Skip to main content
Top
Published in: Cancer and Metastasis Reviews 4/2010

01-12-2010 | NON-THEMATIC REVIEW

Feedback regulation of proteasome gene expression and its implications in cancer therapy

Author: Youming Xie

Published in: Cancer and Metastasis Reviews | Issue 4/2010

Login to get access

Abstract

Proteasomal protein degradation is one of the major regulatory mechanisms in the cell. Aberrant proteasome activity is directly related to the pathogenesis of many human diseases including cancers. How proteasome homeostasis is controlled is a fundamental question toward our understanding of proteasome dysregulation in cancer cells. The recent discovery of the Rpn4-proteasome negative feedback circuit provides mechanistic insight into the regulation of proteasome gene expression. This finding also has important implications in cancer therapy that uses small molecule inhibitors to target the proteasome.
Literature
1.
go back to reference Voges, D., Zwickl, P., & Baumeister, W. (1999). The 26S proteasome: A molecular machine designed for controlled proteolysis. Annual Review of Biochemistry, 68, 1015–1068.CrossRefPubMed Voges, D., Zwickl, P., & Baumeister, W. (1999). The 26S proteasome: A molecular machine designed for controlled proteolysis. Annual Review of Biochemistry, 68, 1015–1068.CrossRefPubMed
2.
go back to reference Finley, D. (2009). Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annual Review of Biochemistry, 78, 477–513.CrossRefPubMed Finley, D. (2009). Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annual Review of Biochemistry, 78, 477–513.CrossRefPubMed
3.
go back to reference Glickman, M. H., & Ciechanover, A. (2002). The ubiquitin–proteasome proteolytic pathway: Destruction for the sake of construction. Physiological Reviews, 82, 373–428.PubMed Glickman, M. H., & Ciechanover, A. (2002). The ubiquitin–proteasome proteolytic pathway: Destruction for the sake of construction. Physiological Reviews, 82, 373–428.PubMed
4.
go back to reference Pickart, C. M., & Cohen, R. E. (2004). Proteasomes and their kins: Proteases in the machine age. Nature Reviews. Molecular Cell Biology, 5, 177–187.CrossRefPubMed Pickart, C. M., & Cohen, R. E. (2004). Proteasomes and their kins: Proteases in the machine age. Nature Reviews. Molecular Cell Biology, 5, 177–187.CrossRefPubMed
5.
go back to reference Groll, M., Bochtler, M., Brandstetter, H., Clausen, T., & Huber, R. (2005). Molecular machines for protein degradation. Chembiochem, 6, 222–256.CrossRefPubMed Groll, M., Bochtler, M., Brandstetter, H., Clausen, T., & Huber, R. (2005). Molecular machines for protein degradation. Chembiochem, 6, 222–256.CrossRefPubMed
6.
go back to reference Nickell, S., Beck, F., Scheres, S. H., Korinek, A., Förster, F., Lasker, K., et al. (2009). Insights into the molecular architecture of the 26S proteasome. Proceedings of the National Academy of Sciences of the United States of America, 106, 11943–11947.CrossRefPubMed Nickell, S., Beck, F., Scheres, S. H., Korinek, A., Förster, F., Lasker, K., et al. (2009). Insights into the molecular architecture of the 26S proteasome. Proceedings of the National Academy of Sciences of the United States of America, 106, 11943–11947.CrossRefPubMed
7.
go back to reference Murata, S., Yashiroda, H., & Tanaka, K. (2009). Molecular mechanisms of proteasome assembly. Nature Reviews. Molecular Cell Biology, 10, 104–115.CrossRefPubMed Murata, S., Yashiroda, H., & Tanaka, K. (2009). Molecular mechanisms of proteasome assembly. Nature Reviews. Molecular Cell Biology, 10, 104–115.CrossRefPubMed
8.
go back to reference Marques, A. J., Palanimurugan, R., Matias, A. C., Ramos, P. C., & Dohmen, R. J. (2009). Catalytic mechanism and assembly of the proteasome. Chemical Reviews, 109, 1509–1536.CrossRefPubMed Marques, A. J., Palanimurugan, R., Matias, A. C., Ramos, P. C., & Dohmen, R. J. (2009). Catalytic mechanism and assembly of the proteasome. Chemical Reviews, 109, 1509–1536.CrossRefPubMed
9.
go back to reference Boes, B., Hengel, H., Ruppert, T., Multhaup, G., Koszinowski, U. H., & Kloetzel, P. M. (1994). Interferon stimulation modulates the proteolytic activity and cleavage site preference of 20S mouse proteasomes. The Journal of Experimental Medicine, 179, 901–909.CrossRefPubMed Boes, B., Hengel, H., Ruppert, T., Multhaup, G., Koszinowski, U. H., & Kloetzel, P. M. (1994). Interferon stimulation modulates the proteolytic activity and cleavage site preference of 20S mouse proteasomes. The Journal of Experimental Medicine, 179, 901–909.CrossRefPubMed
10.
go back to reference Gaczynska, M., Rock, K. L., Spies, T., & Goldberg, A. L. (1994). Peptidase activities of proteasomes are differentially regulated by the major histocompatibility complex-encoded genes for LMP2 and LMP7. Proceedings of the National Academy of Sciences of the United States of America, 91, 9213–9217.CrossRefPubMed Gaczynska, M., Rock, K. L., Spies, T., & Goldberg, A. L. (1994). Peptidase activities of proteasomes are differentially regulated by the major histocompatibility complex-encoded genes for LMP2 and LMP7. Proceedings of the National Academy of Sciences of the United States of America, 91, 9213–9217.CrossRefPubMed
11.
go back to reference Cardozo, C., & Kohanski, R. A. (1998). Altered properties of the branched chain amino acid-preferring activity contribute to increased cleavages after branched chain residues by the “immunoproteasome”. The Journal of Biological Chemistry, 273, 16764–16770.CrossRefPubMed Cardozo, C., & Kohanski, R. A. (1998). Altered properties of the branched chain amino acid-preferring activity contribute to increased cleavages after branched chain residues by the “immunoproteasome”. The Journal of Biological Chemistry, 273, 16764–16770.CrossRefPubMed
12.
go back to reference Murata, S., Sasaki, K., Kishimoto, T., Niwa, S., Hayashi, H., Takahama, Y., et al. (2007). Regulation of CD8+ T cell development by thymus-specific proteasomes. Science, 316, 1349–1353.CrossRefPubMed Murata, S., Sasaki, K., Kishimoto, T., Niwa, S., Hayashi, H., Takahama, Y., et al. (2007). Regulation of CD8+ T cell development by thymus-specific proteasomes. Science, 316, 1349–1353.CrossRefPubMed
13.
go back to reference Rabl, J., Smith, D. M., Yu, Y., Chang, S.-C., Goldberg, A. L., & Cheng, Y. (2008). Mechanism of gate opening in the 20S proteasome by the proteasomal ATPases. Molecular Cell, 30, 360–368.CrossRefPubMed Rabl, J., Smith, D. M., Yu, Y., Chang, S.-C., Goldberg, A. L., & Cheng, Y. (2008). Mechanism of gate opening in the 20S proteasome by the proteasomal ATPases. Molecular Cell, 30, 360–368.CrossRefPubMed
14.
go back to reference Smith, D. M., Chang, S. C., Park, S., Finley, D., Cheng, Y., & Goldberg, A. L. (2007). Docking of the proteasomal ATPases’ carboxyl termini in the 20S proteasome’s alpha ring opens the gate for substrate entry. Molecular Cell, 27, 731–744.CrossRefPubMed Smith, D. M., Chang, S. C., Park, S., Finley, D., Cheng, Y., & Goldberg, A. L. (2007). Docking of the proteasomal ATPases’ carboxyl termini in the 20S proteasome’s alpha ring opens the gate for substrate entry. Molecular Cell, 27, 731–744.CrossRefPubMed
15.
go back to reference Tomko, R. J., Jr., Funakoshi, M., Schneider, K., Wang, J., & Hochstrasser, M. (2010). Heterohexameric ring arrangement of the eukaryotic proteasomal ATPases: Implications for proteasome structure and assembly. Molecular Cell, 38, 393–403.CrossRefPubMed Tomko, R. J., Jr., Funakoshi, M., Schneider, K., Wang, J., & Hochstrasser, M. (2010). Heterohexameric ring arrangement of the eukaryotic proteasomal ATPases: Implications for proteasome structure and assembly. Molecular Cell, 38, 393–403.CrossRefPubMed
16.
go back to reference Xie, Y., & Varshavsky, A. (2000). Physical association of ubiquitin ligases and the 26S proteasome. Proceedings of the National Academy of Sciences of the United States of America, 97, 2497–2502.CrossRefPubMed Xie, Y., & Varshavsky, A. (2000). Physical association of ubiquitin ligases and the 26S proteasome. Proceedings of the National Academy of Sciences of the United States of America, 97, 2497–2502.CrossRefPubMed
17.
go back to reference Xie, Y., & Varshavsky, A. (2002). UFD4 lacking the proteasome-binding region catalyses ubiquitination but is impaired in proteolysis. Nature Cell Biology, 4, 1003–1007.CrossRefPubMed Xie, Y., & Varshavsky, A. (2002). UFD4 lacking the proteasome-binding region catalyses ubiquitination but is impaired in proteolysis. Nature Cell Biology, 4, 1003–1007.CrossRefPubMed
18.
go back to reference Crosas, B., Hanna, J., Kirkpatrick, D.S., Zhang, D.P., Tone, Y., Hathaway, N.A., et al. (2006). Ubiquitin chains are remodeled at the proteasome by opposing ubiquitin ligase and deubiquitinating activities. Cell, 127, 1401–1413.CrossRefPubMed Crosas, B., Hanna, J., Kirkpatrick, D.S., Zhang, D.P., Tone, Y., Hathaway, N.A., et al. (2006). Ubiquitin chains are remodeled at the proteasome by opposing ubiquitin ligase and deubiquitinating activities. Cell, 127, 1401–1413.CrossRefPubMed
19.
go back to reference You, J., & Pickart, C. M. (2001). A HECT domain E3 enzyme assembles novel polyubiquitin chains. The Journal of Biological Chemistry, 276, 19871–19878.CrossRefPubMed You, J., & Pickart, C. M. (2001). A HECT domain E3 enzyme assembles novel polyubiquitin chains. The Journal of Biological Chemistry, 276, 19871–19878.CrossRefPubMed
20.
go back to reference Russell, S. J., Steger, K. A., & Johnston, S. A. (1999). Subcellular localization, stoichiometry, and protein levels of the 26S proteasome subunits in yeast. The Journal of Biological Chemistry, 274, 21943–21952.CrossRefPubMed Russell, S. J., Steger, K. A., & Johnston, S. A. (1999). Subcellular localization, stoichiometry, and protein levels of the 26S proteasome subunits in yeast. The Journal of Biological Chemistry, 274, 21943–21952.CrossRefPubMed
21.
go back to reference Glickman, M. H., Rubin, D. M., Fried, V. A., & Finley, D. (1998). The regulatory particle of the Saccharomyces cerevisiae proteasome. Molecular and Cellular Biology, 18, 3149–3162.PubMed Glickman, M. H., Rubin, D. M., Fried, V. A., & Finley, D. (1998). The regulatory particle of the Saccharomyces cerevisiae proteasome. Molecular and Cellular Biology, 18, 3149–3162.PubMed
22.
go back to reference Mannhaupt, G., Schnall, R., Karpov, V., Vetter, I., & Feldmann, H. (1999). Rpn4p acts as a transcription factor by binding to PACE, a nonamer box found upstream of 26S proteasomal and other genes in yeast. FEBS Letters, 450, 27–34.CrossRefPubMed Mannhaupt, G., Schnall, R., Karpov, V., Vetter, I., & Feldmann, H. (1999). Rpn4p acts as a transcription factor by binding to PACE, a nonamer box found upstream of 26S proteasomal and other genes in yeast. FEBS Letters, 450, 27–34.CrossRefPubMed
23.
go back to reference Xie, Y., & Varshavsky, A. (2001). RPN4 is a ligand, substrate, and transcriptional regulator of the 26S proteasome: A negative feedback circuit. Proceedings of the National Academy of Sciences of the United States of America, 98, 3056–3061.CrossRefPubMed Xie, Y., & Varshavsky, A. (2001). RPN4 is a ligand, substrate, and transcriptional regulator of the 26S proteasome: A negative feedback circuit. Proceedings of the National Academy of Sciences of the United States of America, 98, 3056–3061.CrossRefPubMed
24.
go back to reference Ju, D., Wang, L., Mao, X., & Xie, Y. (2004). Homeostatic regulation of the proteasome via an Rpn4-dependent feedback circuit. Biochemical and Biophysical Research Communications, 321, 51–57.CrossRefPubMed Ju, D., Wang, L., Mao, X., & Xie, Y. (2004). Homeostatic regulation of the proteasome via an Rpn4-dependent feedback circuit. Biochemical and Biophysical Research Communications, 321, 51–57.CrossRefPubMed
25.
go back to reference Wang, X., Xu, H., Ju, D., & Xie, Y. (2008). Disruption of Rpn4-induced proteasome expression in Saccharomyces cerevisiae reduces cell viability under stressed conditions. Genetics, 180, 1945–1953.CrossRefPubMed Wang, X., Xu, H., Ju, D., & Xie, Y. (2008). Disruption of Rpn4-induced proteasome expression in Saccharomyces cerevisiae reduces cell viability under stressed conditions. Genetics, 180, 1945–1953.CrossRefPubMed
26.
go back to reference London, M., Keck, B. I., Ramos, P. C., & Dohmen, R. J. (2004). Regulatory mechanisms controlling biogenesis of ubiquitin and the proteasome. FEBS Letters, 567, 259–264.CrossRefPubMed London, M., Keck, B. I., Ramos, P. C., & Dohmen, R. J. (2004). Regulatory mechanisms controlling biogenesis of ubiquitin and the proteasome. FEBS Letters, 567, 259–264.CrossRefPubMed
27.
go back to reference Jelinsky, S. A., Estep, P., Church, G. M., & Samson, L. D. (2000). Regulatory networks revealed by transcriptional profiling of damaged Saccharomyces cerevisiae cells: Rpn4 links base excision repair with proteasomes. Molecular and Cellular Biology, 20, 8157–8167.CrossRefPubMed Jelinsky, S. A., Estep, P., Church, G. M., & Samson, L. D. (2000). Regulatory networks revealed by transcriptional profiling of damaged Saccharomyces cerevisiae cells: Rpn4 links base excision repair with proteasomes. Molecular and Cellular Biology, 20, 8157–8167.CrossRefPubMed
28.
go back to reference Gasch, A. P., Huang, M., Metzner, S., Botstein, D., Elledge, S. J., & Brown, P. O. (2001). Genomic expression response to DNA-damaging agents and the regulatory role of the yeast ATR homolog Mec1p. Molecular Biology of the Cell, 12, 2987–3003.PubMed Gasch, A. P., Huang, M., Metzner, S., Botstein, D., Elledge, S. J., & Brown, P. O. (2001). Genomic expression response to DNA-damaging agents and the regulatory role of the yeast ATR homolog Mec1p. Molecular Biology of the Cell, 12, 2987–3003.PubMed
29.
go back to reference Owsianik, G., Balzi, E., & Ghislain, M. (2002). Control of 26S proteasome expression by transcription factors regulating multidrug resistance in Saccharomyces cerevisiae. Molecular Microbiology, 43, 1295–1308.CrossRefPubMed Owsianik, G., Balzi, E., & Ghislain, M. (2002). Control of 26S proteasome expression by transcription factors regulating multidrug resistance in Saccharomyces cerevisiae. Molecular Microbiology, 43, 1295–1308.CrossRefPubMed
30.
go back to reference Hahn, J.-S., Neef, D. W., & Thiele, D. J. (2006). A stress regulatory network for co-ordinated activation of proteasome expression mediated by yeast heat shock transcription factor. Molecular Microbiology, 60, 240–251.CrossRefPubMed Hahn, J.-S., Neef, D. W., & Thiele, D. J. (2006). A stress regulatory network for co-ordinated activation of proteasome expression mediated by yeast heat shock transcription factor. Molecular Microbiology, 60, 240–251.CrossRefPubMed
31.
go back to reference Haugen, A. C., Kelley, R., Collins, J. B., Tucker, C. J., Deng, C., Afshari, C. A., et al. (2004). Integrating phenotypic and expression profiles to map arsenic-response networks. Genome Biology, 5, R95.CrossRefPubMed Haugen, A. C., Kelley, R., Collins, J. B., Tucker, C. J., Deng, C., Afshari, C. A., et al. (2004). Integrating phenotypic and expression profiles to map arsenic-response networks. Genome Biology, 5, R95.CrossRefPubMed
32.
go back to reference Guo, N., Yu, L., Meng, R., Fan, J., Wang, D., Sun, G., et al. (2008). Global gene expression profile of Saccharomyces cerevisiae induced by dictamnine. Yeast, 25, 631–641.CrossRefPubMed Guo, N., Yu, L., Meng, R., Fan, J., Wang, D., Sun, G., et al. (2008). Global gene expression profile of Saccharomyces cerevisiae induced by dictamnine. Yeast, 25, 631–641.CrossRefPubMed
33.
go back to reference Salin, H., Fardeau, V., Piccini, E., Lelandais, G., Tanty, V., Lemoine, S., et al. (2008). Structure and properties of transcriptional networks driving selenite stress response in yeasts. BMC Genomics, 9, 333.CrossRefPubMed Salin, H., Fardeau, V., Piccini, E., Lelandais, G., Tanty, V., Lemoine, S., et al. (2008). Structure and properties of transcriptional networks driving selenite stress response in yeasts. BMC Genomics, 9, 333.CrossRefPubMed
34.
go back to reference Mizukami-Murata, S., Iwahashi, H., Kimura, S., Nojima, K., Sakurai, Y., Saitou, T., et al. (2010). Genome-wide expression changes in Saccharomyces cerevisiae in response to high-LET ionizing radiation. Applied Biochemistry and Biotechnology, 162, 855–870.CrossRefPubMed Mizukami-Murata, S., Iwahashi, H., Kimura, S., Nojima, K., Sakurai, Y., Saitou, T., et al. (2010). Genome-wide expression changes in Saccharomyces cerevisiae in response to high-LET ionizing radiation. Applied Biochemistry and Biotechnology, 162, 855–870.CrossRefPubMed
35.
go back to reference Ng, D. T. W., Spear, E. D., & Walter, P. (2000). The unfolded protein response regulates multiple aspects of secretory and membrane protein biogenesis and endoplasmic reticulum quality control. The Journal of Cell Biology, 150, 77–88.CrossRefPubMed Ng, D. T. W., Spear, E. D., & Walter, P. (2000). The unfolded protein response regulates multiple aspects of secretory and membrane protein biogenesis and endoplasmic reticulum quality control. The Journal of Cell Biology, 150, 77–88.CrossRefPubMed
36.
go back to reference Cai, H., Kauffman, S., Naider, F., & Becker, J. M. (2006). Genomewide screen reveals a wide regulatory network for di/tripeptide utilization in Saccharomyces cerevisiae. Genetics, 172, 1459–1476.CrossRefPubMed Cai, H., Kauffman, S., Naider, F., & Becker, J. M. (2006). Genomewide screen reveals a wide regulatory network for di/tripeptide utilization in Saccharomyces cerevisiae. Genetics, 172, 1459–1476.CrossRefPubMed
37.
go back to reference Metzger, M. B., & Michaelis, S. (2009). Analysis of quality control substrates in distinct cellular compartments reveals a unique role for Rpn4p in tolerating misfolded membrane proteins. Molecular Biology of the Cell, 20, 1006–1019.CrossRefPubMed Metzger, M. B., & Michaelis, S. (2009). Analysis of quality control substrates in distinct cellular compartments reveals a unique role for Rpn4p in tolerating misfolded membrane proteins. Molecular Biology of the Cell, 20, 1006–1019.CrossRefPubMed
38.
go back to reference Hausmann, S., Zheng, S., Costanzo, M., Brost, R. L., Garcin, D., Boone, C., et al. (2008). Genetic and biochemical analysis of yeast and human cap trimethylguanosine synthase: Functional overlap of 2, 2, 7-trimethylguanosine caps, small nuclear ribonucleoprotein components, pre-mRNA splicing factors, and RNA decay pathways. The Journal of Biological Chemistry, 283, 31706–31718.CrossRefPubMed Hausmann, S., Zheng, S., Costanzo, M., Brost, R. L., Garcin, D., Boone, C., et al. (2008). Genetic and biochemical analysis of yeast and human cap trimethylguanosine synthase: Functional overlap of 2, 2, 7-trimethylguanosine caps, small nuclear ribonucleoprotein components, pre-mRNA splicing factors, and RNA decay pathways. The Journal of Biological Chemistry, 283, 31706–31718.CrossRefPubMed
39.
go back to reference Teixeira, M. C., Dias, P. J., Simões, T., & Sá-Correia, I. (2008). Yeast adaptation to mancozeb involves the up-regulation of FLR1 under the coordinate control of Yap1, Rpn4, Pdr3, and Yrr1. Biochemical and Biophysical Research Communications, 367, 249–255.CrossRefPubMed Teixeira, M. C., Dias, P. J., Simões, T., & Sá-Correia, I. (2008). Yeast adaptation to mancozeb involves the up-regulation of FLR1 under the coordinate control of Yap1, Rpn4, Pdr3, and Yrr1. Biochemical and Biophysical Research Communications, 367, 249–255.CrossRefPubMed
40.
go back to reference Bosis, E., Salomon, D., Ohayon, O., Sivan, G., Bar-Nun, S., & Rabinovich, E. (2010). Ssz1 restores endoplasmic reticulum-associated protein degradation in cells expressing defective cdc48-ufd1-npl4 complex by upregulating cdc48. Genetics, 184, 695–706.CrossRefPubMed Bosis, E., Salomon, D., Ohayon, O., Sivan, G., Bar-Nun, S., & Rabinovich, E. (2010). Ssz1 restores endoplasmic reticulum-associated protein degradation in cells expressing defective cdc48-ufd1-npl4 complex by upregulating cdc48. Genetics, 184, 695–706.CrossRefPubMed
41.
go back to reference Wang, X., Xu, H., Ha, S.-W., Ju, D., & Xie, Y. (2010). Proteasomal degradation of Rpn4 in Saccharomyces cerevisiae is critical for cell viability under stressed conditions. Genetics, 184, 335–342.CrossRefPubMed Wang, X., Xu, H., Ha, S.-W., Ju, D., & Xie, Y. (2010). Proteasomal degradation of Rpn4 in Saccharomyces cerevisiae is critical for cell viability under stressed conditions. Genetics, 184, 335–342.CrossRefPubMed
42.
go back to reference Ju, D., Wang, X., Ha, S.-W., Fu, J., & Xie, Y. (2010). Inhibition of proteasomal degradation of Rpn4 impairs nonhomologous end-joining repair of DNA double-strand breaks. PLoS ONE, 5, e9877.CrossRefPubMed Ju, D., Wang, X., Ha, S.-W., Fu, J., & Xie, Y. (2010). Inhibition of proteasomal degradation of Rpn4 impairs nonhomologous end-joining repair of DNA double-strand breaks. PLoS ONE, 5, e9877.CrossRefPubMed
43.
go back to reference Mannhaupt, G., & Feldmann, H. (2007). Genomic evolution of the proteasome system among hemiascomycetous yeasts. Journal of Molecular Evolution, 65, 529–540.CrossRefPubMed Mannhaupt, G., & Feldmann, H. (2007). Genomic evolution of the proteasome system among hemiascomycetous yeasts. Journal of Molecular Evolution, 65, 529–540.CrossRefPubMed
44.
go back to reference Gasch, A. P., Moses, A. M., Chiang, D. Y., Fraser, H. B., Berardini, M., & Eisen, M. B. (2004). Conservation and evolution of cis-regulatory systems in Ascomycete fungi. PLoS Biology, 2, e398.CrossRefPubMed Gasch, A. P., Moses, A. M., Chiang, D. Y., Fraser, H. B., Berardini, M., & Eisen, M. B. (2004). Conservation and evolution of cis-regulatory systems in Ascomycete fungi. PLoS Biology, 2, e398.CrossRefPubMed
45.
go back to reference Meiners, S., Heyken, D., Weller, A., Ludwig, A., Stangl, K., Kloetzel, P.-M., et al. (2003). Inhibition of proteasome activity induces concerted expression of proteasome genes and de novo formation of Mammalian proteasomes. The Journal of Biological Chemistry, 278, 21517–21525.CrossRefPubMed Meiners, S., Heyken, D., Weller, A., Ludwig, A., Stangl, K., Kloetzel, P.-M., et al. (2003). Inhibition of proteasome activity induces concerted expression of proteasome genes and de novo formation of Mammalian proteasomes. The Journal of Biological Chemistry, 278, 21517–21525.CrossRefPubMed
46.
go back to reference Fleming, J. A., Lightcap, E. S., Sadis, S., Thoroddsen, V., Bulawa, C. E., & Blackman, R. K. (2002). Complementary whole-genome technologies reveal the cellular response to proteasome inhibition by PS-341. Proceedings of the National Academy of Sciences of the United States of America, 99, 1461–1466.CrossRefPubMed Fleming, J. A., Lightcap, E. S., Sadis, S., Thoroddsen, V., Bulawa, C. E., & Blackman, R. K. (2002). Complementary whole-genome technologies reveal the cellular response to proteasome inhibition by PS-341. Proceedings of the National Academy of Sciences of the United States of America, 99, 1461–1466.CrossRefPubMed
47.
go back to reference Lundgren, J., Masson, P., Realini, C. A., & Young, P. (2003). Use of RNA interference and complementation to study the function of the Drosophila and human 26S proteasome subunit S13. Molecular and Cellular Biology, 23, 5320–5330.CrossRefPubMed Lundgren, J., Masson, P., Realini, C. A., & Young, P. (2003). Use of RNA interference and complementation to study the function of the Drosophila and human 26S proteasome subunit S13. Molecular and Cellular Biology, 23, 5320–5330.CrossRefPubMed
48.
go back to reference Wójcik, C., & DeMartino, G. N. (2002). RNA interference of valosin-containing protein (VCP/p97) reveals multiple cellular roles linked to ubiquitin/proteasome-dependent proteolysis. The Journal of Biological Chemistry, 277, 6188–6197.CrossRefPubMed Wójcik, C., & DeMartino, G. N. (2002). RNA interference of valosin-containing protein (VCP/p97) reveals multiple cellular roles linked to ubiquitin/proteasome-dependent proteolysis. The Journal of Biological Chemistry, 277, 6188–6197.CrossRefPubMed
49.
go back to reference Xu, H., Ju, D., Jarois, T., & Xie, Y. (2008). Diminished feedback regulation of proteasome expression and resistance to proteasome inhibitors in breast cancer cells. Breast Cancer Research and Treatment, 107, 267–274.CrossRefPubMed Xu, H., Ju, D., Jarois, T., & Xie, Y. (2008). Diminished feedback regulation of proteasome expression and resistance to proteasome inhibitors in breast cancer cells. Breast Cancer Research and Treatment, 107, 267–274.CrossRefPubMed
50.
go back to reference Sato, Y., Sakamoto, K., Sei, M., Ewis, A. A., & Nakahori, Y. (2009). Proteasome subunits are regulated and expressed in comparable concentrations as a functional cluster. Biochemical and Biophysical Research Communications, 378, 795–798.CrossRefPubMed Sato, Y., Sakamoto, K., Sei, M., Ewis, A. A., & Nakahori, Y. (2009). Proteasome subunits are regulated and expressed in comparable concentrations as a functional cluster. Biochemical and Biophysical Research Communications, 378, 795–798.CrossRefPubMed
51.
go back to reference Kraft, D. C., Deocaris, C. C., Wadhwa, R., & Rattan, S. I. S. (2006). Preincubation with the proteasome inhibitor MG-132 enhances proteasome activity via the Nrf2 transcription factor in aging human skin fibroblasts. Annals of the New York Academy of Sciences, 1067, 420–424.CrossRefPubMed Kraft, D. C., Deocaris, C. C., Wadhwa, R., & Rattan, S. I. S. (2006). Preincubation with the proteasome inhibitor MG-132 enhances proteasome activity via the Nrf2 transcription factor in aging human skin fibroblasts. Annals of the New York Academy of Sciences, 1067, 420–424.CrossRefPubMed
52.
go back to reference Lee, C.-S., Tee, L. Y., Warmke, T., Vinjamoori, A., Cai, A., Fagan, A. M., et al. (2004). A proteasomal stress response: Pre-treatment with proteasome inhibitors increases proteasome activity and reduces neuronal vulnerability to oxidative injury. Journal of Neurochemistry, 91, 966–1006. Lee, C.-S., Tee, L. Y., Warmke, T., Vinjamoori, A., Cai, A., Fagan, A. M., et al. (2004). A proteasomal stress response: Pre-treatment with proteasome inhibitors increases proteasome activity and reduces neuronal vulnerability to oxidative injury. Journal of Neurochemistry, 91, 966–1006.
53.
go back to reference Radhakrishnan, S. K., Lee, C. S., Young, P., Beskow, A., Chan, J. Y., & Deshaies, R. (2010). Transcription factor Nrf1 mediates the proteasome recovery pathway after proteasome inhibition in mammalian cells. Molecular Cell, 38, 17–28.CrossRefPubMed Radhakrishnan, S. K., Lee, C. S., Young, P., Beskow, A., Chan, J. Y., & Deshaies, R. (2010). Transcription factor Nrf1 mediates the proteasome recovery pathway after proteasome inhibition in mammalian cells. Molecular Cell, 38, 17–28.CrossRefPubMed
54.
go back to reference Kwak, M. K., Wakabayashi, N., Greenlaw, J. L., Yamamoto, M., & Kensler, T. W. (2003). Antioxidants enhance mammalian proteasome expression through the Keap1-Nrf2 signaling pathway. Molecular and Cellular Biology, 23, 8786–8794.CrossRefPubMed Kwak, M. K., Wakabayashi, N., Greenlaw, J. L., Yamamoto, M., & Kensler, T. W. (2003). Antioxidants enhance mammalian proteasome expression through the Keap1-Nrf2 signaling pathway. Molecular and Cellular Biology, 23, 8786–8794.CrossRefPubMed
55.
go back to reference Kwak, M. K., & Kensler, T. W. (2006). Induction of 26S proteasome subunit PSMB5 by the bifunctional inducer 3-methycholanthrene through the Nrf2-ARE, but not the AhR/Arnt-XRE, pathway. Biochemical and Biophysical Research Communications, 345, 1350–1357.CrossRefPubMed Kwak, M. K., & Kensler, T. W. (2006). Induction of 26S proteasome subunit PSMB5 by the bifunctional inducer 3-methycholanthrene through the Nrf2-ARE, but not the AhR/Arnt-XRE, pathway. Biochemical and Biophysical Research Communications, 345, 1350–1357.CrossRefPubMed
56.
go back to reference Arlt, A., Bauer, I., Schafmayer, C., Tepel, J., Müerköster, S. S., Brosch, M., et al. (2009). Increased proteasome subunit protein expression and proteasome activity in colon cancer relate to an enhanced activation of nuclear factor E2-related factor 2 (Nrf2). Oncogene, 28, 3983–3996.CrossRefPubMed Arlt, A., Bauer, I., Schafmayer, C., Tepel, J., Müerköster, S. S., Brosch, M., et al. (2009). Increased proteasome subunit protein expression and proteasome activity in colon cancer relate to an enhanced activation of nuclear factor E2-related factor 2 (Nrf2). Oncogene, 28, 3983–3996.CrossRefPubMed
57.
go back to reference Kapeta, S., Chondrogianni, N., & Gonos, E. S. (2010). Nuclear erythroid factor 2 (Nrf2) mediated proteasome activation delays senescence in human fibroblasts. The Journal of Biological Chemistry, 285, 8171–8184.CrossRefPubMed Kapeta, S., Chondrogianni, N., & Gonos, E. S. (2010). Nuclear erythroid factor 2 (Nrf2) mediated proteasome activation delays senescence in human fibroblasts. The Journal of Biological Chemistry, 285, 8171–8184.CrossRefPubMed
58.
go back to reference Moi, P., Chan, K., Asunis, I., Cao, A., & Kan, Y. W. (1994). Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region. Proceedings of the National Academy of Sciences of the United States of America, 91, 9926–9930.CrossRefPubMed Moi, P., Chan, K., Asunis, I., Cao, A., & Kan, Y. W. (1994). Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region. Proceedings of the National Academy of Sciences of the United States of America, 91, 9926–9930.CrossRefPubMed
59.
go back to reference Kensler, T. W., Wakabayashi, N., & Biswal, S. (2007). Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annual Review of Pharmacology and Toxicology, 47, 89–116.CrossRefPubMed Kensler, T. W., Wakabayashi, N., & Biswal, S. (2007). Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annual Review of Pharmacology and Toxicology, 47, 89–116.CrossRefPubMed
60.
go back to reference Nguyen, T., Nioi, P., & Pickett, C. B. (2009). The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. The Journal of Biological Chemistry, 284, 13291–13295.CrossRefPubMed Nguyen, T., Nioi, P., & Pickett, C. B. (2009). The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. The Journal of Biological Chemistry, 284, 13291–13295.CrossRefPubMed
61.
go back to reference Orlowski, R. Z., & Kuhn, D. J. (2008). Proteasome inhibitors in cancer therapy: Lessons from the first decade. Clinical Cancer Research, 14, 1649–1657.CrossRefPubMed Orlowski, R. Z., & Kuhn, D. J. (2008). Proteasome inhibitors in cancer therapy: Lessons from the first decade. Clinical Cancer Research, 14, 1649–1657.CrossRefPubMed
62.
go back to reference Schwartz, A. L., & Ciechanover, A. (1999). The ubiquitin-proteasome pathway and pathogenesis of human diseases. Annual Review of Medicine, 50, 57–74.CrossRefPubMed Schwartz, A. L., & Ciechanover, A. (1999). The ubiquitin-proteasome pathway and pathogenesis of human diseases. Annual Review of Medicine, 50, 57–74.CrossRefPubMed
63.
go back to reference Kumatori, A., Tanaka, K., Inamura, N., Sone, S., Ogura, T., Matsumoto, T., et al. (1990). Abnormally high expression of proteasomes in human leukemic cells. Proceedings of the National Academy of Sciences of the United States of America, 87, 7071–7075.CrossRefPubMed Kumatori, A., Tanaka, K., Inamura, N., Sone, S., Ogura, T., Matsumoto, T., et al. (1990). Abnormally high expression of proteasomes in human leukemic cells. Proceedings of the National Academy of Sciences of the United States of America, 87, 7071–7075.CrossRefPubMed
64.
go back to reference Chen, L., & Madura, K. (2005). Increased proteasome activity, ubiquitin-conjugating enzymes, and eEF1A translation factor detected in breast cancer tissue. Cancer Research, 65, 5599–5606.CrossRefPubMed Chen, L., & Madura, K. (2005). Increased proteasome activity, ubiquitin-conjugating enzymes, and eEF1A translation factor detected in breast cancer tissue. Cancer Research, 65, 5599–5606.CrossRefPubMed
65.
go back to reference Bazzaro, M., Lee, M. K., Zoso, A., Stirling, W. L., Santillan, A., Shih, Ie M, et al. (2006). Ubiquitin-proteasome system stress sensitizes ovarian cancer to proteasome inhibitor-induced apoptosis. Cancer Research, 66, 3754–3763.CrossRefPubMed Bazzaro, M., Lee, M. K., Zoso, A., Stirling, W. L., Santillan, A., Shih, Ie M, et al. (2006). Ubiquitin-proteasome system stress sensitizes ovarian cancer to proteasome inhibitor-induced apoptosis. Cancer Research, 66, 3754–3763.CrossRefPubMed
66.
go back to reference Pilarsky, C., Wenzig, M., Specht, T., Saeger, H. D., & Grützmann, R. (2004). Identification and validation of commonly overexpressed genes in solid tumors by comparison of microarray data. Neoplasia, 6, 744–750.CrossRefPubMed Pilarsky, C., Wenzig, M., Specht, T., Saeger, H. D., & Grützmann, R. (2004). Identification and validation of commonly overexpressed genes in solid tumors by comparison of microarray data. Neoplasia, 6, 744–750.CrossRefPubMed
67.
go back to reference Milano, A., Iaffaioli, R. V., & Caponigro, F. (2007). The proteasome: A worthwhile target for the treatment of solid tumours? European Journal of Cancer, 43, 1125–1133.CrossRefPubMed Milano, A., Iaffaioli, R. V., & Caponigro, F. (2007). The proteasome: A worthwhile target for the treatment of solid tumours? European Journal of Cancer, 43, 1125–1133.CrossRefPubMed
68.
go back to reference Papandreou, C. N., Daliani, D. D., Nix, D., Yang, H., Madden, T., Wang, X., et al. (2004). Phase I trial of the proteasome inhibitor bortezomib in patients with advanced solid tumors with observations in androgen-independent prostate cancer. Journal of Clinical Oncology, 22, 2108–2121.CrossRefPubMed Papandreou, C. N., Daliani, D. D., Nix, D., Yang, H., Madden, T., Wang, X., et al. (2004). Phase I trial of the proteasome inhibitor bortezomib in patients with advanced solid tumors with observations in androgen-independent prostate cancer. Journal of Clinical Oncology, 22, 2108–2121.CrossRefPubMed
69.
go back to reference Schwartz, R., & Davidson, T. (2004). Pharmacology, pharmacokinetics, and practical applications of bortezomib. Oncology (Williston Park), 18(14 Suppl 11), 14–21. Schwartz, R., & Davidson, T. (2004). Pharmacology, pharmacokinetics, and practical applications of bortezomib. Oncology (Williston Park), 18(14 Suppl 11), 14–21.
70.
go back to reference Chen, S., Blank, J. L., Peters, T., Liu, X. J., Rappoli, D. M., Pickard, M. D., et al. (2010). Genome-wide siRNA screen for modulators of cell death induced by proteasome inhibitor bortezomib. Cancer Research, 70, 4318–4326.CrossRefPubMed Chen, S., Blank, J. L., Peters, T., Liu, X. J., Rappoli, D. M., Pickard, M. D., et al. (2010). Genome-wide siRNA screen for modulators of cell death induced by proteasome inhibitor bortezomib. Cancer Research, 70, 4318–4326.CrossRefPubMed
71.
go back to reference Pan, X., Ye, P., Yuan, D. S., Wang, X., Bader, J. S., & Boeke, J. D. (2006). A DNA integrity network in the yeast Saccharomyces cerevisiae. Cell, 124, 1069–1081.CrossRefPubMed Pan, X., Ye, P., Yuan, D. S., Wang, X., Bader, J. S., & Boeke, J. D. (2006). A DNA integrity network in the yeast Saccharomyces cerevisiae. Cell, 124, 1069–1081.CrossRefPubMed
72.
go back to reference Tong, A. H., Lesage, G., Bader, G. D., Ding, H., Xu, H., Xin, X., et al. (2004). Global mapping of the yeast genetic interaction network. Science, 303, 808–813.CrossRefPubMed Tong, A. H., Lesage, G., Bader, G. D., Ding, H., Xu, H., Xin, X., et al. (2004). Global mapping of the yeast genetic interaction network. Science, 303, 808–813.CrossRefPubMed
73.
go back to reference Ju, D., Wang, X., & Xie, Y. (2009). Dyclonine and alverine citrate enhance the cytotoxic effects of proteasome inhibitor MG132 on breast cancer cells. International Journal of Molecular Medicine, 23, 205–209.PubMed Ju, D., Wang, X., & Xie, Y. (2009). Dyclonine and alverine citrate enhance the cytotoxic effects of proteasome inhibitor MG132 on breast cancer cells. International Journal of Molecular Medicine, 23, 205–209.PubMed
74.
go back to reference Lees, N. D., Skaggs, B., Kirsch, D. R., & Bard, M. (1995). Cloning of the late genes in the ergosterol biosynthetic pathway of Saccharomyces cerevisiae—a review. Lipids, 30, 221–226.CrossRefPubMed Lees, N. D., Skaggs, B., Kirsch, D. R., & Bard, M. (1995). Cloning of the late genes in the ergosterol biosynthetic pathway of Saccharomyces cerevisiae—a review. Lipids, 30, 221–226.CrossRefPubMed
75.
go back to reference Bennati, A. M., Castelli, M., Fazia, M. A. D., Beccari, T., Caruso, D., Servillo, G., et al. (2006). Sterol dependent regulation of human TM7SF2 gene expression: Role of the encoded 3β-hydroxysterol Δ14-reductase in human cholesterol biosynthesis. Biochimica et Biophysica Acta, 1761, 677–685.PubMed Bennati, A. M., Castelli, M., Fazia, M. A. D., Beccari, T., Caruso, D., Servillo, G., et al. (2006). Sterol dependent regulation of human TM7SF2 gene expression: Role of the encoded 3β-hydroxysterol Δ14-reductase in human cholesterol biosynthesis. Biochimica et Biophysica Acta, 1761, 677–685.PubMed
76.
go back to reference Holmer, L., Pezhman, A., & Worman, H. J. (1998). The human lamin B receptor/sterol reductase multigene family. Genomics, 54, 469–476.CrossRefPubMed Holmer, L., Pezhman, A., & Worman, H. J. (1998). The human lamin B receptor/sterol reductase multigene family. Genomics, 54, 469–476.CrossRefPubMed
77.
go back to reference Giaever, G., Flaherty, P., Kumm, J., Proctor, M., Nislow, C., Jaramillo, D. F., et al. (2004). Chemogenomic profiling: Identifying the functional interactions of small molecules in yeast. Proceedings of the National Academy of Sciences of the United States of America, 101, 793–798.CrossRefPubMed Giaever, G., Flaherty, P., Kumm, J., Proctor, M., Nislow, C., Jaramillo, D. F., et al. (2004). Chemogenomic profiling: Identifying the functional interactions of small molecules in yeast. Proceedings of the National Academy of Sciences of the United States of America, 101, 793–798.CrossRefPubMed
78.
go back to reference Powell, S. R., Wang, P., Katzeff, H., Shringarpure, R., Teoh, C., Khaliulin, I., et al. (2005). Oxidized and ubiquitinated proteins may predict recovery of postischemic cardiac function: Essential role of the proteasome. Antioxidants Redox Signaling, 7, 538–546.CrossRefPubMed Powell, S. R., Wang, P., Katzeff, H., Shringarpure, R., Teoh, C., Khaliulin, I., et al. (2005). Oxidized and ubiquitinated proteins may predict recovery of postischemic cardiac function: Essential role of the proteasome. Antioxidants Redox Signaling, 7, 538–546.CrossRefPubMed
79.
go back to reference Zong, C., Gomes, A. V., Drews, O., Li, X., Young, G. W., Berhane, B., et al. (2006). Regulation of murine cardiac 20S proteasomes: Role of associating partners. Circulation Research, 99, 372–380.CrossRefPubMed Zong, C., Gomes, A. V., Drews, O., Li, X., Young, G. W., Berhane, B., et al. (2006). Regulation of murine cardiac 20S proteasomes: Role of associating partners. Circulation Research, 99, 372–380.CrossRefPubMed
80.
go back to reference Zhang, F., Su, K., Yang, X., Bowe, D. B., Paterson, A. J., & Kudlow, J. E. (2003). O-GlcNAc modification is an endogenous inhibitor of the proteasome. Cell, 115, 715–725.CrossRefPubMed Zhang, F., Su, K., Yang, X., Bowe, D. B., Paterson, A. J., & Kudlow, J. E. (2003). O-GlcNAc modification is an endogenous inhibitor of the proteasome. Cell, 115, 715–725.CrossRefPubMed
81.
go back to reference Kimura, Y., Saeki, Y., Yokosawa, H., Polevoda, B., Sherman, F., & Hirano, H. (2003). N-Terminal modifications of the 19S regulatory particle subunits of the yeast proteasome. Archives of Biochemistry and Biophysics, 409, 341–348.CrossRefPubMed Kimura, Y., Saeki, Y., Yokosawa, H., Polevoda, B., Sherman, F., & Hirano, H. (2003). N-Terminal modifications of the 19S regulatory particle subunits of the yeast proteasome. Archives of Biochemistry and Biophysics, 409, 341–348.CrossRefPubMed
Metadata
Title
Feedback regulation of proteasome gene expression and its implications in cancer therapy
Author
Youming Xie
Publication date
01-12-2010
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 4/2010
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-010-9255-y

Other articles of this Issue 4/2010

Cancer and Metastasis Reviews 4/2010 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine