Skip to main content
Top
Published in: Cancer and Metastasis Reviews 2/2011

Open Access 01-06-2011 | NON-THEMATIC REVIEW

DNA repair: the culprit for tumor-initiating cell survival?

Authors: Lesley A. Mathews, Stephanie M. Cabarcas, William L. Farrar

Published in: Cancer and Metastasis Reviews | Issue 2/2011

Login to get access

Abstract

The existence of “tumor-initiating cells” (TICs) has been a topic of heated debate for the last few years within the field of cancer biology. Their continuous characterization in a variety of solid tumors has led to an abundance of evidence supporting their existence. TICs are believed to be responsible for resistance against conventional treatment regimes of chemotherapy and radiation, ultimately leading to metastasis and patient demise. This review summarizes DNA repair mechanism(s) and their role in the maintenance and regulation of stem cells. There is evidence supporting the hypothesis that TICs, similar to embryonic stem (ES) cells and hematopoietic stem cells (HSCs), display an increase in their ability to survive genotoxic stress and injury. Mechanistically, the ability of ES cells, HSCs and TICs to survive under stressful conditions can be attributed to an increase in the efficiency at which these cells undergo DNA repair. Furthermore, the data presented in this review summarize the results found by our lab and others demonstrating that TICs have an increase in their genomic stability, which can allow for TIC survival under conditions such as anticancer treatments, while the bulk population of tumor cells dies. We believe that these data will greatly impact the development and design of future therapies being engineered to target and eradicate this highly aggressive cancer cell population.
Appendix
Available only for authorised users
Literature
1.
2.
go back to reference O’Brien, C. A., Kreso, A., & Jamieson, C. H. (2010). Cancer stem cells and self-renewal. Clinical Cancer Research, 16(12), 3113–3120.PubMedCrossRef O’Brien, C. A., Kreso, A., & Jamieson, C. H. (2010). Cancer stem cells and self-renewal. Clinical Cancer Research, 16(12), 3113–3120.PubMedCrossRef
3.
go back to reference Sengupta, A., & Cancelas, J. A. (2010). Cancer stem cells: A stride towards cancer cure? Journal of Cellular Physiology, 225(1), 7–14.PubMedCrossRef Sengupta, A., & Cancelas, J. A. (2010). Cancer stem cells: A stride towards cancer cure? Journal of Cellular Physiology, 225(1), 7–14.PubMedCrossRef
4.
go back to reference Reiman, J. M., Knutson, K. L., & Radisky, D. C. (2010). Immune promotion of epithelial–mesenchymal transition and generation of breast cancer stem cells. Cancer Research, 70(8), 3005–3008.PubMedCrossRef Reiman, J. M., Knutson, K. L., & Radisky, D. C. (2010). Immune promotion of epithelial–mesenchymal transition and generation of breast cancer stem cells. Cancer Research, 70(8), 3005–3008.PubMedCrossRef
5.
go back to reference Raimondi, C., Gianni, W., Cortesi, E., et al. (2010). Cancer stem cells and epithelial–mesenchymal transition: Revisiting minimal residual disease. Current Cancer Drug Targets, 10(5), 496–508.PubMedCrossRef Raimondi, C., Gianni, W., Cortesi, E., et al. (2010). Cancer stem cells and epithelial–mesenchymal transition: Revisiting minimal residual disease. Current Cancer Drug Targets, 10(5), 496–508.PubMedCrossRef
6.
go back to reference Bhattacharyya, S., & Khanduja, K. L. (2010). New hope in the horizon: Cancer stem cells. Acta Biochimica et Biophysica Sinica (Shanghai), 42(4), 237–242.CrossRef Bhattacharyya, S., & Khanduja, K. L. (2010). New hope in the horizon: Cancer stem cells. Acta Biochimica et Biophysica Sinica (Shanghai), 42(4), 237–242.CrossRef
7.
go back to reference Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., et al. (2003). Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 100(7), 3983–3988.PubMedCrossRef Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., et al. (2003). Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 100(7), 3983–3988.PubMedCrossRef
8.
go back to reference Graziano, A., d’Aquino, R., Tirino, V., et al. (2008). The stem cell hypothesis in head and neck cancer. Journal of Cellular Biochemistry, 103(2), 408–412.PubMedCrossRef Graziano, A., d’Aquino, R., Tirino, V., et al. (2008). The stem cell hypothesis in head and neck cancer. Journal of Cellular Biochemistry, 103(2), 408–412.PubMedCrossRef
9.
go back to reference Cariati, M., & Purushotham, A. D. (2008). Stem cells and breast cancer. Histopathology, 52(1), 99–107.PubMedCrossRef Cariati, M., & Purushotham, A. D. (2008). Stem cells and breast cancer. Histopathology, 52(1), 99–107.PubMedCrossRef
10.
go back to reference Kasper, S. (2008). Exploring the origins of the normal prostate and prostate cancer stem cell. Stem Cell Reviews, 4(3), 193–201.PubMedCrossRef Kasper, S. (2008). Exploring the origins of the normal prostate and prostate cancer stem cell. Stem Cell Reviews, 4(3), 193–201.PubMedCrossRef
11.
go back to reference Takaishi, S., Okumura, T., & Wang, T. C. (2008). Gastric cancer stem cells. Journal of Clinical Oncology, 26(17), 2876–2882.PubMedCrossRef Takaishi, S., Okumura, T., & Wang, T. C. (2008). Gastric cancer stem cells. Journal of Clinical Oncology, 26(17), 2876–2882.PubMedCrossRef
12.
go back to reference Lee, C. J., Dosch, J., & Simeone, D. M. (2008). Pancreatic cancer stem cells. Journal of Clinical Oncology, 26(17), 2806–2812.PubMedCrossRef Lee, C. J., Dosch, J., & Simeone, D. M. (2008). Pancreatic cancer stem cells. Journal of Clinical Oncology, 26(17), 2806–2812.PubMedCrossRef
13.
go back to reference Lapidot, T., Sirard, C., Vormoor, J., et al. (1994). A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature, 367(6464), 645–648.PubMedCrossRef Lapidot, T., Sirard, C., Vormoor, J., et al. (1994). A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature, 367(6464), 645–648.PubMedCrossRef
14.
go back to reference Miki, J., & Rhim, J. S. (2008). Prostate cell cultures as in vitro models for the study of normal stem cells and cancer stem cells. Prostate Cancer and Prostatic Diseases, 11(1), 32–39.PubMedCrossRef Miki, J., & Rhim, J. S. (2008). Prostate cell cultures as in vitro models for the study of normal stem cells and cancer stem cells. Prostate Cancer and Prostatic Diseases, 11(1), 32–39.PubMedCrossRef
15.
go back to reference Dontu, G., Abdallah, W. M., Foley, J. M., et al. (2003). In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes & Development, 17(10), 1253–1270.CrossRef Dontu, G., Abdallah, W. M., Foley, J. M., et al. (2003). In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes & Development, 17(10), 1253–1270.CrossRef
16.
go back to reference Hurt, E. M., Kawasaki, B. T., Klarmann, G. J., et al. (2008). CD44+CD24(−) prostate cells are early cancer progenitor/stem cells that provide a model for patients with poor prognosis. British Journal of Cancer, 98(4), 756–765.PubMedCrossRef Hurt, E. M., Kawasaki, B. T., Klarmann, G. J., et al. (2008). CD44+CD24(−) prostate cells are early cancer progenitor/stem cells that provide a model for patients with poor prognosis. British Journal of Cancer, 98(4), 756–765.PubMedCrossRef
17.
go back to reference Gaviraghi, M., Tunici, P., Valensin, S., et al. (2010). Pancreatic cancer spheres are more than just aggregates of stem marker positive cells. Bioscience Reports, 31, 45–55.PubMedCrossRef Gaviraghi, M., Tunici, P., Valensin, S., et al. (2010). Pancreatic cancer spheres are more than just aggregates of stem marker positive cells. Bioscience Reports, 31, 45–55.PubMedCrossRef
18.
go back to reference Gou, S., Liu, T., Wang, C., et al. (2007). Establishment of clonal colony-forming assay for propagation of pancreatic cancer cells with stem cell properties. Pancreas, 34(4), 429–435.PubMedCrossRef Gou, S., Liu, T., Wang, C., et al. (2007). Establishment of clonal colony-forming assay for propagation of pancreatic cancer cells with stem cell properties. Pancreas, 34(4), 429–435.PubMedCrossRef
19.
go back to reference Duhagon, M. A., Hurt, E. M., Sotelo-Silveira, J. R., et al. (2010). Genomic profiling of tumor initiating prostatospheres. BMC Genomics, 11, 324.PubMedCrossRef Duhagon, M. A., Hurt, E. M., Sotelo-Silveira, J. R., et al. (2010). Genomic profiling of tumor initiating prostatospheres. BMC Genomics, 11, 324.PubMedCrossRef
20.
go back to reference Sherry, M. M., Reeves, A., Wu, J. K., et al. (2009). STAT3 is required for proliferation and maintenance of multipotency in glioblastoma stem cells. Stem Cells, 27(10), 2383–2392.PubMedCrossRef Sherry, M. M., Reeves, A., Wu, J. K., et al. (2009). STAT3 is required for proliferation and maintenance of multipotency in glioblastoma stem cells. Stem Cells, 27(10), 2383–2392.PubMedCrossRef
21.
go back to reference Sansone, P., Storci, G., Tavolari, S., et al. (2007). IL-6 triggers malignant features in mammospheres from human ductal breast carcinoma and normal mammary gland. Journal of Clinical Investigation, 117(12), 3988–4002.PubMedCrossRef Sansone, P., Storci, G., Tavolari, S., et al. (2007). IL-6 triggers malignant features in mammospheres from human ductal breast carcinoma and normal mammary gland. Journal of Clinical Investigation, 117(12), 3988–4002.PubMedCrossRef
22.
go back to reference Klarmann, G. J., Hurt, E. M., Matthews, L. A., et al. (2009). Invasive prostate cancer cells are tumor initiating cells that have a stem cell-like genomic signature. Clinical & Experimental Metastasis, 26(5), 433–436.CrossRef Klarmann, G. J., Hurt, E. M., Matthews, L. A., et al. (2009). Invasive prostate cancer cells are tumor initiating cells that have a stem cell-like genomic signature. Clinical & Experimental Metastasis, 26(5), 433–436.CrossRef
23.
go back to reference Yu, S. C., & Bian, X. W. (2009). Enrichment of cancer stem cells based on heterogeneity of invasiveness. Stem Cell Reviews, 5(1), 66–71.PubMedCrossRef Yu, S. C., & Bian, X. W. (2009). Enrichment of cancer stem cells based on heterogeneity of invasiveness. Stem Cell Reviews, 5(1), 66–71.PubMedCrossRef
24.
go back to reference Moss, R. A., & Lee, C. (2010). Current and emerging therapies for the treatment of pancreatic cancer. OncoTargets and Therapy, 3, 111–127.PubMedCrossRef Moss, R. A., & Lee, C. (2010). Current and emerging therapies for the treatment of pancreatic cancer. OncoTargets and Therapy, 3, 111–127.PubMedCrossRef
25.
go back to reference Ischenko, I., Seeliger, H., Jauch, K. W., et al. (2009). Metastatic activity and chemotherapy resistance in human pancreatic cancer—Influence of cancer stem cells. Surgery, 146(3), 430–434.PubMedCrossRef Ischenko, I., Seeliger, H., Jauch, K. W., et al. (2009). Metastatic activity and chemotherapy resistance in human pancreatic cancer—Influence of cancer stem cells. Surgery, 146(3), 430–434.PubMedCrossRef
26.
go back to reference Shah, A. N., Summy, J. M., Zhang, J., et al. (2007). Development and characterization of gemcitabine-resistant pancreatic tumor cells. Annals of Surgical Oncology, 14(12), 3629–3637.PubMedCrossRef Shah, A. N., Summy, J. M., Zhang, J., et al. (2007). Development and characterization of gemcitabine-resistant pancreatic tumor cells. Annals of Surgical Oncology, 14(12), 3629–3637.PubMedCrossRef
27.
go back to reference Thompson, L. H. (2005). Unraveling the Fanconi anemia–DNA repair connection. Nature Genetics, 37(9), 921–922.PubMedCrossRef Thompson, L. H. (2005). Unraveling the Fanconi anemia–DNA repair connection. Nature Genetics, 37(9), 921–922.PubMedCrossRef
28.
go back to reference Thompson, L. H., Hinz, J. M., Yamada, N. A., et al. (2005). How Fanconi anemia proteins promote the four Rs: Replication, recombination, repair, and recovery. Environmental and Molecular Mutagenesis, 45(2–3), 128–142.PubMedCrossRef Thompson, L. H., Hinz, J. M., Yamada, N. A., et al. (2005). How Fanconi anemia proteins promote the four Rs: Replication, recombination, repair, and recovery. Environmental and Molecular Mutagenesis, 45(2–3), 128–142.PubMedCrossRef
29.
go back to reference Ralhan, R., Kaur, J., Kreienberg, R., et al. (2007). Links between DNA double strand break repair and breast cancer: Accumulating evidence from both familial and nonfamilial cases. Cancer Letters, 248(1), 1–17.PubMedCrossRef Ralhan, R., Kaur, J., Kreienberg, R., et al. (2007). Links between DNA double strand break repair and breast cancer: Accumulating evidence from both familial and nonfamilial cases. Cancer Letters, 248(1), 1–17.PubMedCrossRef
30.
go back to reference Tichy, E. D., & Stambrook, P. J. (2008). DNA repair in murine embryonic stem cells and differentiated cells. Experimental Cell Research, 314(9), 1929–1936.PubMedCrossRef Tichy, E. D., & Stambrook, P. J. (2008). DNA repair in murine embryonic stem cells and differentiated cells. Experimental Cell Research, 314(9), 1929–1936.PubMedCrossRef
31.
go back to reference Sengupta, S., & Harris, C. C. (2005). p53: Traffic cop at the crossroads of DNA repair and recombination. Nature Reviews. Molecular Cell Biology, 6(1), 44–55.PubMedCrossRef Sengupta, S., & Harris, C. C. (2005). p53: Traffic cop at the crossroads of DNA repair and recombination. Nature Reviews. Molecular Cell Biology, 6(1), 44–55.PubMedCrossRef
32.
go back to reference Kinsella, T. J. (2009). Coordination of DNA mismatch repair and base excision repair processing of chemotherapy and radiation damage for targeting resistant cancers. Clinical Cancer Research, 15(6), 1853–1859.PubMedCrossRef Kinsella, T. J. (2009). Coordination of DNA mismatch repair and base excision repair processing of chemotherapy and radiation damage for targeting resistant cancers. Clinical Cancer Research, 15(6), 1853–1859.PubMedCrossRef
33.
go back to reference Vaish, M. (2007). Mismatch repair deficiencies transforming stem cells into cancer stem cells and therapeutic implications. Molecular Cancer, 6, 26.PubMedCrossRef Vaish, M. (2007). Mismatch repair deficiencies transforming stem cells into cancer stem cells and therapeutic implications. Molecular Cancer, 6, 26.PubMedCrossRef
34.
go back to reference Dalhus, B., Laerdahl, J. K., Backe, P. H., et al. (2009). DNA base repair—Recognition and initiation of catalysis. FEMS Microbiology Reviews, 33(6), 1044–1078.PubMedCrossRef Dalhus, B., Laerdahl, J. K., Backe, P. H., et al. (2009). DNA base repair—Recognition and initiation of catalysis. FEMS Microbiology Reviews, 33(6), 1044–1078.PubMedCrossRef
35.
go back to reference Munroe, R. J., Bergstrom, R. A., Zheng, Q. Y., et al. (2000). Mouse mutants from chemically mutagenized embryonic stem cells. Nature Genetics, 24(3), 318–321.PubMedCrossRef Munroe, R. J., Bergstrom, R. A., Zheng, Q. Y., et al. (2000). Mouse mutants from chemically mutagenized embryonic stem cells. Nature Genetics, 24(3), 318–321.PubMedCrossRef
36.
go back to reference Thomas, J. W., LaMantia, C., & Magnuson, T. (1998). X-ray-induced mutations in mouse embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 95(3), 1114–1119.PubMedCrossRef Thomas, J. W., LaMantia, C., & Magnuson, T. (1998). X-ray-induced mutations in mouse embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 95(3), 1114–1119.PubMedCrossRef
37.
go back to reference Savatier, P., Lapillonne, H., Jirmanova, L., et al. (2002). Analysis of the cell cycle in mouse embryonic stem cells. Methods Mol Biol, 185, 27–33.PubMed Savatier, P., Lapillonne, H., Jirmanova, L., et al. (2002). Analysis of the cell cycle in mouse embryonic stem cells. Methods Mol Biol, 185, 27–33.PubMed
38.
go back to reference Baumann, P., Benson, F. E., & West, S. C. (1996). Human Rad51 protein promotes ATP-dependent homologous pairing and strand transfer reactions in vitro. Cell, 87(4), 757–766.PubMedCrossRef Baumann, P., Benson, F. E., & West, S. C. (1996). Human Rad51 protein promotes ATP-dependent homologous pairing and strand transfer reactions in vitro. Cell, 87(4), 757–766.PubMedCrossRef
39.
go back to reference Adams, B. R., Golding, S. E., Rao, R. R., et al. (2010). Dynamic dependence on ATR and ATM for double-strand break repair in human embryonic stem cells and neural descendants. PLoS ONE, 5(4), e10001.PubMedCrossRef Adams, B. R., Golding, S. E., Rao, R. R., et al. (2010). Dynamic dependence on ATR and ATM for double-strand break repair in human embryonic stem cells and neural descendants. PLoS ONE, 5(4), e10001.PubMedCrossRef
40.
go back to reference Adams, B. R., Hawkins, A. J., Povirk, L. F., et al. (2010). ATM-independent, high-fidelity nonhomologous end joining predominates in human embryonic stem cells. Aging (Albany NY), 2(9), 582–596. Adams, B. R., Hawkins, A. J., Povirk, L. F., et al. (2010). ATM-independent, high-fidelity nonhomologous end joining predominates in human embryonic stem cells. Aging (Albany NY), 2(9), 582–596.
41.
go back to reference Harfouche, G., & Martin, M. T. (2010). Response of normal stem cells to ionizing radiation: A balance between homeostasis and genomic stability. Mutation Research, 704(1–3), 167–174.PubMed Harfouche, G., & Martin, M. T. (2010). Response of normal stem cells to ionizing radiation: A balance between homeostasis and genomic stability. Mutation Research, 704(1–3), 167–174.PubMed
42.
go back to reference Roos, W. P., Christmann, M., Fraser, St, et al. (2007). Mouse embryonic stem cells are hypersensitive to apoptosis triggered by the DNA damage O(6)-methylguanine due to high E2F1 regulated mismatch repair. Cell Death and Differentiation, 14(8), 1422–1432.PubMedCrossRef Roos, W. P., Christmann, M., Fraser, St, et al. (2007). Mouse embryonic stem cells are hypersensitive to apoptosis triggered by the DNA damage O(6)-methylguanine due to high E2F1 regulated mismatch repair. Cell Death and Differentiation, 14(8), 1422–1432.PubMedCrossRef
43.
go back to reference Van Sloun, P. P., Jansen, J. G., Weeda, G., et al. (1999). The role of nucleotide excision repair in protecting embryonic stem cells from genotoxic effects of UV-induced DNA damage. Nucleic Acids Research, 27(16), 3276–3282.PubMedCrossRef Van Sloun, P. P., Jansen, J. G., Weeda, G., et al. (1999). The role of nucleotide excision repair in protecting embryonic stem cells from genotoxic effects of UV-induced DNA damage. Nucleic Acids Research, 27(16), 3276–3282.PubMedCrossRef
44.
go back to reference Nouspikel, T. (2007). DNA repair in differentiated cells: Some new answers to old questions. Neuroscience, 145(4), 1213–1221.PubMedCrossRef Nouspikel, T. (2007). DNA repair in differentiated cells: Some new answers to old questions. Neuroscience, 145(4), 1213–1221.PubMedCrossRef
45.
go back to reference Mohrin, M., Bourke, E., Alexander, D., et al. (2010). Hematopoietic stem cell quiescence promotes error-prone DNA repair and mutagenesis. Cell Stem Cell, 7(2), 174–185.PubMedCrossRef Mohrin, M., Bourke, E., Alexander, D., et al. (2010). Hematopoietic stem cell quiescence promotes error-prone DNA repair and mutagenesis. Cell Stem Cell, 7(2), 174–185.PubMedCrossRef
46.
go back to reference Sotiropoulou, P. A., Candi, A., Mascré, G., et al. (2010). Bcl-2 and accelerated DNA repair mediates resistance of hair follicle bulge stem cells to DNA-damage-induced cell death. Nat Cell Biol, 12(6), 572–82.PubMedCrossRef Sotiropoulou, P. A., Candi, A., Mascré, G., et al. (2010). Bcl-2 and accelerated DNA repair mediates resistance of hair follicle bulge stem cells to DNA-damage-induced cell death. Nat Cell Biol, 12(6), 572–82.PubMedCrossRef
47.
go back to reference Harfouche, G., Vaigot, P., Rachidi, W., et al. (2010). Fibroblast growth factor type 2 signaling is critical for DNA repair in human keratinocyte stem cells. Stem Cells, 28(9), 1639–1648.PubMedCrossRef Harfouche, G., Vaigot, P., Rachidi, W., et al. (2010). Fibroblast growth factor type 2 signaling is critical for DNA repair in human keratinocyte stem cells. Stem Cells, 28(9), 1639–1648.PubMedCrossRef
48.
go back to reference Frosina, G. (2010). The bright and the dark sides of DNA repair in stem cells. Journal of Biomedicine and Biotechnology, 2010, 845396.PubMedCrossRef Frosina, G. (2010). The bright and the dark sides of DNA repair in stem cells. Journal of Biomedicine and Biotechnology, 2010, 845396.PubMedCrossRef
49.
go back to reference Frosina, G. (2009). DNA repair and resistance of gliomas to chemotherapy and radiotherapy. Molecular Cancer Research, 7(7), 989–999.PubMedCrossRef Frosina, G. (2009). DNA repair and resistance of gliomas to chemotherapy and radiotherapy. Molecular Cancer Research, 7(7), 989–999.PubMedCrossRef
50.
go back to reference Bao, S., Wu, Q., McLendon, R. E., et al. (2006). Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature, 444(7120), 756–760.PubMedCrossRef Bao, S., Wu, Q., McLendon, R. E., et al. (2006). Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature, 444(7120), 756–760.PubMedCrossRef
51.
go back to reference Ropolo, M., Daga, A., Griffero, F., et al. (2009). Comparative analysis of DNA repair in stem and nonstem glioma cell cultures. Molecular Cancer Research, 7(3), 383–392.PubMedCrossRef Ropolo, M., Daga, A., Griffero, F., et al. (2009). Comparative analysis of DNA repair in stem and nonstem glioma cell cultures. Molecular Cancer Research, 7(3), 383–392.PubMedCrossRef
52.
go back to reference Bao, S., Wu, Q., Sathornsumetee, S., et al. (2006). Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Research, 66(16), 7843–7848.PubMedCrossRef Bao, S., Wu, Q., Sathornsumetee, S., et al. (2006). Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Research, 66(16), 7843–7848.PubMedCrossRef
53.
go back to reference McCord, A. M., Jamal, M., Williams, E. S., et al. (2009). CD133+ glioblastoma stem-like cells are radiosensitive with a defective DNA damage response compared with established cell lines. Clinical Cancer Research, 15(16), 5145–5153.PubMedCrossRef McCord, A. M., Jamal, M., Williams, E. S., et al. (2009). CD133+ glioblastoma stem-like cells are radiosensitive with a defective DNA damage response compared with established cell lines. Clinical Cancer Research, 15(16), 5145–5153.PubMedCrossRef
54.
55.
go back to reference Frosina, G. (2009). DNA repair in normal and cancer stem cells, with special reference to the central nervous system. Current Medicinal Chemistry, 16(7), 854–866.PubMedCrossRef Frosina, G. (2009). DNA repair in normal and cancer stem cells, with special reference to the central nervous system. Current Medicinal Chemistry, 16(7), 854–866.PubMedCrossRef
56.
go back to reference Zabludoff, S. D., Deng, C., Grondine, M. R., et al. (2008). AZD7762, a novel checkpoint kinase inhibitor, drives checkpoint abrogation and potentiates DNA-targeted therapies. Molecular Cancer Therapeutics, 7(9), 2955–2966.PubMedCrossRef Zabludoff, S. D., Deng, C., Grondine, M. R., et al. (2008). AZD7762, a novel checkpoint kinase inhibitor, drives checkpoint abrogation and potentiates DNA-targeted therapies. Molecular Cancer Therapeutics, 7(9), 2955–2966.PubMedCrossRef
57.
go back to reference Facchino, S., Abdouh, M., Chatoo, W., et al. (2010). BMI1 confers radioresistance to normal and cancerous neural stem cells through recruitment of the DNA damage response machinery. The Journal of Neuroscience, 30(30), 10096–10111.PubMedCrossRef Facchino, S., Abdouh, M., Chatoo, W., et al. (2010). BMI1 confers radioresistance to normal and cancerous neural stem cells through recruitment of the DNA damage response machinery. The Journal of Neuroscience, 30(30), 10096–10111.PubMedCrossRef
58.
go back to reference Crea, F., M.A. Duhagon Serrat, E.M. Hurt, et al. (2010). BMI1 silencing enhances docetaxel activity and impairs antioxidant response in prostate cancer. Int J Cancer. doi:10.1002/ijc.25522 Crea, F., M.A. Duhagon Serrat, E.M. Hurt, et al. (2010). BMI1 silencing enhances docetaxel activity and impairs antioxidant response in prostate cancer. Int J Cancer. doi:10.​1002/​ijc.​25522
59.
go back to reference Zhuang, W., B. Li, L. Long, et al. (2011). Knockdown of the DNA-dependent protein kinase catalytic subunit radiosensitizes glioma-initiating cells by inducing autophagy. Brain Res, 1371, 7–15. Zhuang, W., B. Li, L. Long, et al. (2011). Knockdown of the DNA-dependent protein kinase catalytic subunit radiosensitizes glioma-initiating cells by inducing autophagy. Brain Res, 1371, 7–15.
60.
go back to reference Gaspar, N., Marshall, L., Perryman, L., et al. (2010). MGMT-independent temozolomide resistance in pediatric glioblastoma cells associated with a PI3-kinase-mediated HOX/stem cell gene signature. Cancer Research, 70(22), 9243–9252.PubMedCrossRef Gaspar, N., Marshall, L., Perryman, L., et al. (2010). MGMT-independent temozolomide resistance in pediatric glioblastoma cells associated with a PI3-kinase-mediated HOX/stem cell gene signature. Cancer Research, 70(22), 9243–9252.PubMedCrossRef
61.
go back to reference Sciuscio, D., A.C. Diserens, K. van Dommelen, et al. (2011). Extent and Patterns of MGMT Promoter Methylation in Glioblastoma and Respective Derived Spheres. Clin Cancer Res, 17(2), 255–266. Sciuscio, D., A.C. Diserens, K. van Dommelen, et al. (2011). Extent and Patterns of MGMT Promoter Methylation in Glioblastoma and Respective Derived Spheres. Clin Cancer Res, 17(2), 255–266.
62.
go back to reference Yuki, K., Natsume, A., Yokoyama, H., et al. (2009). Induction of oligodendrogenesis in glioblastoma-initiating cells by IFN-mediated activation of STAT3 signaling. Cancer Letters, 284(1), 71–79.PubMedCrossRef Yuki, K., Natsume, A., Yokoyama, H., et al. (2009). Induction of oligodendrogenesis in glioblastoma-initiating cells by IFN-mediated activation of STAT3 signaling. Cancer Letters, 284(1), 71–79.PubMedCrossRef
63.
go back to reference Kato, T. N., Natsume, A., Toda, H., et al. (2010). Efficient delivery of liposome-mediated MGMT-siRNA reinforces the cytotoxity of temozolomide in GBM-initiating cells. Gene Therapy, 17(11), 1363–1371.PubMedCrossRef Kato, T. N., Natsume, A., Toda, H., et al. (2010). Efficient delivery of liposome-mediated MGMT-siRNA reinforces the cytotoxity of temozolomide in GBM-initiating cells. Gene Therapy, 17(11), 1363–1371.PubMedCrossRef
64.
go back to reference Korkaya, H., Paulson, A., Charafe-Jauffret, E., et al. (2009). Regulation of mammary stem/progenitor cells by PTEN/Akt/beta-catenin signaling. PLoS Biology, 7(6), e1000121.PubMedCrossRef Korkaya, H., Paulson, A., Charafe-Jauffret, E., et al. (2009). Regulation of mammary stem/progenitor cells by PTEN/Akt/beta-catenin signaling. PLoS Biology, 7(6), e1000121.PubMedCrossRef
65.
go back to reference Suva, M. L., Riggi, N., Janiszewska, M., et al. (2009). EZH2 is essential for glioblastoma cancer stem cell maintenance. Cancer Research, 69(24), 9211–9218.PubMedCrossRef Suva, M. L., Riggi, N., Janiszewska, M., et al. (2009). EZH2 is essential for glioblastoma cancer stem cell maintenance. Cancer Research, 69(24), 9211–9218.PubMedCrossRef
66.
go back to reference Yu, J., Yu, J., Rhodes, D. R., et al. (2007). A polycomb repression signature in metastatic prostate cancer predicts cancer outcome. Cancer Research, 67(22), 10657–10663.PubMedCrossRef Yu, J., Yu, J., Rhodes, D. R., et al. (2007). A polycomb repression signature in metastatic prostate cancer predicts cancer outcome. Cancer Research, 67(22), 10657–10663.PubMedCrossRef
67.
go back to reference Sarasin, A., & Dessen, P. (2010). DNA repair pathways and human metastatic malignant melanoma. Current Molecular Medicine, 10(4), 413–418.PubMedCrossRef Sarasin, A., & Dessen, P. (2010). DNA repair pathways and human metastatic malignant melanoma. Current Molecular Medicine, 10(4), 413–418.PubMedCrossRef
68.
go back to reference Kauffmann, A., Rosselli, F., Lazar, V., et al. (2008). High expression of DNA repair pathways is associated with metastasis in melanoma patients. Oncogene, 27(5), 565–573.PubMedCrossRef Kauffmann, A., Rosselli, F., Lazar, V., et al. (2008). High expression of DNA repair pathways is associated with metastasis in melanoma patients. Oncogene, 27(5), 565–573.PubMedCrossRef
69.
go back to reference Sarasin, A., & Kauffmann, A. (2008). Overexpression of DNA repair genes is associated with metastasis: A new hypothesis. Mutation Research, 659(1–2), 49–55.PubMed Sarasin, A., & Kauffmann, A. (2008). Overexpression of DNA repair genes is associated with metastasis: A new hypothesis. Mutation Research, 659(1–2), 49–55.PubMed
70.
go back to reference Karimi-Busheri, F., Rasouli-Nia, A., Mackey, J. R., et al. (2010). Senescence evasion by MCF-7 human breast tumor-initiating cells. Breast Cancer Research, 12(3), R31.PubMedCrossRef Karimi-Busheri, F., Rasouli-Nia, A., Mackey, J. R., et al. (2010). Senescence evasion by MCF-7 human breast tumor-initiating cells. Breast Cancer Research, 12(3), R31.PubMedCrossRef
71.
go back to reference Woodward, W. A., & Bristow, R. G. (2009). Radiosensitivity of cancer-initiating cells and normal stem cells (or what the Heisenberg uncertainly principle has to do with biology). Seminars in Radiation Oncology, 19(2), 87–95.PubMedCrossRef Woodward, W. A., & Bristow, R. G. (2009). Radiosensitivity of cancer-initiating cells and normal stem cells (or what the Heisenberg uncertainly principle has to do with biology). Seminars in Radiation Oncology, 19(2), 87–95.PubMedCrossRef
72.
go back to reference Zhang, M., Atkinson, R. L., & Rosen, J. M. (2010). Selective targeting of radiation-resistant tumor-initiating cells. Proceedings of the National Academy of Sciences of the United States of America, 107(8), 3522–3527.PubMedCrossRef Zhang, M., Atkinson, R. L., & Rosen, J. M. (2010). Selective targeting of radiation-resistant tumor-initiating cells. Proceedings of the National Academy of Sciences of the United States of America, 107(8), 3522–3527.PubMedCrossRef
73.
go back to reference Zhang, M., Behbod, F., Atkinson, R. L., et al. (2008). Identification of tumor-initiating cells in a p53-null mouse model of breast cancer. Cancer Research, 68(12), 4674–4682.PubMedCrossRef Zhang, M., Behbod, F., Atkinson, R. L., et al. (2008). Identification of tumor-initiating cells in a p53-null mouse model of breast cancer. Cancer Research, 68(12), 4674–4682.PubMedCrossRef
74.
go back to reference Parsels, L.A., M.A. Morgan, D.M. Tanska, et al. (2009). Gemcitabine sensitization by checkpoint kinase 1 inhibition correlates with inhibition of a Rad51 DNA damage response in pancreatic cancer cells. Mol Cancer Ther, 8(1), 45–54.PubMedCrossRef Parsels, L.A., M.A. Morgan, D.M. Tanska, et al. (2009). Gemcitabine sensitization by checkpoint kinase 1 inhibition correlates with inhibition of a Rad51 DNA damage response in pancreatic cancer cells. Mol Cancer Ther, 8(1), 45–54.PubMedCrossRef
75.
go back to reference Glinsky, G. V. (2006). Genomic models of metastatic cancer: Functional analysis of death-from-cancer signature genes reveals aneuploid, anoikis-resistant, metastasis-enabling phenotype with altered cell cycle control and activated Polycomb Group (PcG) protein chromatin silencing pathway. Cell Cycle, 5(11), 1208–1216.PubMedCrossRef Glinsky, G. V. (2006). Genomic models of metastatic cancer: Functional analysis of death-from-cancer signature genes reveals aneuploid, anoikis-resistant, metastasis-enabling phenotype with altered cell cycle control and activated Polycomb Group (PcG) protein chromatin silencing pathway. Cell Cycle, 5(11), 1208–1216.PubMedCrossRef
76.
go back to reference Harada, T., Chelala, C., Bahkta, V., et al. (2008). Genome-wide DNA copy number analysis in pancreatic cancer using high-density single nucleotide polymorphism arrays. Oncogene, 27(13), 1951–1960.PubMedCrossRef Harada, T., Chelala, C., Bahkta, V., et al. (2008). Genome-wide DNA copy number analysis in pancreatic cancer using high-density single nucleotide polymorphism arrays. Oncogene, 27(13), 1951–1960.PubMedCrossRef
77.
go back to reference Magee, J. A., Araki, T., Patil, S., et al. (2001). Expression profiling reveals hepsin overexpression in prostate cancer. Cancer Research, 61(15), 5692–5696.PubMed Magee, J. A., Araki, T., Patil, S., et al. (2001). Expression profiling reveals hepsin overexpression in prostate cancer. Cancer Research, 61(15), 5692–5696.PubMed
78.
go back to reference Vanaja, D. K., Cheville, J. C., Iturria, S. J., et al. (2003). Transcriptional silencing of zinc finger protein 185 identified by expression profiling is associated with prostate cancer progression. Cancer Research, 63(14), 3877–3882.PubMed Vanaja, D. K., Cheville, J. C., Iturria, S. J., et al. (2003). Transcriptional silencing of zinc finger protein 185 identified by expression profiling is associated with prostate cancer progression. Cancer Research, 63(14), 3877–3882.PubMed
79.
go back to reference Lapointe, J., Li, C., Higgins, J. P., et al. (2004). Gene expression profiling identifies clinically relevant subtypes of prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 101(3), 811–816.PubMedCrossRef Lapointe, J., Li, C., Higgins, J. P., et al. (2004). Gene expression profiling identifies clinically relevant subtypes of prostate cancer. Proceedings of the National Academy of Sciences of the United States of America, 101(3), 811–816.PubMedCrossRef
80.
go back to reference LaTulippe, E., Satagopan, J., Smith, A., et al. (2002). Comprehensive gene expression analysis of prostate cancer reveals distinct transcriptional programs associated with metastatic disease. Cancer Research, 62(15), 4499–4506.PubMed LaTulippe, E., Satagopan, J., Smith, A., et al. (2002). Comprehensive gene expression analysis of prostate cancer reveals distinct transcriptional programs associated with metastatic disease. Cancer Research, 62(15), 4499–4506.PubMed
81.
go back to reference Varambally, S., Yu, J., Laxman, B., et al. (2005). Integrative genomic and proteomic analysis of prostate cancer reveals signatures of metastatic progression. Cancer Cell, 8(5), 393–406.PubMedCrossRef Varambally, S., Yu, J., Laxman, B., et al. (2005). Integrative genomic and proteomic analysis of prostate cancer reveals signatures of metastatic progression. Cancer Cell, 8(5), 393–406.PubMedCrossRef
82.
go back to reference Pyeon, D., Newton, M. A., Lambert, P. F., et al. (2007). Fundamental differences in cell cycle deregulation in human papillomavirus-positive and human papillomavirus-negative head/neck and cervical cancers. Cancer Research, 67(10), 4605–4619.PubMedCrossRef Pyeon, D., Newton, M. A., Lambert, P. F., et al. (2007). Fundamental differences in cell cycle deregulation in human papillomavirus-positive and human papillomavirus-negative head/neck and cervical cancers. Cancer Research, 67(10), 4605–4619.PubMedCrossRef
83.
go back to reference Schlingemann, J., Habtemichael, N., Ittrich, C., et al. (2005). Patient-based cross-platform comparison of oligonucleotide microarray expression profiles. Lab Invest, 85(8), 1024–1039.PubMedCrossRef Schlingemann, J., Habtemichael, N., Ittrich, C., et al. (2005). Patient-based cross-platform comparison of oligonucleotide microarray expression profiles. Lab Invest, 85(8), 1024–1039.PubMedCrossRef
84.
go back to reference Albino, D., Scaruffi, P., Moretti, S., et al. (2008). Identification of low intratumoral gene expression heterogeneity in neuroblastic tumors by genome-wide expression analysis and game theory. Cancer, 113(6), 1412–1422.PubMedCrossRef Albino, D., Scaruffi, P., Moretti, S., et al. (2008). Identification of low intratumoral gene expression heterogeneity in neuroblastic tumors by genome-wide expression analysis and game theory. Cancer, 113(6), 1412–1422.PubMedCrossRef
85.
go back to reference Yusenko, M. V., Kuiper, R. P., Boethe, T., et al. (2009). High-resolution DNA copy number and gene expression analyses distinguish chromophobe renal cell carcinomas and renal oncocytomas. BMC Cancer, 9, 152.PubMedCrossRef Yusenko, M. V., Kuiper, R. P., Boethe, T., et al. (2009). High-resolution DNA copy number and gene expression analyses distinguish chromophobe renal cell carcinomas and renal oncocytomas. BMC Cancer, 9, 152.PubMedCrossRef
86.
go back to reference Sanchez-Carbayo, M., Socci, N. D., Lozano, J., et al. (2006). Defining molecular profiles of poor outcome in patients with invasive bladder cancer using oligonucleotide microarrays. Journal of Clinical Oncology, 24(5), 778–789.PubMedCrossRef Sanchez-Carbayo, M., Socci, N. D., Lozano, J., et al. (2006). Defining molecular profiles of poor outcome in patients with invasive bladder cancer using oligonucleotide microarrays. Journal of Clinical Oncology, 24(5), 778–789.PubMedCrossRef
Metadata
Title
DNA repair: the culprit for tumor-initiating cell survival?
Authors
Lesley A. Mathews
Stephanie M. Cabarcas
William L. Farrar
Publication date
01-06-2011
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 2/2011
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-011-9277-0

Other articles of this Issue 2/2011

Cancer and Metastasis Reviews 2/2011 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine