Skip to main content
Top
Published in: Cancer and Metastasis Reviews 2/2011

01-06-2011 | NON-THEMATIC REVIEW

The power of NGS technologies to delineate the genome organization in cancer: from mutations to structural variations and epigenetic alterations

Authors: Michal R. Schweiger, Martin Kerick, Bernd Timmermann, Melanie Isau

Published in: Cancer and Metastasis Reviews | Issue 2/2011

Login to get access

Abstract

The development of cancer is characterized by the joined occurrence of alterations on different levels—from single nucleotide changes via structural and copy number variations to epigenetic alterations. With the advent of advanced technologies such as next generation sequencing, we have now the tools in hands to put some light on complex processes and recognize systematic patterns that develop throughout cancer progression. The combination of single hypothesis-driven experiments with a system-wide genetic view enables us to prove so far not addressable questions such as the influence of DNA methylation on gene expression or the disruption of genome homeostasis by structural variations and miRNA expression patterns. Out of this enormous amount of information, specific biomarkers for cancer progression have been discovered, which pave the way for the development of new therapeutic strategies. Here, we will review the status quo of integrative cancer genomic approaches, give an overview over the power of next generation sequencing technologies in oncology, and outline future perspective. Both sides—clinical as well as basic research aspects—will be considered.
Literature
1.
go back to reference Krawitz, P. M., Schweiger, M. R., Rodelsperger, C., Marcelis, C., Kolsch, U., et al. (2010). Identity-by-descent filtering of exome sequence data identifies PIGV mutations in hyperphosphatasia mental retardation syndrome. Nature Genetics, 42, 827–829.PubMedCrossRef Krawitz, P. M., Schweiger, M. R., Rodelsperger, C., Marcelis, C., Kolsch, U., et al. (2010). Identity-by-descent filtering of exome sequence data identifies PIGV mutations in hyperphosphatasia mental retardation syndrome. Nature Genetics, 42, 827–829.PubMedCrossRef
2.
go back to reference Ng, S. B., Turner, E. H., Robertson, P. D., Flygare, S. D., Bigham, A. W., et al. (2009). Targeted capture and massively parallel sequencing of 12 human exomes. Nature, 461, 272–276.PubMedCrossRef Ng, S. B., Turner, E. H., Robertson, P. D., Flygare, S. D., Bigham, A. W., et al. (2009). Targeted capture and massively parallel sequencing of 12 human exomes. Nature, 461, 272–276.PubMedCrossRef
3.
go back to reference Bagnyukova, T., Serebriiskii, I. G., Zhou, Y., Hopper-Borge, E. A., Golemis, E. A., et al. (2010). Chemotherapy and signaling: how can targeted therapies supercharge cytotoxic agents? Cancer Biol Ther, 10(9), 839–853.PubMedCrossRef Bagnyukova, T., Serebriiskii, I. G., Zhou, Y., Hopper-Borge, E. A., Golemis, E. A., et al. (2010). Chemotherapy and signaling: how can targeted therapies supercharge cytotoxic agents? Cancer Biol Ther, 10(9), 839–853.PubMedCrossRef
4.
go back to reference Branton, D., Deamer, D. W., Marziali, A., Bayley, H., Benner, S. A., et al. (2008). The potential and challenges of nanopore sequencing. Nature Biotechnology, 26, 1146–1153.PubMedCrossRef Branton, D., Deamer, D. W., Marziali, A., Bayley, H., Benner, S. A., et al. (2008). The potential and challenges of nanopore sequencing. Nature Biotechnology, 26, 1146–1153.PubMedCrossRef
5.
go back to reference Pleasance, E. D., Stephens, P. J., O’Meara, S., McBride, D. J., Meynert, A., et al. (2010). A small-cell lung cancer genome with complex signatures of tobacco exposure. Nature, 463, 184–190.PubMedCrossRef Pleasance, E. D., Stephens, P. J., O’Meara, S., McBride, D. J., Meynert, A., et al. (2010). A small-cell lung cancer genome with complex signatures of tobacco exposure. Nature, 463, 184–190.PubMedCrossRef
6.
go back to reference Pleasance, E. D., Cheetham, R. K., Stephens, P. J., McBride, D. J., Humphray, S. J., et al. (2010). A comprehensive catalogue of somatic mutations from a human cancer genome. Nature, 463, 191–196.PubMedCrossRef Pleasance, E. D., Cheetham, R. K., Stephens, P. J., McBride, D. J., Humphray, S. J., et al. (2010). A comprehensive catalogue of somatic mutations from a human cancer genome. Nature, 463, 191–196.PubMedCrossRef
7.
go back to reference Ley, T. J., Mardis, E. R., Ding, L., Fulton, B., McLellan, M. D., et al. (2008). DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature, 456, 66–72.PubMedCrossRef Ley, T. J., Mardis, E. R., Ding, L., Fulton, B., McLellan, M. D., et al. (2008). DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature, 456, 66–72.PubMedCrossRef
8.
go back to reference Shah, S. P., Morin, R. D., Khattra, J., Prentice, L., Pugh, T., et al. (2009). Mutational evolution in a lobular breast tumour profiled at single nucleotide resolution. Nature, 461, 809–813.PubMedCrossRef Shah, S. P., Morin, R. D., Khattra, J., Prentice, L., Pugh, T., et al. (2009). Mutational evolution in a lobular breast tumour profiled at single nucleotide resolution. Nature, 461, 809–813.PubMedCrossRef
9.
go back to reference Gilbert, M. T., Haselkorn, T., Bunce, M., Sanchez, J. J., Lucas, S. B., et al. (2007). The isolation of nucleic acids from fixed, paraffin-embedded tissues-which methods are useful when? PLoS ONE, 2, e537.PubMedCrossRef Gilbert, M. T., Haselkorn, T., Bunce, M., Sanchez, J. J., Lucas, S. B., et al. (2007). The isolation of nucleic acids from fixed, paraffin-embedded tissues-which methods are useful when? PLoS ONE, 2, e537.PubMedCrossRef
10.
go back to reference Schweiger, M. R., Kerick, M., Timmermann, B., Albrecht, M. W., Borodina, T., et al. (2009). Genome-wide massively parallel sequencing of formaldehyde fixed-paraffin embedded (FFPE) tumor tissues for copy-number- and mutation-analysis. PLoS ONE, 4, e5548.PubMedCrossRef Schweiger, M. R., Kerick, M., Timmermann, B., Albrecht, M. W., Borodina, T., et al. (2009). Genome-wide massively parallel sequencing of formaldehyde fixed-paraffin embedded (FFPE) tumor tissues for copy-number- and mutation-analysis. PLoS ONE, 4, e5548.PubMedCrossRef
11.
go back to reference Bian, Y. S., Yan, P., Osterheld, M. C., Fontolliet, C., & Benhattar, J. (2001). Promoter methylation analysis on microdissected paraffin-embedded tissues using bisulfite treatment and PCR-SSCP. Biotechniques, 30, 66–72.PubMed Bian, Y. S., Yan, P., Osterheld, M. C., Fontolliet, C., & Benhattar, J. (2001). Promoter methylation analysis on microdissected paraffin-embedded tissues using bisulfite treatment and PCR-SSCP. Biotechniques, 30, 66–72.PubMed
12.
go back to reference Chiu, R. W., Chan, K. C., Gao, Y., Lau, V. Y., Zheng, W., et al. (2008). Noninvasive prenatal diagnosis of fetal chromosomal aneuploidy by massively parallel genomic sequencing of DNA in maternal plasma. Proceedings of the National Academy of Sciences of the United States of America, 105, 20458–20463.PubMedCrossRef Chiu, R. W., Chan, K. C., Gao, Y., Lau, V. Y., Zheng, W., et al. (2008). Noninvasive prenatal diagnosis of fetal chromosomal aneuploidy by massively parallel genomic sequencing of DNA in maternal plasma. Proceedings of the National Academy of Sciences of the United States of America, 105, 20458–20463.PubMedCrossRef
13.
go back to reference Kerjean, A., Vieillefond, A., Thiounn, N., Sibony, M., Jeanpierre, M., et al. (2001). Bisulfite genomic sequencing of microdissected cells. Nucleic Acids Research, 29, E106–106.PubMedCrossRef Kerjean, A., Vieillefond, A., Thiounn, N., Sibony, M., Jeanpierre, M., et al. (2001). Bisulfite genomic sequencing of microdissected cells. Nucleic Acids Research, 29, E106–106.PubMedCrossRef
14.
go back to reference Fan, H. C., Blumenfeld, Y. J., Chitkara, U., Hudgins, L., & Quake, S. R. (2008). Noninvasive diagnosis of fetal aneuploidy by shotgun sequencing DNA from maternal blood. Proceedings of the National Academy of Sciences of the United States of America, 105, 16266–16271.PubMedCrossRef Fan, H. C., Blumenfeld, Y. J., Chitkara, U., Hudgins, L., & Quake, S. R. (2008). Noninvasive diagnosis of fetal aneuploidy by shotgun sequencing DNA from maternal blood. Proceedings of the National Academy of Sciences of the United States of America, 105, 16266–16271.PubMedCrossRef
15.
go back to reference van der Vaart, M., Semenov, D. V., Kuligina, E. V., Richter, V. A., & Pretorius, P. J. (2009). Characterisation of circulating DNA by parallel tagged sequencing on the 454 platform. Clinica Chimica Acta, 409, 21–27.CrossRef van der Vaart, M., Semenov, D. V., Kuligina, E. V., Richter, V. A., & Pretorius, P. J. (2009). Characterisation of circulating DNA by parallel tagged sequencing on the 454 platform. Clinica Chimica Acta, 409, 21–27.CrossRef
16.
go back to reference Beck, J., Urnovitz, H. B., Mitchell, W. M., & Schutz, E. (2010). Next generation sequencing of serum circulating nucleic acids from patients with invasive ductal breast cancer reveals differences to healthy and nonmalignant controls. Molecular Cancer Research, 8, 335–342.PubMedCrossRef Beck, J., Urnovitz, H. B., Mitchell, W. M., & Schutz, E. (2010). Next generation sequencing of serum circulating nucleic acids from patients with invasive ductal breast cancer reveals differences to healthy and nonmalignant controls. Molecular Cancer Research, 8, 335–342.PubMedCrossRef
17.
go back to reference McBride, D. J., Orpana, A. K., Sotiriou, C., Joensuu, H., Stephens, P. J., et al. (2010). Use of cancer-specific genomic rearrangements to quantify disease burden in plasma from patients with solid tumors. Genes, Chromosomes & Cancer, 49, 1062–1069.CrossRef McBride, D. J., Orpana, A. K., Sotiriou, C., Joensuu, H., Stephens, P. J., et al. (2010). Use of cancer-specific genomic rearrangements to quantify disease burden in plasma from patients with solid tumors. Genes, Chromosomes & Cancer, 49, 1062–1069.CrossRef
18.
go back to reference Maxam, A. M., & Gilbert, W. (1977). A new method for sequencing DNA. Proceedings of the National Academy of Sciences of the United States of America, 74, 560–564.PubMedCrossRef Maxam, A. M., & Gilbert, W. (1977). A new method for sequencing DNA. Proceedings of the National Academy of Sciences of the United States of America, 74, 560–564.PubMedCrossRef
19.
go back to reference Sanger, F., Nicklen, S., & Coulson, A. R. (1977). DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 74, 5463–5467.PubMedCrossRef Sanger, F., Nicklen, S., & Coulson, A. R. (1977). DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 74, 5463–5467.PubMedCrossRef
20.
go back to reference The International Human Genome Sequencing Consortium (2004). Finishing the euchromatic sequence of the human genome. Nature, 431, 931–945.CrossRef The International Human Genome Sequencing Consortium (2004). Finishing the euchromatic sequence of the human genome. Nature, 431, 931–945.CrossRef
21.
go back to reference Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., et al. (2001). Initial sequencing and analysis of the human genome. Nature, 409, 860–921.PubMedCrossRef Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., et al. (2001). Initial sequencing and analysis of the human genome. Nature, 409, 860–921.PubMedCrossRef
22.
go back to reference Mardis, E. R. (2008). Next-generation DNA sequencing methods. Annual Review of Genomics and Human Genetics, 9, 387–402.PubMedCrossRef Mardis, E. R. (2008). Next-generation DNA sequencing methods. Annual Review of Genomics and Human Genetics, 9, 387–402.PubMedCrossRef
23.
go back to reference Shendure, J., & Ji, H. (2008). Next-generation DNA sequencing. Nature Biotechnology, 26, 1135–1145.PubMedCrossRef Shendure, J., & Ji, H. (2008). Next-generation DNA sequencing. Nature Biotechnology, 26, 1135–1145.PubMedCrossRef
24.
go back to reference Metzker, M. L. (2010). Sequencing technologies—the next generation. Nature Reviews. Genetics, 11, 31–46.PubMedCrossRef Metzker, M. L. (2010). Sequencing technologies—the next generation. Nature Reviews. Genetics, 11, 31–46.PubMedCrossRef
25.
go back to reference Ding, L., Wendl, M. C., Koboldt, D. C., & Mardis, E. R. (2010). Analysis of next-generation genomic data in cancer: accomplishments and challenges. Human Molecular Genetics, 19, R188–R196.PubMedCrossRef Ding, L., Wendl, M. C., Koboldt, D. C., & Mardis, E. R. (2010). Analysis of next-generation genomic data in cancer: accomplishments and challenges. Human Molecular Genetics, 19, R188–R196.PubMedCrossRef
26.
go back to reference Meyerson, M., Gabriel, S., & Getz, G. (2010). Advances in understanding cancer genomes through second-generation sequencing. Nature Reviews. Genetics, 11, 685–696.PubMedCrossRef Meyerson, M., Gabriel, S., & Getz, G. (2010). Advances in understanding cancer genomes through second-generation sequencing. Nature Reviews. Genetics, 11, 685–696.PubMedCrossRef
27.
go back to reference Rothberg, J. M., & Leamon, J. H. (2008). The development and impact of 454 sequencing. Nature Biotechnology, 26, 1117–1124.PubMedCrossRef Rothberg, J. M., & Leamon, J. H. (2008). The development and impact of 454 sequencing. Nature Biotechnology, 26, 1117–1124.PubMedCrossRef
28.
go back to reference Margulies, M., Egholm, M., Altman, W. E., Attiya, S., Bader, J. S., et al. (2005). Genome sequencing in microfabricated high-density picolitre reactors. Nature, 437, 376–380.PubMed Margulies, M., Egholm, M., Altman, W. E., Attiya, S., Bader, J. S., et al. (2005). Genome sequencing in microfabricated high-density picolitre reactors. Nature, 437, 376–380.PubMed
29.
30.
go back to reference Bentley, D. R., Balasubramanian, S., Swerdlow, H. P., Smith, G. P., Milton, J., et al. (2008). Accurate whole human genome sequencing using reversible terminator chemistry. Nature, 456, 53–59.PubMedCrossRef Bentley, D. R., Balasubramanian, S., Swerdlow, H. P., Smith, G. P., Milton, J., et al. (2008). Accurate whole human genome sequencing using reversible terminator chemistry. Nature, 456, 53–59.PubMedCrossRef
31.
go back to reference Shendure, J., Porreca, G. J., Reppas, N. B., Lin, X., McCutcheon, J. P., et al. (2005). Accurate multiplex polony sequencing of an evolved bacterial genome. Science, 309, 1728–1732.PubMedCrossRef Shendure, J., Porreca, G. J., Reppas, N. B., Lin, X., McCutcheon, J. P., et al. (2005). Accurate multiplex polony sequencing of an evolved bacterial genome. Science, 309, 1728–1732.PubMedCrossRef
32.
go back to reference Blow, N. (2008). DNA sequencing: generation next-next. Nat Methods, 5(6), 267–274.CrossRef Blow, N. (2008). DNA sequencing: generation next-next. Nat Methods, 5(6), 267–274.CrossRef
33.
go back to reference Clarke, J., Wu, H. C., Jayasinghe, L., Patel, A., Reid, S., et al. (2009). Continuous base identification for single-molecule nanopore DNA sequencing. Nature Nanotechnology, 4, 265–270.PubMedCrossRef Clarke, J., Wu, H. C., Jayasinghe, L., Patel, A., Reid, S., et al. (2009). Continuous base identification for single-molecule nanopore DNA sequencing. Nature Nanotechnology, 4, 265–270.PubMedCrossRef
34.
go back to reference Greenleaf, W. J., & Block, S. M. (2006). Single-molecule, motion-based DNA sequencing using RNA polymerase. Science, 313, 801.PubMedCrossRef Greenleaf, W. J., & Block, S. M. (2006). Single-molecule, motion-based DNA sequencing using RNA polymerase. Science, 313, 801.PubMedCrossRef
35.
go back to reference Sugiyama, S. (2006). Application of scanning probe microscopy to genetic analysis. Japanese journal of applied physics, 45, 4.CrossRef Sugiyama, S. (2006). Application of scanning probe microscopy to genetic analysis. Japanese journal of applied physics, 45, 4.CrossRef
36.
go back to reference Pourmand, N., Karhanek, M., Persson, H. H., Webb, C. D., Lee, T. H., et al. (2006). Direct electrical detection of DNA synthesis. Proceedings of the National Academy of Sciences of the United States of America, 103, 6466–6470.PubMedCrossRef Pourmand, N., Karhanek, M., Persson, H. H., Webb, C. D., Lee, T. H., et al. (2006). Direct electrical detection of DNA synthesis. Proceedings of the National Academy of Sciences of the United States of America, 103, 6466–6470.PubMedCrossRef
37.
go back to reference Albert, T. J., Molla, M. N., Muzny, D. M., Nazareth, L., Wheeler, D., et al. (2007). Direct selection of human genomic loci by microarray hybridization. Nat Methods, 4, 903–905.PubMedCrossRef Albert, T. J., Molla, M. N., Muzny, D. M., Nazareth, L., Wheeler, D., et al. (2007). Direct selection of human genomic loci by microarray hybridization. Nat Methods, 4, 903–905.PubMedCrossRef
38.
go back to reference Choi, M., Scholl, U. I., Ji, W., Liu, T., Tikhonova, I. R., et al. (2009). Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proceedings of the National Academy of Sciences of the United States of America, 106, 19096–19101.PubMedCrossRef Choi, M., Scholl, U. I., Ji, W., Liu, T., Tikhonova, I. R., et al. (2009). Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. Proceedings of the National Academy of Sciences of the United States of America, 106, 19096–19101.PubMedCrossRef
39.
go back to reference Gnirke, A., Melnikov, A., Maguire, J., Rogov, P., LeProust, E. M., et al. (2009). Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing. Nature Biotechnology, 27, 182–189.PubMedCrossRef Gnirke, A., Melnikov, A., Maguire, J., Rogov, P., LeProust, E. M., et al. (2009). Solution hybrid selection with ultra-long oligonucleotides for massively parallel targeted sequencing. Nature Biotechnology, 27, 182–189.PubMedCrossRef
40.
go back to reference Hodges, E., Xuan, Z., Balija, V., Kramer, M., Molla, M. N., et al. (2007). Genome-wide in situ exon capture for selective resequencing. Nature Genetics, 39, 1522–1527.PubMedCrossRef Hodges, E., Xuan, Z., Balija, V., Kramer, M., Molla, M. N., et al. (2007). Genome-wide in situ exon capture for selective resequencing. Nature Genetics, 39, 1522–1527.PubMedCrossRef
41.
go back to reference Porreca, G. J., Zhang, K., Li, J. B., Xie, B., Austin, D., et al. (2007). Multiplex amplification of large sets of human exons. Nat Methods, 4, 931–936.PubMedCrossRef Porreca, G. J., Zhang, K., Li, J. B., Xie, B., Austin, D., et al. (2007). Multiplex amplification of large sets of human exons. Nat Methods, 4, 931–936.PubMedCrossRef
42.
go back to reference The Cancer Genome Atlas Research Network (2008). Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature, 455, 1061–1068.CrossRef The Cancer Genome Atlas Research Network (2008). Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature, 455, 1061–1068.CrossRef
43.
go back to reference Bardelli, A., Parsons, D. W., Silliman, N., Ptak, J., Szabo, S., et al. (2003). Mutational analysis of the tyrosine kinome in colorectal cancers. Science, 300, 949.PubMedCrossRef Bardelli, A., Parsons, D. W., Silliman, N., Ptak, J., Szabo, S., et al. (2003). Mutational analysis of the tyrosine kinome in colorectal cancers. Science, 300, 949.PubMedCrossRef
44.
go back to reference Greenman, C., Stephens, P., Smith, R., Dalgliesh, G. L., Hunter, C., et al. (2007). Patterns of somatic mutation in human cancer genomes. Nature, 446, 153–158.PubMedCrossRef Greenman, C., Stephens, P., Smith, R., Dalgliesh, G. L., Hunter, C., et al. (2007). Patterns of somatic mutation in human cancer genomes. Nature, 446, 153–158.PubMedCrossRef
45.
go back to reference Jones, S., Zhang, X., Parsons, D. W., Lin, J. C., Leary, R. J., et al. (2008). Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science, 321, 1801–1806.PubMedCrossRef Jones, S., Zhang, X., Parsons, D. W., Lin, J. C., Leary, R. J., et al. (2008). Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science, 321, 1801–1806.PubMedCrossRef
46.
go back to reference Parsons, D. W., Jones, S., Zhang, X., Lin, J. C., Leary, R. J., et al. (2008). An integrated genomic analysis of human glioblastoma multiforme. Science, 321, 1807–1812.PubMedCrossRef Parsons, D. W., Jones, S., Zhang, X., Lin, J. C., Leary, R. J., et al. (2008). An integrated genomic analysis of human glioblastoma multiforme. Science, 321, 1807–1812.PubMedCrossRef
47.
go back to reference Sjoblom, T., Jones, S., Wood, L. D., Parsons, D. W., Lin, J., et al. (2006). The consensus coding sequences of human breast and colorectal cancers. Science, 314, 268–274.PubMedCrossRef Sjoblom, T., Jones, S., Wood, L. D., Parsons, D. W., Lin, J., et al. (2006). The consensus coding sequences of human breast and colorectal cancers. Science, 314, 268–274.PubMedCrossRef
48.
go back to reference Wood, L. D., Parsons, D. W., Jones, S., Lin, J., Sjoblom, T., et al. (2007). The genomic landscapes of human breast and colorectal cancers. Science, 318, 1108–1113.PubMedCrossRef Wood, L. D., Parsons, D. W., Jones, S., Lin, J., Sjoblom, T., et al. (2007). The genomic landscapes of human breast and colorectal cancers. Science, 318, 1108–1113.PubMedCrossRef
49.
go back to reference Mardis, E. R., Ding, L., Dooling, D. J., Larson, D. E., McLellan, M. D., et al. (2009). Recurring mutations found by sequencing an acute myeloid leukemia genome. The New England Journal of Medicine, 361, 1058–1066.PubMedCrossRef Mardis, E. R., Ding, L., Dooling, D. J., Larson, D. E., McLellan, M. D., et al. (2009). Recurring mutations found by sequencing an acute myeloid leukemia genome. The New England Journal of Medicine, 361, 1058–1066.PubMedCrossRef
50.
go back to reference Fredman, D., White, S. J., Potter, S., Eichler, E. E., Den Dunnen, J. T., et al. (2004). Complex SNP-related sequence variation in segmental genome duplications. Nature Genetics, 36, 861–866.PubMedCrossRef Fredman, D., White, S. J., Potter, S., Eichler, E. E., Den Dunnen, J. T., et al. (2004). Complex SNP-related sequence variation in segmental genome duplications. Nature Genetics, 36, 861–866.PubMedCrossRef
51.
go back to reference Druker, B. J. (2008). Translation of the Philadelphia chromosome into therapy for CML. Blood, 112, 4808–4817.PubMedCrossRef Druker, B. J. (2008). Translation of the Philadelphia chromosome into therapy for CML. Blood, 112, 4808–4817.PubMedCrossRef
52.
go back to reference Park, J. W., Neve, R. M., Szollosi, J., & Benz, C. C. (2008). Unraveling the biologic and clinical complexities of HER2. Clinical Breast Cancer, 8, 392–401.PubMedCrossRef Park, J. W., Neve, R. M., Szollosi, J., & Benz, C. C. (2008). Unraveling the biologic and clinical complexities of HER2. Clinical Breast Cancer, 8, 392–401.PubMedCrossRef
53.
go back to reference Campbell, P. J., Stephens, P. J., Pleasance, E. D., O’Meara, S., Li, H., et al. (2008). Identification of somatically acquired rearrangements in cancer using genome-wide massively parallel paired-end sequencing. Nature Genetics, 40, 722–729.PubMedCrossRef Campbell, P. J., Stephens, P. J., Pleasance, E. D., O’Meara, S., Li, H., et al. (2008). Identification of somatically acquired rearrangements in cancer using genome-wide massively parallel paired-end sequencing. Nature Genetics, 40, 722–729.PubMedCrossRef
54.
go back to reference Stephens, P. J., McBride, D. J., Lin, M. L., Varela, I., Pleasance, E. D., et al. (2009). Complex landscapes of somatic rearrangement in human breast cancer genomes. Nature, 462, 1005–1010.PubMedCrossRef Stephens, P. J., McBride, D. J., Lin, M. L., Varela, I., Pleasance, E. D., et al. (2009). Complex landscapes of somatic rearrangement in human breast cancer genomes. Nature, 462, 1005–1010.PubMedCrossRef
55.
go back to reference Beck, S., & Rakyan, V. K. (2008). The methylome: approaches for global DNA methylation profiling. Trends in Genetics, 24, 231–237.PubMedCrossRef Beck, S., & Rakyan, V. K. (2008). The methylome: approaches for global DNA methylation profiling. Trends in Genetics, 24, 231–237.PubMedCrossRef
56.
go back to reference Feinberg, A. P. (2007). Phenotypic plasticity and the epigenetics of human disease. Nature, 447, 433–440.PubMedCrossRef Feinberg, A. P. (2007). Phenotypic plasticity and the epigenetics of human disease. Nature, 447, 433–440.PubMedCrossRef
57.
go back to reference Banerjee, H. N., & Verma, M. (2009). Epigenetic mechanisms in cancer. Biomarkers Medicine, 3, 14. Banerjee, H. N., & Verma, M. (2009). Epigenetic mechanisms in cancer. Biomarkers Medicine, 3, 14.
58.
go back to reference Lister, R., & Ecker, J. R. (2009). Finding the fifth base: genome-wide sequencing of cytosine methylation. Genome Research, 19, 959–966.PubMedCrossRef Lister, R., & Ecker, J. R. (2009). Finding the fifth base: genome-wide sequencing of cytosine methylation. Genome Research, 19, 959–966.PubMedCrossRef
59.
go back to reference Ball, M. P., Li, J. B., Gao, Y., Lee, J. H., LeProust, E. M., et al. (2009). Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells. Nature Biotechnology, 27, 361–368.PubMedCrossRef Ball, M. P., Li, J. B., Gao, Y., Lee, J. H., LeProust, E. M., et al. (2009). Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells. Nature Biotechnology, 27, 361–368.PubMedCrossRef
60.
go back to reference Rakyan, V. K., Down, T. A., Thorne, N. P., Flicek, P., Kulesha, E., et al. (2008). An integrated resource for genome-wide identification and analysis of human tissue-specific differentially methylated regions (tDMRs). Genome Research, 18, 1518–1529.PubMedCrossRef Rakyan, V. K., Down, T. A., Thorne, N. P., Flicek, P., Kulesha, E., et al. (2008). An integrated resource for genome-wide identification and analysis of human tissue-specific differentially methylated regions (tDMRs). Genome Research, 18, 1518–1529.PubMedCrossRef
61.
go back to reference Morozova, O., Hirst, M., & Marra, M. A. (2009). Applications of new sequencing technologies for transcriptome analysis. Annual Review of Genomics and Human Genetics, 10, 135–151.PubMedCrossRef Morozova, O., Hirst, M., & Marra, M. A. (2009). Applications of new sequencing technologies for transcriptome analysis. Annual Review of Genomics and Human Genetics, 10, 135–151.PubMedCrossRef
62.
go back to reference Sultan, M., Schulz, M. H., Richard, H., Magen, A., Klingenhoff, A., et al. (2008). A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome. Science, 321, 956–960.PubMedCrossRef Sultan, M., Schulz, M. H., Richard, H., Magen, A., Klingenhoff, A., et al. (2008). A global view of gene activity and alternative splicing by deep sequencing of the human transcriptome. Science, 321, 956–960.PubMedCrossRef
63.
go back to reference Friedel, C. C., & Dolken, L. (2009). Metabolic tagging and purification of nascent RNA: implications for transcriptomics. Molecular Biosystems, 5, 1271–1278.PubMedCrossRef Friedel, C. C., & Dolken, L. (2009). Metabolic tagging and purification of nascent RNA: implications for transcriptomics. Molecular Biosystems, 5, 1271–1278.PubMedCrossRef
64.
go back to reference Klein, C. A. (2009). Parallel progression of primary tumours and metastases. Nature Reviews. Cancer, 9, 302–312.PubMedCrossRef Klein, C. A. (2009). Parallel progression of primary tumours and metastases. Nature Reviews. Cancer, 9, 302–312.PubMedCrossRef
65.
go back to reference Campbell, P. J., Yachida, S., Mudie, L. J., Stephens, P. J., Pleasance, E. D., et al. (2010). The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature, 467, 1109–1113.PubMedCrossRef Campbell, P. J., Yachida, S., Mudie, L. J., Stephens, P. J., Pleasance, E. D., et al. (2010). The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature, 467, 1109–1113.PubMedCrossRef
66.
go back to reference Ding, L., Ellis, M. J., Li, S., Larson, D. E., Chen, K., et al. (2010). Genome remodelling in a basal-like breast cancer metastasis and xenograft. Nature, 464, 999–1005.PubMedCrossRef Ding, L., Ellis, M. J., Li, S., Larson, D. E., Chen, K., et al. (2010). Genome remodelling in a basal-like breast cancer metastasis and xenograft. Nature, 464, 999–1005.PubMedCrossRef
Metadata
Title
The power of NGS technologies to delineate the genome organization in cancer: from mutations to structural variations and epigenetic alterations
Authors
Michal R. Schweiger
Martin Kerick
Bernd Timmermann
Melanie Isau
Publication date
01-06-2011
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 2/2011
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-011-9278-z

Other articles of this Issue 2/2011

Cancer and Metastasis Reviews 2/2011 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine