathcart, M. C., Gately, K., Cummins, R., Kay, E., O'Byrne, K. J., & Pidgeon, G. P. (2011). Examination of thromboxane synthase as a prognostic factor and therapeutic target in non-small cell lung cancer. Molecular Cancer, 10, 25.PubMed
69.
go back to reference McAfee, A. J., McSorley, E. M., Cuskelly, G. J., Moss, B. W., Wallace, J. M., Bonham, M. P., et al. (2010). Red meat consumption: An overview of the risks and benefits. Meat science, 84(1), 1–13.PubMed McAfee, A. J., McSorley, E. M., Cuskelly, G. J., Moss, B. W., Wallace, J. M., Bonham, M. P., et al. (2010). Red meat consumption: An overview of the risks and benefits. Meat science, 84(1), 1–13.PubMed
70.
go back to reference Bing, R. J., Miyataka, M., Rich, K. A., Hanson, N., Wang, X., Slosser, H. D., et al. (2001). Nitric oxide, prostanoids, cyclooxygenase, and angiogenesis in colon and breast cancer. Clinical Cancer Research, 7(11), 3385–3392.PubMed Bing, R. J., Miyataka, M., Rich, K. A., Hanson, N., Wang, X., Slosser, H. D., et al. (2001). Nitric oxide, prostanoids, cyclooxygenase, and angiogenesis in colon and breast cancer. Clinical Cancer Research, 7(11), 3385–3392.PubMed
71.
go back to reference Tsujii, M., Kawano, S., & DuBois, R. N. (1997). Cyclooxygenase-2 expression in human colon cancer cells increases metastatic potential. Proceedings of the National Academy of Sciences of the United States of America, 94(7), 3336–3340.PubMed Tsujii, M., Kawano, S., & DuBois, R. N. (1997). Cyclooxygenase-2 expression in human colon cancer cells increases metastatic potential. Proceedings of the National Academy of Sciences of the United States of America, 94(7), 3336–3340.PubMed
72.
go back to reference Pradono, P., Tazawa, R., Maemondo, M., Tanaka, M., Usui, K., Saijo, Y., et al. (2002). Gene transfer of thromboxane A(2) synthase and prostaglandin I(2) synthase antithetically altered tumor angiogenesis and tumor growth. Cancer Research, 62(1), 63–66.PubMed Pradono, P., Tazawa, R., Maemondo, M., Tanaka, M., Usui, K., Saijo, Y., et al. (2002). Gene transfer of thromboxane A(2) synthase and prostaglandin I(2) synthase antithetically altered tumor angiogenesis and tumor growth. Cancer Research, 62(1), 63–66.PubMed
73.
go back to reference Gustafsson, A., Hansson, E., Kressner, U., Nordgren, S., Andersson, M., Lonnroth, C., et al. (2007). Prostanoid receptor expression in colorectal cancer related to tumor stage, differentiation and progression. Acta Oncologica, 46(8), 1107–1112. doi:10.1080/02841860701403061.PubMed Gustafsson, A., Hansson, E., Kressner, U., Nordgren, S., Andersson, M., Lonnroth, C., et al. (2007). Prostanoid receptor expression in colorectal cancer related to tumor stage, differentiation and progression. Acta Oncologica, 46(8), 1107–1112. doi:10.​1080/​0284186070140306​1.PubMed
74.
go back to reference Sakai, H., Suzuki, T., Takahashi, Y., Ukai, M., Tauchi, K., Fujii, T., et al. (2006). Upregulation of thromboxane synthase in human colorectal carcinoma and the cancer cell proliferation by thromboxane A2. FEBS Letters, 580(14), 3368–3374. doi:10.1016/j.febslet.2006.05.007.PubMed Sakai, H., Suzuki, T., Takahashi, Y., Ukai, M., Tauchi, K., Fujii, T., et al. (2006). Upregulation of thromboxane synthase in human colorectal carcinoma and the cancer cell proliferation by thromboxane A2. FEBS Letters, 580(14), 3368–3374. doi:10.​1016/​j.​febslet.​2006.​05.​007.PubMed
76.
go back to reference McDonough, W., Tran, N., Giese, A., Norman, S. A., & Berens, M. E. (1998). Altered gene expression in human astrocytoma cells selected for migration: I. Thromboxane synthase. Journal of Neuropathology and Experimental Neurology, 57(5), 449–455.PubMed McDonough, W., Tran, N., Giese, A., Norman, S. A., & Berens, M. E. (1998). Altered gene expression in human astrocytoma cells selected for migration: I. Thromboxane synthase. Journal of Neuropathology and Experimental Neurology, 57(5), 449–455.PubMed
77.
go back to reference Giese, A., Hagel, C., Kim, E. L., Zapf, S., Djawaheri, J., Berens, M. E., et al. (1999). Thromboxane synthase regulates the migratory phenotype of human glioma cells. Neuro-Oncology, 1(1), 3–13.PubMed Giese, A., Hagel, C., Kim, E. L., Zapf, S., Djawaheri, J., Berens, M. E., et al. (1999). Thromboxane synthase regulates the migratory phenotype of human glioma cells. Neuro-Oncology, 1(1), 3–13.PubMed
78.
go back to reference Schauff, A. K., Kim, E. L., Leppert, J., Nadrowitz, R., Wuestenberg, R., Brockmann, M. A., et al. (2009). Inhibition of invasion-associated thromboxane synthase sensitizes experimental gliomas to gamma-radiation. Journal of Neuro-Oncology, 91(3), 241–249. doi:10.1007/s11060-008-9708-0.PubMed Schauff, A. K., Kim, E. L., Leppert, J., Nadrowitz, R., Wuestenberg, R., Brockmann, M. A., et al. (2009). Inhibition of invasion-associated thromboxane synthase sensitizes experimental gliomas to gamma-radiation. Journal of Neuro-Oncology, 91(3), 241–249. doi:10.​1007/​s11060-008-9708-0.PubMed
79.
go back to reference Stupp, R., Mason, W. P., van den Bent, M. J., Weller, M., Fisher, B., Taphoorn, M. J., et al. (2005). Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. The New England Journal of Medicine, 352(10), 987–996. doi:10.1056/NEJMoa043330.PubMed Stupp, R., Mason, W. P., van den Bent, M. J., Weller, M., Fisher, B., Taphoorn, M. J., et al. (2005). Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. The New England Journal of Medicine, 352(10), 987–996. doi:10.​1056/​NEJMoa043330.PubMed
80.
go back to reference Schmidt, N. O., Ziu, M., Cargioli, T., Westphal, M., Giese, A., Black, P. M., et al. (2010). Inhibition of thromboxane synthase activity improves glioblastoma response to alkylation chemotherapy. Translational Oncology, 3(1), 43–49.PubMed Schmidt, N. O., Ziu, M., Cargioli, T., Westphal, M., Giese, A., Black, P. M., et al. (2010). Inhibition of thromboxane synthase activity improves glioblastoma response to alkylation chemotherapy. Translational Oncology, 3(1), 43–49.PubMed
81.
go back to reference Hegi, M. E., Diserens, A. C., Gorlia, T., Hamou, M. F., de Tribolet, N., Weller, M., et al. (2005). MGMT gene silencing and benefit from temozolomide in glioblastoma. The New England Journal of Medicine, 352(10), 997–1003. doi:10.1056/NEJMoa043331.PubMed Hegi, M. E., Diserens, A. C., Gorlia, T., Hamou, M. F., de Tribolet, N., Weller, M., et al. (2005). MGMT gene silencing and benefit from temozolomide in glioblastoma. The New England Journal of Medicine, 352(10), 997–1003. doi:10.​1056/​NEJMoa043331.PubMed
82.
go back to reference Gangwar, R., Mandhani, A., & Mittal, R. D. (2011). Functional polymorphisms of cyclooxygenase-2 (COX-2) gene and risk for urinary bladder cancer in North India. Surgery, 149(1), 126–134 [Comparative Study].PubMed Gangwar, R., Mandhani, A., & Mittal, R. D. (2011). Functional polymorphisms of cyclooxygenase-2 (COX-2) gene and risk for urinary bladder cancer in North India. Surgery, 149(1), 126–134 [Comparative Study].PubMed
83.
go back to reference Danon, A., Zenser, T. V., Thomasson, D. L., & Davis, B. B. (1986). Eicosanoid synthesis by cultured human urothelial cells: Potential role in bladder cancer. Cancer Research, 46(11), 5676–5681.PubMed Danon, A., Zenser, T. V., Thomasson, D. L., & Davis, B. B. (1986). Eicosanoid synthesis by cultured human urothelial cells: Potential role in bladder cancer. Cancer Research, 46(11), 5676–5681.PubMed
84.
go back to reference Moussa, O., Riker, J. M., Klein, J., Fraig, M., Halushka, P. V., & Watson, D. K. (2008). Inhibition of thromboxane synthase activity modulates bladder cancer cell responses to chemotherapeutic agents. Oncogene, 27(1), 55–62. doi:10.1038/sj.onc.1210629.PubMed Moussa, O., Riker, J. M., Klein, J., Fraig, M., Halushka, P. V., & Watson, D. K. (2008). Inhibition of thromboxane synthase activity modulates bladder cancer cell responses to chemotherapeutic agents. Oncogene, 27(1), 55–62. doi:10.​1038/​sj.​onc.​1210629.PubMed
85.
go back to reference Moussa, O., Yordy, J. S., Abol-Enein, H., Sinha, D., Bissada, N. K., Halushka, P. V., et al. (2005). Prognostic and functional significance of thromboxane synthase gene overexpression in invasive bladder cancer. Cancer Research, 65(24), 11581–11587. doi:10.1158/0008-5472.can-05-1622.PubMed Moussa, O., Yordy, J. S., Abol-Enein, H., Sinha, D., Bissada, N. K., Halushka, P. V., et al. (2005). Prognostic and functional significance of thromboxane synthase gene overexpression in invasive bladder cancer. Cancer Research, 65(24), 11581–11587. doi:10.​1158/​0008-5472.​can-05-1622.PubMed
86.
go back to reference Moussa, O., Ashton, A. W., Fraig, M., Garrett-Mayer, E., Ghoneim, M. A., Halushka, P. V., et al. (2008). Novel role of thromboxane receptors beta isoform in bladder cancer pathogenesis. Cancer Research, 68(11), 4097–4104. doi:10.1158/0008-5472.can-07-6560.PubMed Moussa, O., Ashton, A. W., Fraig, M., Garrett-Mayer, E., Ghoneim, M. A., Halushka, P. V., et al. (2008). Novel role of thromboxane receptors beta isoform in bladder cancer pathogenesis. Cancer Research, 68(11), 4097–4104. doi:10.​1158/​0008-5472.​can-07-6560.PubMed
87.
go back to reference Patan, S. (2004). Vasculogenesis and angiogenesis. Cancer Treatment and Research, 117, 3–32.PubMed Patan, S. (2004). Vasculogenesis and angiogenesis. Cancer Treatment and Research, 117, 3–32.PubMed
88.
go back to reference Ashton, A. W., Yokota, R., John, G., Zhao, S., Suadicani, S. O., Spray, D. C., et al. (1999). Inhibition of endothelial cell migration, intercellular communication, and vascular tube formation by thromboxane A(2). Journal of Biological Chemistry, 274(50), 35562–35570.PubMed Ashton, A. W., Yokota, R., John, G., Zhao, S., Suadicani, S. O., Spray, D. C., et al. (1999). Inhibition of endothelial cell migration, intercellular communication, and vascular tube formation by thromboxane A(2). Journal of Biological Chemistry, 274(50), 35562–35570.PubMed
89.
go back to reference Ashton, A. W., & Ware, J. A. (2004). Thromboxane A2 receptor signaling inhibits vascular endothelial growth factor–induced endothelial cell differentiation and migration. Circulation Research, 95, 372–379.PubMed Ashton, A. W., & Ware, J. A. (2004). Thromboxane A2 receptor signaling inhibits vascular endothelial growth factor–induced endothelial cell differentiation and migration. Circulation Research, 95, 372–379.PubMed
90.
go back to reference Ashton, A. W., Cheng, Y., Helisch, A., & Ware, J. A. (2004). Thromboxane A2 receptor agonists antagonize the proangiogenic effects of fibroblast growth factor-2: role of receptor internalization, thrombospondin-1, and αvβ3. Circulation Research, 94, 735–742.PubMed Ashton, A. W., Cheng, Y., Helisch, A., & Ware, J. A. (2004). Thromboxane A2 receptor agonists antagonize the proangiogenic effects of fibroblast growth factor-2: role of receptor internalization, thrombospondin-1, and αvβ3. Circulation Research, 94, 735–742.PubMed
91.
go back to reference Gao, Y., Yokota, R., Tang, S., Ashton, A. W., & Ware, J. A. (2000). Reversal of angiogenesis in vitro, induction of apoptosis, and inhibition of AKT phosphorylation in endothelial cells by thromboxane A(2). Circulation Research, 87(9), 739–745.PubMed Gao, Y., Yokota, R., Tang, S., Ashton, A. W., & Ware, J. A. (2000). Reversal of angiogenesis in vitro, induction of apoptosis, and inhibition of AKT phosphorylation in endothelial cells by thromboxane A(2). Circulation Research, 87(9), 739–745.PubMed
92.
go back to reference Beauchamp, M. H., Martinez-Bermudez, A. K., Gobeil, F., Jr., Marrache, A. M., Hou, X., Speranza, G., et al. (2001). Role of thromboxane in retinal microvascular degeneration in oxygen-induced retinopathy. Journal of Applied Physiology, 90(6), 2279–2288.PubMed Beauchamp, M. H., Martinez-Bermudez, A. K., Gobeil, F., Jr., Marrache, A. M., Hou, X., Speranza, G., et al. (2001). Role of thromboxane in retinal microvascular degeneration in oxygen-induced retinopathy. Journal of Applied Physiology, 90(6), 2279–2288.PubMed
93.
go back to reference De La Cruz, J. P., Moreno, A., Ruiz-Ruiz, M. I., & Sanchez De La Cuesta, F. (2000). Effect of DT-TX 30, a combined thromboxane synthase inhibitor and thromboxane receptor antagonist, on retinal vascularity in experimental diabetes mellitus. Thrombosis Research, 97(3), 125–131. De La Cruz, J. P., Moreno, A., Ruiz-Ruiz, M. I., & Sanchez De La Cuesta, F. (2000). Effect of DT-TX 30, a combined thromboxane synthase inhibitor and thromboxane receptor antagonist, on retinal vascularity in experimental diabetes mellitus. Thrombosis Research, 97(3), 125–131.
94.
go back to reference Zou, M. H., Shi, C., & Cohen, R. A. (2002). High glucose via peroxynitrite causes tyrosine nitration and inactivation of prostacyclin synthase that is associated with thromboxane/prostaglandin H(2) receptor-mediated apoptosis and adhesion molecule expression in cultured human aortic endothelial cells. Diabetes, 51(1), 198–203.PubMed Zou, M. H., Shi, C., & Cohen, R. A. (2002). High glucose via peroxynitrite causes tyrosine nitration and inactivation of prostacyclin synthase that is associated with thromboxane/prostaglandin H(2) receptor-mediated apoptosis and adhesion molecule expression in cultured human aortic endothelial cells. Diabetes, 51(1), 198–203.PubMed
95.
go back to reference Kishi, Y., & Numano, F. (1989). In vitro study of vascular endothelial injury by activated platelets and its prevention. Atherosclerosis, 76(2–3), 95–101.PubMed Kishi, Y., & Numano, F. (1989). In vitro study of vascular endothelial injury by activated platelets and its prevention. Atherosclerosis, 76(2–3), 95–101.PubMed
96.
go back to reference Pal, S., Wu, J., Murray, J. K., Gellman, S. H., Wozniak, M. A., Keely, P. J., et al. (2006). An antiangiogenic neurokinin-B/thromboxane A2 regulatory axis. The Journal of Cell Biology, 174(7), 1047–1058. doi:10.1083/jcb.200603152.PubMed Pal, S., Wu, J., Murray, J. K., Gellman, S. H., Wozniak, M. A., Keely, P. J., et al. (2006). An antiangiogenic neurokinin-B/thromboxane A2 regulatory axis. The Journal of Cell Biology, 174(7), 1047–1058. doi:10.​1083/​jcb.​200603152.PubMed
97.
go back to reference Benndorf, R. A., Schwedhelm, E., Gnann, A., Taheri, R., Kom, G., Didié, M., et al. (2008). Isoprostanes inhibit vascular endothelial growth factor–induced endothelial cell migration, tube formation, and cardiac vessel sprouting in vitro, as well as angiogenesis in vivo via activation of the thromboxane A2 receptor. A potential link between oxidative stress and impaired angiogenesis. Circulation Research, 103, 1037–1046.PubMed Benndorf, R. A., Schwedhelm, E., Gnann, A., Taheri, R., Kom, G., Didié, M., et al. (2008). Isoprostanes inhibit vascular endothelial growth factor–induced endothelial cell migration, tube formation, and cardiac vessel sprouting in vitro, as well as angiogenesis in vivo via activation of the thromboxane A2 receptor. A potential link between oxidative stress and impaired angiogenesis. Circulation Research, 103, 1037–1046.PubMed
98.
go back to reference Daniel, T. O., Liu, H., Morrow, J. D., Crews, B. C., & Marnett, L. J. (1999). Thromboxane A2 is a mediator of cyclooxygenase-2-dependent endothelial migration and angiogenesis. Cancer Research, 59(18), 4574–4577.PubMed Daniel, T. O., Liu, H., Morrow, J. D., Crews, B. C., & Marnett, L. J. (1999). Thromboxane A2 is a mediator of cyclooxygenase-2-dependent endothelial migration and angiogenesis. Cancer Research, 59(18), 4574–4577.PubMed
99.
go back to reference Sakurai, T., Tamura, K., & Kogo, H. (2005). Stimulatory effects of eicosanoids on ovarian angiogenesis in early luteal phase in cyclooxygenase-2 inhibitor-treated rats. European Journal of Pharmacology, 516(2), 158–164.PubMed Sakurai, T., Tamura, K., & Kogo, H. (2005). Stimulatory effects of eicosanoids on ovarian angiogenesis in early luteal phase in cyclooxygenase-2 inhibitor-treated rats. European Journal of Pharmacology, 516(2), 158–164.PubMed
100.
go back to reference de Leval, X., Dassesse, T., Dogne, J. M., Waltregny, D., Bellahcene, A., Benoit, V., et al. (2006). Evaluation of original dual thromboxane A2 modulators as antiangiogenic agents. Journal of Pharmacology and Experimental Therapeutics, 318(3), 1057–1067. doi:10.1124/jpet.106.101188.PubMed de Leval, X., Dassesse, T., Dogne, J. M., Waltregny, D., Bellahcene, A., Benoit, V., et al. (2006). Evaluation of original dual thromboxane A2 modulators as antiangiogenic agents. Journal of Pharmacology and Experimental Therapeutics, 318(3), 1057–1067. doi:10.​1124/​jpet.​106.​101188.PubMed
101.
go back to reference Rocca, B., Loeb, A. L., Strauss, J. F., 3rd, Vezza, R., Habib, A., Li, H., et al. (2000). Directed vascular expression of the thromboxane A2 receptor results in intrauterine growth retardation. Nature Medicine, 6(2), 219–221.PubMed Rocca, B., Loeb, A. L., Strauss, J. F., 3rd, Vezza, R., Habib, A., Li, H., et al. (2000). Directed vascular expression of the thromboxane A2 receptor results in intrauterine growth retardation. Nature Medicine, 6(2), 219–221.PubMed
102.
go back to reference Wilson, S. J., McGinley, K., Huang, A. J., & Smyth, E. M. (2007). Heterodimerization of the alpha and beta isoforms of the human thromboxane receptor enhances isoprostane signaling. Biochemical and Biophysical Research Communications, 352(2), 397–403.PubMed Wilson, S. J., McGinley, K., Huang, A. J., & Smyth, E. M. (2007). Heterodimerization of the alpha and beta isoforms of the human thromboxane receptor enhances isoprostane signaling. Biochemical and Biophysical Research Communications, 352(2), 397–403.PubMed
103.
go back to reference Parent, J. L., Labrecque, P., Orsini, M. J., & Benovic, J. L. (1999). Internalization of the TXA2 receptor alpha and beta isoforms. Role of the differentially spliced cooh terminus in agonist-promoted receptor internalization. Journal of Biological Chemistry, 274(13), 8941–8948.PubMed Parent, J. L., Labrecque, P., Orsini, M. J., & Benovic, J. L. (1999). Internalization of the TXA2 receptor alpha and beta isoforms. Role of the differentially spliced cooh terminus in agonist-promoted receptor internalization. Journal of Biological Chemistry, 274(13), 8941–8948.PubMed
104.
go back to reference Parent, J. L., Labrecque, P., Driss Rochdi, M., & Benovic, J. L. (2001). Role of the differentially spliced carboxyl terminus in thromboxane A2 receptor trafficking: Identification of a distinct motif for tonic internalization. Journal of Biological Chemistry, 276(10), 7079–7085.PubMed Parent, J. L., Labrecque, P., Driss Rochdi, M., & Benovic, J. L. (2001). Role of the differentially spliced carboxyl terminus in thromboxane A2 receptor trafficking: Identification of a distinct motif for tonic internalization. Journal of Biological Chemistry, 276(10), 7079–7085.PubMed
105.
go back to reference Rochdi, M. D., Laroche, G., Dupre, E., Giguere, P., Lebel, A., Watier, V., et al. (2004). Nm23-H2 interacts with a G protein-coupled receptor to regulate its endocytosis through an Rac1-dependent mechanism. Journal of Biological Chemistry, 279(18), 18981–18989.PubMed Rochdi, M. D., Laroche, G., Dupre, E., Giguere, P., Lebel, A., Watier, V., et al. (2004). Nm23-H2 interacts with a G protein-coupled receptor to regulate its endocytosis through an Rac1-dependent mechanism. Journal of Biological Chemistry, 279(18), 18981–18989.PubMed
106.
go back to reference Theriault, C., Rochdi, M. D., & Parent, J. L. (2004). Role of the Rab11-associated intracellular pool of receptors formed by constitutive endocytosis of the beta isoform of the thromboxane A2 receptor (TP beta). Biochemistry, 43(19), 5600–5607.PubMed Theriault, C., Rochdi, M. D., & Parent, J. L. (2004). Role of the Rab11-associated intracellular pool of receptors formed by constitutive endocytosis of the beta isoform of the thromboxane A2 receptor (TP beta). Biochemistry, 43(19), 5600–5607.PubMed
107.
go back to reference Reid, H. M., Wikstrom, K., Kavanagh, D. J., Mulvaney, E. P., & Kinsella, B. T. (2011). Interaction of angio-associated migratory cell protein with the TPalpha and TPbeta isoforms of the human thromboxane A receptor. Cellular Signalling, 23(4), 700–717.PubMed Reid, H. M., Wikstrom, K., Kavanagh, D. J., Mulvaney, E. P., & Kinsella, B. T. (2011). Interaction of angio-associated migratory cell protein with the TPalpha and TPbeta isoforms of the human thromboxane A receptor. Cellular Signalling, 23(4), 700–717.PubMed
108.
go back to reference Honn, K. V., Cicone, B., & Skoff, A. (1981). Prostacyclin: A potent antimetastatic agent. Science, 212(4500), 1270–1272.PubMed Honn, K. V., Cicone, B., & Skoff, A. (1981). Prostacyclin: A potent antimetastatic agent. Science, 212(4500), 1270–1272.PubMed
109.
go back to reference Menter, D. G., Onoda, J. M., Taylor, J. D., & Honn, K. V. (1984). Effects of prostacyclin on tumor cell-induced platelet aggregation. Cancer Research, 44(2), 450–456.PubMed Menter, D. G., Onoda, J. M., Taylor, J. D., & Honn, K. V. (1984). Effects of prostacyclin on tumor cell-induced platelet aggregation. Cancer Research, 44(2), 450–456.PubMed
Metadata
Title
The thromboxane synthase and receptor signaling pathway in cancer: an emerging paradigm in cancer progression and metastasis
Authors
Prasanna Ekambaram
Wanyu Lambiv
Rosanna Cazzolli
Anthony W. Ashton
Kenneth V. Honn
Publication date
01-12-2011
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 3-4/2011
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-011-9297-9

Other articles of this Issue 3-4/2011

Cancer and Metastasis Reviews 3-4/2011 Go to the issue

EditorialNotes

Preface

Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine