Skip to main content
Top
Published in: Cancer and Metastasis Reviews 1/2010

01-03-2010

Integrating the multiple dimensions of genomic and epigenomic landscapes of cancer

Authors: Raj Chari, Kelsie L. Thu, Ian M. Wilson, William W. Lockwood, Kim M. Lonergan, Bradley P. Coe, Chad A. Malloff, Adi F. Gazdar, Stephen Lam, Cathie Garnis, Calum E. MacAulay, Carlos E. Alvarez, Wan L. Lam

Published in: Cancer and Metastasis Reviews | Issue 1/2010

Login to get access

Abstract

Advances in high-throughput, genome-wide profiling technologies have allowed for an unprecedented view of the cancer genome landscape. Specifically, high-density microarrays and sequencing-based strategies have been widely utilized to identify genetic (such as gene dosage, allelic status, and mutations in gene sequence) and epigenetic (such as DNA methylation, histone modification, and microRNA) aberrations in cancer. Although the application of these profiling technologies in unidimensional analyses has been instrumental in cancer gene discovery, genes affected by low-frequency events are often overlooked. The integrative approach of analyzing parallel dimensions has enabled the identification of (a) genes that are often disrupted by multiple mechanisms but at low frequencies by any one mechanism and (b) pathways that are often disrupted at multiple components but at low frequencies at individual components. These benefits of using an integrative approach illustrate the concept that the whole is greater than the sum of its parts. As efforts have now turned toward parallel and integrative multidimensional approaches for studying the cancer genome landscape in hopes of obtaining a more insightful understanding of the key genes and pathways driving cancer cells, this review describes key findings disseminating from such high-throughput, integrative analyses, including contributions to our understanding of causative genetic events in cancer cell biology.
Literature
1.
go back to reference Pinkel, D., Segraves, R., Sudar, D., Clark, S., Poole, I., Kowbel, D., et al. (1998). High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nature Genetics, 20(2), 207–211.PubMed Pinkel, D., Segraves, R., Sudar, D., Clark, S., Poole, I., Kowbel, D., et al. (1998). High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nature Genetics, 20(2), 207–211.PubMed
2.
go back to reference Schrock, E., du Manoir, S., Veldman, T., Schoell, B., Wienberg, J., Ferguson-Smith, M. A., et al. (1996). Multicolor spectral karyotyping of human chromosomes. Science, 273(5274), 494–497.PubMed Schrock, E., du Manoir, S., Veldman, T., Schoell, B., Wienberg, J., Ferguson-Smith, M. A., et al. (1996). Multicolor spectral karyotyping of human chromosomes. Science, 273(5274), 494–497.PubMed
3.
go back to reference Drmanac, R., Sparks, A. B., Callow, M. J., Halpern, A. L., Burns, N. L., Kermani, B. G., et al. (2009). Human genome sequencing using unchained base reads on self-assembling DNA nanoarrays. Science, 327(5961), 78–81.PubMed Drmanac, R., Sparks, A. B., Callow, M. J., Halpern, A. L., Burns, N. L., Kermani, B. G., et al. (2009). Human genome sequencing using unchained base reads on self-assembling DNA nanoarrays. Science, 327(5961), 78–81.PubMed
4.
go back to reference Pleasance, E. D., Cheetham, R. K., Stephens, P. J., McBride, D. J., Humphray, S. J., Greenman, C. D., et al. (2009). A comprehensive catalogue of somatic mutations from a human cancer genome. Nature. Pleasance, E. D., Cheetham, R. K., Stephens, P. J., McBride, D. J., Humphray, S. J., Greenman, C. D., et al. (2009). A comprehensive catalogue of somatic mutations from a human cancer genome. Nature.
5.
go back to reference Pleasance, E. D., Stephens, P. J., O’Meara, S., McBride, D. J., Meynert, A., Jones, D., et al. (2009). A small-cell lung cancer genome with complex signatures of tobacco exposure. Nature. Pleasance, E. D., Stephens, P. J., O’Meara, S., McBride, D. J., Meynert, A., Jones, D., et al. (2009). A small-cell lung cancer genome with complex signatures of tobacco exposure. Nature.
6.
go back to reference Stephens, P. J., McBride, D. J., Lin, M. L., Varela, I., Pleasance, E. D., Simpson, J. T., et al. (2009). Complex landscapes of somatic rearrangement in human breast cancer genomes. Nature, 462(7276), 1005–1010.PubMed Stephens, P. J., McBride, D. J., Lin, M. L., Varela, I., Pleasance, E. D., Simpson, J. T., et al. (2009). Complex landscapes of somatic rearrangement in human breast cancer genomes. Nature, 462(7276), 1005–1010.PubMed
7.
go back to reference Chari, R., Coe, B. P., Wedseltoft, C., Benetti, M., Wilson, I. M., Vucic, E. A., et al. (2008). SIGMA2: a system for the integrative genomic multi-dimensional analysis of cancer genomes, epigenomes, and transcriptomes. BMC Bioinformatics, 9, 422.PubMed Chari, R., Coe, B. P., Wedseltoft, C., Benetti, M., Wilson, I. M., Vucic, E. A., et al. (2008). SIGMA2: a system for the integrative genomic multi-dimensional analysis of cancer genomes, epigenomes, and transcriptomes. BMC Bioinformatics, 9, 422.PubMed
8.
go back to reference von Eschenbach, A. C., & Buetow, K. (2007). Cancer informatics vision: caBIG. Cancer Informatics, 2, 22–24. von Eschenbach, A. C., & Buetow, K. (2007). Cancer informatics vision: caBIG. Cancer Informatics, 2, 22–24.
9.
go back to reference Conde, L., Montaner, D., Burguet-Castell, J., Tarraga, J., Medina, I., Al-Shahrour, F., et al. (2007). ISACGH: a web-based environment for the analysis of Array CGH and gene expression which includes functional profiling. Nucleic Acids Research, 35(Web Server issue), W81–W85.PubMed Conde, L., Montaner, D., Burguet-Castell, J., Tarraga, J., Medina, I., Al-Shahrour, F., et al. (2007). ISACGH: a web-based environment for the analysis of Array CGH and gene expression which includes functional profiling. Nucleic Acids Research, 35(Web Server issue), W81–W85.PubMed
10.
go back to reference La Rosa, P., Viara, E., Hupe, P., Pierron, G., Liva, S., Neuvial, P., et al. (2006). VAMP: visualization and analysis of array-CGH, transcriptome and other molecular profiles. Bioinformatics, 22(17), 2066–2073.PubMed La Rosa, P., Viara, E., Hupe, P., Pierron, G., Liva, S., Neuvial, P., et al. (2006). VAMP: visualization and analysis of array-CGH, transcriptome and other molecular profiles. Bioinformatics, 22(17), 2066–2073.PubMed
11.
go back to reference Horn, T., Arziman, Z., Berger, J., & Boutros, M. (2007). GenomeRNAi: a database for cell-based RNAi phenotypes. Nucleic Acids Research, 35, D492–D497.PubMed Horn, T., Arziman, Z., Berger, J., & Boutros, M. (2007). GenomeRNAi: a database for cell-based RNAi phenotypes. Nucleic Acids Research, 35, D492–D497.PubMed
12.
go back to reference Gilsdorf, M., Horn, T., Arziman, Z., Pelz, O., Kiner, E., & Boutros, M. (2010). GenomeRNAi: a database for cell-based RNAi phenotypes. 2009 update. Nucleic Acids Research, 38, D448–D452.PubMed Gilsdorf, M., Horn, T., Arziman, Z., Pelz, O., Kiner, E., & Boutros, M. (2010). GenomeRNAi: a database for cell-based RNAi phenotypes. 2009 update. Nucleic Acids Research, 38, D448–D452.PubMed
13.
go back to reference Shah, S. P., Morin, R. D., Khattra, J., Prentice, L., Pugh, T., Burleigh, A., et al. (2009). Mutational evolution in a lobular breast tumour profiled at single nucleotide resolution. Nature, 461(7265), 809–813.PubMed Shah, S. P., Morin, R. D., Khattra, J., Prentice, L., Pugh, T., Burleigh, A., et al. (2009). Mutational evolution in a lobular breast tumour profiled at single nucleotide resolution. Nature, 461(7265), 809–813.PubMed
14.
go back to reference Lister, R., Pelizzola, M., Dowen, R. H., Hawkins, R. D., Hon, G., Tonti-Filippini, J., et al. (2009). Human DNA methylomes at base resolution show widespread epigenomic differences. Nature, 462(7271), 315–322.PubMed Lister, R., Pelizzola, M., Dowen, R. H., Hawkins, R. D., Hon, G., Tonti-Filippini, J., et al. (2009). Human DNA methylomes at base resolution show widespread epigenomic differences. Nature, 462(7271), 315–322.PubMed
15.
go back to reference Ley, T. J., Mardis, E. R., Ding, L., Fulton, B., McLellan, M. D., Chen, K., et al. (2008). DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature, 456(7218), 66–72.PubMed Ley, T. J., Mardis, E. R., Ding, L., Fulton, B., McLellan, M. D., Chen, K., et al. (2008). DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature, 456(7218), 66–72.PubMed
16.
go back to reference Mardis, E. R., Ding, L., Dooling, D. J., Larson, D. E., McLellan, M. D., Chen, K., et al. (2009). Recurring mutations found by sequencing an acute myeloid leukemia genome. New England Journal of Medicine, 361(11), 1058–1066.PubMed Mardis, E. R., Ding, L., Dooling, D. J., Larson, D. E., McLellan, M. D., Chen, K., et al. (2009). Recurring mutations found by sequencing an acute myeloid leukemia genome. New England Journal of Medicine, 361(11), 1058–1066.PubMed
17.
go back to reference Wise, J. (2008). Consortium hopes to sequence genome of 1000 volunteers. BMJ, 336(7638), 237.PubMed Wise, J. (2008). Consortium hopes to sequence genome of 1000 volunteers. BMJ, 336(7638), 237.PubMed
18.
go back to reference The Cancer Genome Atlas Research Network. (2008). Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature, 455(7216), 1061–1068. The Cancer Genome Atlas Research Network. (2008). Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature, 455(7216), 1061–1068.
19.
go back to reference Frazer, K. A., Ballinger, D. G., Cox, D. R., Hinds, D. A., Stuve, L. L., Gibbs, R. A., et al. (2007). A second generation human haplotype map of over 3.1 million SNPs. Nature, 449(7164), 851–861.PubMed Frazer, K. A., Ballinger, D. G., Cox, D. R., Hinds, D. A., Stuve, L. L., Gibbs, R. A., et al. (2007). A second generation human haplotype map of over 3.1 million SNPs. Nature, 449(7164), 851–861.PubMed
20.
go back to reference Redon, R., Ishikawa, S., Fitch, K. R., Feuk, L., Perry, G. H., Andrews, T. D., et al. (2006). Global variation in copy number in the human genome. Nature, 444(7118), 444–454.PubMed Redon, R., Ishikawa, S., Fitch, K. R., Feuk, L., Perry, G. H., Andrews, T. D., et al. (2006). Global variation in copy number in the human genome. Nature, 444(7118), 444–454.PubMed
21.
go back to reference Wong, K. K., deLeeuw, R. J., Dosanjh, N. S., Kimm, L. R., Cheng, Z., Horsman, D. E., et al. (2007). A comprehensive analysis of common copy-number variations in the human genome. American Journal of Human Genetics, 80(1), 91–104.PubMed Wong, K. K., deLeeuw, R. J., Dosanjh, N. S., Kimm, L. R., Cheng, Z., Horsman, D. E., et al. (2007). A comprehensive analysis of common copy-number variations in the human genome. American Journal of Human Genetics, 80(1), 91–104.PubMed
22.
go back to reference Shames, D. S., Girard, L., Gao, B., Sato, M., Lewis, C. M., Shivapurkar, N., et al. (2006). A genome-wide screen for promoter methylation in lung cancer identifies novel methylation markers for multiple malignancies. PLoS Medicine, 3(12), e486.PubMed Shames, D. S., Girard, L., Gao, B., Sato, M., Lewis, C. M., Shivapurkar, N., et al. (2006). A genome-wide screen for promoter methylation in lung cancer identifies novel methylation markers for multiple malignancies. PLoS Medicine, 3(12), e486.PubMed
23.
go back to reference Sjoblom, T., Jones, S., Wood, L. D., Parsons, D. W., Lin, J., Barber, T. D., et al. (2006). The consensus coding sequences of human breast and colorectal cancers. Science, 314(5797), 268–274.PubMed Sjoblom, T., Jones, S., Wood, L. D., Parsons, D. W., Lin, J., Barber, T. D., et al. (2006). The consensus coding sequences of human breast and colorectal cancers. Science, 314(5797), 268–274.PubMed
24.
go back to reference Root, D. E., Hacohen, N., Hahn, W. C., Lander, E. S., & Sabatini, D. M. (2006). Genome-scale loss-of-function screening with a lentiviral RNAi library. Nat Methods, 3(9), 715–719.PubMed Root, D. E., Hacohen, N., Hahn, W. C., Lander, E. S., & Sabatini, D. M. (2006). Genome-scale loss-of-function screening with a lentiviral RNAi library. Nat Methods, 3(9), 715–719.PubMed
25.
go back to reference Bibikova, M., Lin, Z., Zhou, L., Chudin, E., Garcia, E. W., Wu, B., et al. (2006). High-throughput DNA methylation profiling using universal bead arrays. Genome Research, 16(3), 383–393.PubMed Bibikova, M., Lin, Z., Zhou, L., Chudin, E., Garcia, E. W., Wu, B., et al. (2006). High-throughput DNA methylation profiling using universal bead arrays. Genome Research, 16(3), 383–393.PubMed
26.
go back to reference Weber, M., Davies, J. J., Wittig, D., Oakeley, E. J., Haase, M., Lam, W. L., et al. (2005). Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nature Genetics, 37(8), 853–862.PubMed Weber, M., Davies, J. J., Wittig, D., Oakeley, E. J., Haase, M., Lam, W. L., et al. (2005). Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nature Genetics, 37(8), 853–862.PubMed
27.
go back to reference International HapMap Consortium. (2005). A haplotype map of the human genome. Nature, 437(7063), 1299–1320. International HapMap Consortium. (2005). A haplotype map of the human genome. Nature, 437(7063), 1299–1320.
28.
go back to reference Lu, J., Getz, G., Miska, E. A., Alvarez-Saavedra, E., Lamb, J., Peck, D., et al. (2005). MicroRNA expression profiles classify human cancers. Nature, 435(7043), 834–838.PubMed Lu, J., Getz, G., Miska, E. A., Alvarez-Saavedra, E., Lamb, J., Peck, D., et al. (2005). MicroRNA expression profiles classify human cancers. Nature, 435(7043), 834–838.PubMed
29.
go back to reference Bamford, S., Dawson, E., Forbes, S., Clements, J., Pettett, R., Dogan, A., et al. (2004). The COSMIC (Catalogue of Somatic Mutations in Cancer) database and website. British Journal of Cancer, 91(2), 355–358.PubMed Bamford, S., Dawson, E., Forbes, S., Clements, J., Pettett, R., Dogan, A., et al. (2004). The COSMIC (Catalogue of Somatic Mutations in Cancer) database and website. British Journal of Cancer, 91(2), 355–358.PubMed
30.
go back to reference Paddison, P. J., Silva, J. M., Conklin, D. S., Schlabach, M., Li, M., Aruleba, S., et al. (2004). A resource for large-scale RNA-interference-based screens in mammals. Nature, 428(6981), 427–431.PubMed Paddison, P. J., Silva, J. M., Conklin, D. S., Schlabach, M., Li, M., Aruleba, S., et al. (2004). A resource for large-scale RNA-interference-based screens in mammals. Nature, 428(6981), 427–431.PubMed
31.
go back to reference Schlabach, M. R., Luo, J., Solimini, N. L., Hu, G., Xu, Q., Li, M. Z., et al. (2008). Cancer proliferation gene discovery through functional genomics. Science, 319(5863), 620–624.PubMed Schlabach, M. R., Luo, J., Solimini, N. L., Hu, G., Xu, Q., Li, M. Z., et al. (2008). Cancer proliferation gene discovery through functional genomics. Science, 319(5863), 620–624.PubMed
32.
go back to reference Futreal, P. A., Coin, L., Marshall, M., Down, T., Hubbard, T., Wooster, R., et al. (2004). A census of human cancer genes. Nature Reviews Cancer, 4(3), 177–183.PubMed Futreal, P. A., Coin, L., Marshall, M., Down, T., Hubbard, T., Wooster, R., et al. (2004). A census of human cancer genes. Nature Reviews Cancer, 4(3), 177–183.PubMed
33.
go back to reference Iafrate, A. J., Feuk, L., Rivera, M. N., Listewnik, M. L., Donahoe, P. K., Qi, Y., et al. (2004). Detection of large-scale variation in the human genome. Nature Genetics, 36(9), 949–951.PubMed Iafrate, A. J., Feuk, L., Rivera, M. N., Listewnik, M. L., Donahoe, P. K., Qi, Y., et al. (2004). Detection of large-scale variation in the human genome. Nature Genetics, 36(9), 949–951.PubMed
34.
go back to reference Sebat, J., Lakshmi, B., Troge, J., Alexander, J., Young, J., Lundin, P., et al. (2004). Large-scale copy number polymorphism in the human genome. Science, 305(5683), 525–528.PubMed Sebat, J., Lakshmi, B., Troge, J., Alexander, J., Young, J., Lundin, P., et al. (2004). Large-scale copy number polymorphism in the human genome. Science, 305(5683), 525–528.PubMed
35.
go back to reference Ishkanian, A. S., Malloff, C. A., Watson, S. K., DeLeeuw, R. J., Chi, B., Coe, B. P., et al. (2004). A tiling resolution DNA microarray with complete coverage of the human genome. Nature Genetics, 36(3), 299–303.PubMed Ishkanian, A. S., Malloff, C. A., Watson, S. K., DeLeeuw, R. J., Chi, B., Coe, B. P., et al. (2004). A tiling resolution DNA microarray with complete coverage of the human genome. Nature Genetics, 36(3), 299–303.PubMed
36.
go back to reference Bertone, P., Stolc, V., Royce, T. E., Rozowsky, J. S., Urban, A. E., Zhu, X., et al. (2004). Global identification of human transcribed sequences with genome tiling arrays. Science, 306(5705), 2242–2246.PubMed Bertone, P., Stolc, V., Royce, T. E., Rozowsky, J. S., Urban, A. E., Zhu, X., et al. (2004). Global identification of human transcribed sequences with genome tiling arrays. Science, 306(5705), 2242–2246.PubMed
37.
go back to reference Hubbard, T., Barker, D., Birney, E., Cameron, G., Chen, Y., Clark, L., et al. (2002). The ensembl genome database project. Nucleic Acids Research, 30(1), 38–41.PubMed Hubbard, T., Barker, D., Birney, E., Cameron, G., Chen, Y., Clark, L., et al. (2002). The ensembl genome database project. Nucleic Acids Research, 30(1), 38–41.PubMed
38.
go back to reference Kent, W. J., Sugnet, C. W., Furey, T. S., Roskin, K. M., Pringle, T. H., Zahler, A. M., et al. (2002). The human genome browser at UCSC. Genome Research, 12(6), 996–1006.PubMed Kent, W. J., Sugnet, C. W., Furey, T. S., Roskin, K. M., Pringle, T. H., Zahler, A. M., et al. (2002). The human genome browser at UCSC. Genome Research, 12(6), 996–1006.PubMed
39.
go back to reference Oliphant, A., Barker, D. L., Stuelpnagel, J. R., & Chee M. S. (2002). BeadArray technology: enabling an accurate, cost-effective approach to high-throughput genotyping. Biotechniques, Suppl:56–58, 60–51. Oliphant, A., Barker, D. L., Stuelpnagel, J. R., & Chee M. S. (2002). BeadArray technology: enabling an accurate, cost-effective approach to high-throughput genotyping. Biotechniques, Suppl:56–58, 60–51.
40.
go back to reference Weinstein, I. B. (2002). Cancer. Addiction to oncogenes—the Achilles heal of cancer. Science, 297(5578), 63–64.PubMed Weinstein, I. B. (2002). Cancer. Addiction to oncogenes—the Achilles heal of cancer. Science, 297(5578), 63–64.PubMed
41.
go back to reference Weinstein, I. B., & Joe, A. (2008). Oncogene addiction. Cancer Research, 68(9), 3077–3080. discussion 3080.PubMed Weinstein, I. B., & Joe, A. (2008). Oncogene addiction. Cancer Research, 68(9), 3077–3080. discussion 3080.PubMed
42.
go back to reference Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., et al. (2001). Initial sequencing and analysis of the human genome. Nature, 409(6822), 860–921.PubMed Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., et al. (2001). Initial sequencing and analysis of the human genome. Nature, 409(6822), 860–921.PubMed
43.
go back to reference Venter, J. C., Adams, M. D., Myers, E. W., Li, P. W., Mural, R. J., Sutton, G. G., et al. (2001). The sequence of the human genome. Science, 291(5507), 1304–1351.PubMed Venter, J. C., Adams, M. D., Myers, E. W., Li, P. W., Mural, R. J., Sutton, G. G., et al. (2001). The sequence of the human genome. Science, 291(5507), 1304–1351.PubMed
44.
go back to reference Riggins, G. J., & Strausberg, R. L. (2001). Genome and genetic resources from the cancer genome anatomy project. Human Molecular Genetics, 10(7), 663–667.PubMed Riggins, G. J., & Strausberg, R. L. (2001). Genome and genetic resources from the cancer genome anatomy project. Human Molecular Genetics, 10(7), 663–667.PubMed
45.
go back to reference Strausberg, R. L., Buetow, K. H., Emmert-Buck, M. R., & Klausner, R. D. (2000). The cancer genome anatomy project: Building an annotated gene index. Trends in Genetics, 16(3), 103–106.PubMed Strausberg, R. L., Buetow, K. H., Emmert-Buck, M. R., & Klausner, R. D. (2000). The cancer genome anatomy project: Building an annotated gene index. Trends in Genetics, 16(3), 103–106.PubMed
46.
go back to reference Bayani, J. M., & Squire, J. A. (2002). Applications of SKY in cancer cytogenetics. Cancer Investigation, 20(3), 373–386.PubMed Bayani, J. M., & Squire, J. A. (2002). Applications of SKY in cancer cytogenetics. Cancer Investigation, 20(3), 373–386.PubMed
47.
go back to reference Kallioniemi, A., Kallioniemi, O. P., Sudar, D., Rutovitz, D., Gray, J. W., Waldman, F., et al. (1992). Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science, 258(5083), 818–821.PubMed Kallioniemi, A., Kallioniemi, O. P., Sudar, D., Rutovitz, D., Gray, J. W., Waldman, F., et al. (1992). Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science, 258(5083), 818–821.PubMed
48.
go back to reference Garnis, C., Buys, T. P., & Lam, W. L. (2004). Genetic alteration and gene expression modulation during cancer progression. Molecular Cancer, 3, 9.PubMed Garnis, C., Buys, T. P., & Lam, W. L. (2004). Genetic alteration and gene expression modulation during cancer progression. Molecular Cancer, 3, 9.PubMed
49.
go back to reference Gebhart, E. (2005). Genomic imbalances in human leukemia and lymphoma detected by comparative genomic hybridization (Review). International Journal of Oncology, 27(3), 593–606.PubMed Gebhart, E. (2005). Genomic imbalances in human leukemia and lymphoma detected by comparative genomic hybridization (Review). International Journal of Oncology, 27(3), 593–606.PubMed
50.
go back to reference Gebhart, E., & Liehr, T. (2000). Patterns of genomic imbalances in human solid tumors (Review). International Journal of Oncology, 16(2), 383–399.PubMed Gebhart, E., & Liehr, T. (2000). Patterns of genomic imbalances in human solid tumors (Review). International Journal of Oncology, 16(2), 383–399.PubMed
51.
go back to reference Cahill, D. P., Lengauer, C., Yu, J., Riggins, G. J., Willson, J. K., Markowitz, S. D., et al. (1998). Mutations of mitotic checkpoint genes in human cancers. Nature, 392(6673), 300–303.PubMed Cahill, D. P., Lengauer, C., Yu, J., Riggins, G. J., Willson, J. K., Markowitz, S. D., et al. (1998). Mutations of mitotic checkpoint genes in human cancers. Nature, 392(6673), 300–303.PubMed
52.
go back to reference Fukasawa, K. (2005). Centrosome amplification, chromosome instability and cancer development. Cancer Letters, 230(1), 6–19.PubMed Fukasawa, K. (2005). Centrosome amplification, chromosome instability and cancer development. Cancer Letters, 230(1), 6–19.PubMed
53.
go back to reference Lingle, W. L., Lukasiewicz, K., & Salisbury, J. L. (2005). Deregulation of the centrosome cycle and the origin of chromosomal instability in cancer. Advances in Experimental Medicine and Biology, 570, 393–421.PubMed Lingle, W. L., Lukasiewicz, K., & Salisbury, J. L. (2005). Deregulation of the centrosome cycle and the origin of chromosomal instability in cancer. Advances in Experimental Medicine and Biology, 570, 393–421.PubMed
54.
go back to reference Chin, K., de Solorzano, C. O., Knowles, D., Jones, A., Chou, W., Rodriguez, E. G., et al. (2004). In situ analyses of genome instability in breast cancer. Nature Genetics, 36(9), 984–988.PubMed Chin, K., de Solorzano, C. O., Knowles, D., Jones, A., Chou, W., Rodriguez, E. G., et al. (2004). In situ analyses of genome instability in breast cancer. Nature Genetics, 36(9), 984–988.PubMed
55.
go back to reference O’Hagan, R. C., Chang, S., Maser, R. S., Mohan, R., Artandi, S. E., Chin, L., et al. (2002). Telomere dysfunction provokes regional amplification and deletion in cancer genomes. Cancer Cell, 2(2), 149–155.PubMed O’Hagan, R. C., Chang, S., Maser, R. S., Mohan, R., Artandi, S. E., Chin, L., et al. (2002). Telomere dysfunction provokes regional amplification and deletion in cancer genomes. Cancer Cell, 2(2), 149–155.PubMed
56.
go back to reference Green, A. R. (1992). Transcription factors, translocations and haematological malignancies. Blood Reviews, 6(2), 118–124.PubMed Green, A. R. (1992). Transcription factors, translocations and haematological malignancies. Blood Reviews, 6(2), 118–124.PubMed
57.
go back to reference Rowley, J. D. (2008). Chromosomal translocations: revisited yet again. Blood, 112(6), 2183–2189.PubMed Rowley, J. D. (2008). Chromosomal translocations: revisited yet again. Blood, 112(6), 2183–2189.PubMed
58.
go back to reference Watson, S. K., deLeeuw, R. J., Horsman, D. E., Squire, J. A., & Lam, W. L. (2007). Cytogenetically balanced translocations are associated with focal copy number alterations. Human Genetics, 120(6), 795–805.PubMed Watson, S. K., deLeeuw, R. J., Horsman, D. E., Squire, J. A., & Lam, W. L. (2007). Cytogenetically balanced translocations are associated with focal copy number alterations. Human Genetics, 120(6), 795–805.PubMed
59.
go back to reference Brenner, J. C., & Chinnaiyan, A. M. (2009). Translocations in epithelial cancers. Biochimica et Biophysica Acta, 1796(2), 201–215.PubMed Brenner, J. C., & Chinnaiyan, A. M. (2009). Translocations in epithelial cancers. Biochimica et Biophysica Acta, 1796(2), 201–215.PubMed
60.
go back to reference Mani, R. S., Tomlins, S. A., Callahan, K., Ghosh, A., Nyati, M. K., Varambally, S., et al. (2009). Induced chromosomal proximity and gene fusions in prostate cancer. Science, 326(5957), 1230.PubMed Mani, R. S., Tomlins, S. A., Callahan, K., Ghosh, A., Nyati, M. K., Varambally, S., et al. (2009). Induced chromosomal proximity and gene fusions in prostate cancer. Science, 326(5957), 1230.PubMed
61.
go back to reference Tomlins, S. A., Rhodes, D. R., Perner, S., Dhanasekaran, S. M., Mehra, R., Sun, X. W., et al. (2005). Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science, 310(5748), 644–648.PubMed Tomlins, S. A., Rhodes, D. R., Perner, S., Dhanasekaran, S. M., Mehra, R., Sun, X. W., et al. (2005). Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science, 310(5748), 644–648.PubMed
62.
go back to reference Dang, T. P., Gazdar, A. F., Virmani, A. K., Sepetavec, T., Hande, K. R., Minna, J. D., et al. (2000). Chromosome 19 translocation, overexpression of Notch3, and human lung cancer. Journal of the National Cancer Institute, 92(16), 1355–1357.PubMed Dang, T. P., Gazdar, A. F., Virmani, A. K., Sepetavec, T., Hande, K. R., Minna, J. D., et al. (2000). Chromosome 19 translocation, overexpression of Notch3, and human lung cancer. Journal of the National Cancer Institute, 92(16), 1355–1357.PubMed
63.
go back to reference Soda, M., Choi, Y. L., Enomoto, M., Takada, S., Yamashita, Y., Ishikawa, S., et al. (2007). Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature, 448(7153), 561–566.PubMed Soda, M., Choi, Y. L., Enomoto, M., Takada, S., Yamashita, Y., Ishikawa, S., et al. (2007). Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature, 448(7153), 561–566.PubMed
64.
go back to reference Knutsen, T., Gobu, V., Knaus, R., Padilla-Nash, H., Augustus, M., Strausberg, R. L., et al. (2005). The interactive online SKY/M-FISH & CGH database and the Entrez cancer chromosomes search database: Linkage of chromosomal aberrations with the genome sequence. Genes, Chromosomes, and Cancer, 44(1), 52–64.PubMed Knutsen, T., Gobu, V., Knaus, R., Padilla-Nash, H., Augustus, M., Strausberg, R. L., et al. (2005). The interactive online SKY/M-FISH & CGH database and the Entrez cancer chromosomes search database: Linkage of chromosomal aberrations with the genome sequence. Genes, Chromosomes, and Cancer, 44(1), 52–64.PubMed
65.
go back to reference Kapushesky, M., Emam, I., Holloway, E., Kurnosov, P., Zorin, A., Malone, J., et al. (2010). Gene expression atlas at the European bioinformatics institute. Nucleic Acids Research, 38, D690–D698.PubMed Kapushesky, M., Emam, I., Holloway, E., Kurnosov, P., Zorin, A., Malone, J., et al. (2010). Gene expression atlas at the European bioinformatics institute. Nucleic Acids Research, 38, D690–D698.PubMed
66.
go back to reference Li, L., Bum-Erdene, K., Baenziger, P. H., Rosen, J. J., Hemmert, J. R., Nellis, J. A., et al. (2010). BioDrugScreen: a computational drug design resource for ranking molecules docked to the human proteome. Nucleic Acids Research, 38, D765–D773.PubMed Li, L., Bum-Erdene, K., Baenziger, P. H., Rosen, J. J., Hemmert, J. R., Nellis, J. A., et al. (2010). BioDrugScreen: a computational drug design resource for ranking molecules docked to the human proteome. Nucleic Acids Research, 38, D765–D773.PubMed
67.
go back to reference Forbes, S. A., Tang, G., Bindal, N., Bamford, S., Dawson, E., Cole, C., et al. (2010). COSMIC (the Catalogue of Somatic Mutations in Cancer): A resource to investigate acquired mutations in human cancer. Nucleic Acids Research, 38, D652–D657.PubMed Forbes, S. A., Tang, G., Bindal, N., Bamford, S., Dawson, E., Cole, C., et al. (2010). COSMIC (the Catalogue of Somatic Mutations in Cancer): A resource to investigate acquired mutations in human cancer. Nucleic Acids Research, 38, D652–D657.PubMed
68.
go back to reference Kato, K., Yamashita, R., Matoba, R., Monden, M., Noguchi, S., Takagi, T., et al. (2005). Cancer gene expression database (CGED): A database for gene expression profiling with accompanying clinical information of human cancer tissues. Nucleic Acids Research, 33, D533–D536.PubMed Kato, K., Yamashita, R., Matoba, R., Monden, M., Noguchi, S., Takagi, T., et al. (2005). Cancer gene expression database (CGED): A database for gene expression profiling with accompanying clinical information of human cancer tissues. Nucleic Acids Research, 33, D533–D536.PubMed
69.
go back to reference Li, H., He, Y., Ding, G., Wang, C., Xie, L., & Li, Y. (2010). dbDEPC: a database of differentially expressed proteins in human cancers. Nucleic Acids Research, 38, D658–D664.PubMed Li, H., He, Y., Ding, G., Wang, C., Xie, L., & Li, Y. (2010). dbDEPC: a database of differentially expressed proteins in human cancers. Nucleic Acids Research, 38, D658–D664.PubMed
70.
go back to reference Brooksbank, C., Cameron, G., & Thornton, J. (2010). The European Bioinformatics Institute’s data resources. Nucleic Acids Research, 38, D17–25.PubMed Brooksbank, C., Cameron, G., & Thornton, J. (2010). The European Bioinformatics Institute’s data resources. Nucleic Acids Research, 38, D17–25.PubMed
71.
go back to reference Safran, M., Chalifa-Caspi, V., Shmueli, O., Olender, T., Lapidot, M., Rosen, N., et al. (2003). Human gene-centric databases at the Weizmann institute of science: GeneCards, UDB, CroW 21 and HORDE. Nucleic Acids Research, 31(1), 142–146.PubMed Safran, M., Chalifa-Caspi, V., Shmueli, O., Olender, T., Lapidot, M., Rosen, N., et al. (2003). Human gene-centric databases at the Weizmann institute of science: GeneCards, UDB, CroW 21 and HORDE. Nucleic Acids Research, 31(1), 142–146.PubMed
72.
go back to reference Zhang, Y., Lv, J., Liu, H., Zhu, J., Su, J., Wu, Q., et al. (2010). HHMD: the human histone modification database. Nucleic Acids Research, 38, D149–D154.PubMed Zhang, Y., Lv, J., Liu, H., Zhu, J., Su, J., Wu, Q., et al. (2010). HHMD: the human histone modification database. Nucleic Acids Research, 38, D149–D154.PubMed
73.
go back to reference Betel, D., Wilson, M., Gabow, A., Marks, D. S., & Sander, C. (2008). The microRNA.org resource: targets and expression. Nucleic Acids Research, 36, D149–D153.PubMed Betel, D., Wilson, M., Gabow, A., Marks, D. S., & Sander, C. (2008). The microRNA.org resource: targets and expression. Nucleic Acids Research, 36, D149–D153.PubMed
74.
go back to reference Jiang, Q., Wang, Y., Hao, Y., Juan, L., Teng, M., Zhang, X., et al. (2009). miR2Disease: A manually curated database for microRNA deregulation in human disease. Nucleic Acids Research, 37, D98–D104.PubMed Jiang, Q., Wang, Y., Hao, Y., Juan, L., Teng, M., Zhang, X., et al. (2009). miR2Disease: A manually curated database for microRNA deregulation in human disease. Nucleic Acids Research, 37, D98–D104.PubMed
75.
go back to reference Wang, X. (2008). miRDB: A microRNA target prediction and functional annotation database with a wiki interface. RNA, 14(6), 1012–1017.PubMed Wang, X. (2008). miRDB: A microRNA target prediction and functional annotation database with a wiki interface. RNA, 14(6), 1012–1017.PubMed
76.
go back to reference Alexiou, P., Vergoulis, T., Gleditzsch, M., Prekas, G., Dalamagas, T., Megraw, M., et al. (2010). miRGen 2.0: A database of microRNA genomic information and regulation. Nucleic Acids Research, 38, D137–D141.PubMed Alexiou, P., Vergoulis, T., Gleditzsch, M., Prekas, G., Dalamagas, T., Megraw, M., et al. (2010). miRGen 2.0: A database of microRNA genomic information and regulation. Nucleic Acids Research, 38, D137–D141.PubMed
77.
go back to reference Sayers, E. W., Barrett, T., Benson, D. A., Bolton, E., Bryant, S. H., Canese, K., et al. (2010). Database resources of the National Center for Biotechnology Information. Nucleic Acids Research, 38, D5–D16.PubMed Sayers, E. W., Barrett, T., Benson, D. A., Bolton, E., Bryant, S. H., Canese, K., et al. (2010). Database resources of the National Center for Biotechnology Information. Nucleic Acids Research, 38, D5–D16.PubMed
78.
go back to reference Barrett, T., Troup, D. B., Wilhite, S. E., Ledoux, P., Rudnev, D., Evangelista, C., et al. (2009). NCBI GEO: Archive for high-throughput functional genomic data. Nucleic Acids Research, 37, D885–D890.PubMed Barrett, T., Troup, D. B., Wilhite, S. E., Ledoux, P., Rudnev, D., Evangelista, C., et al. (2009). NCBI GEO: Archive for high-throughput functional genomic data. Nucleic Acids Research, 37, D885–D890.PubMed
79.
go back to reference Rhodes, D. R., Kalyana-Sundaram, S., Mahavisno, V., Varambally, R., Yu, J., Briggs, B. B., et al. (2007). Oncomine 3.0: Genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles. Neoplasia, 9(2), 166–180.PubMed Rhodes, D. R., Kalyana-Sundaram, S., Mahavisno, V., Varambally, R., Yu, J., Briggs, B. B., et al. (2007). Oncomine 3.0: Genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles. Neoplasia, 9(2), 166–180.PubMed
80.
go back to reference Baudis, M. (2007). Genomic imbalances in 5918 malignant epithelial tumors: an explorative meta-analysis of chromosomal CGH data. BMC Cancer, 7, 226.PubMed Baudis, M. (2007). Genomic imbalances in 5918 malignant epithelial tumors: an explorative meta-analysis of chromosomal CGH data. BMC Cancer, 7, 226.PubMed
81.
go back to reference Vizcaino, J. A., Cote, R., Reisinger, F., Barsnes, H., Foster, J. M., Rameseder, J., et al. (2010). The proteomics identifications database: 2010 update. Nucleic Acids Research, 38, D736–D742.PubMed Vizcaino, J. A., Cote, R., Reisinger, F., Barsnes, H., Foster, J. M., Rameseder, J., et al. (2010). The proteomics identifications database: 2010 update. Nucleic Acids Research, 38, D736–D742.PubMed
82.
go back to reference Ren, Y., Gong, W., Zhou, H., Wang, Y., Xiao, F., & Li, T. (2009). siRecords: A database of mammalian RNAi experiments and efficacies. Nucleic Acids Research, 37, D146–D149.PubMed Ren, Y., Gong, W., Zhou, H., Wang, Y., Xiao, F., & Li, T. (2009). siRecords: A database of mammalian RNAi experiments and efficacies. Nucleic Acids Research, 37, D146–D149.PubMed
83.
go back to reference Chari, R., Lockwood, W. W., Coe, B. P., Chu, A., Macey, D., Thomson, A., et al. (2006). SIGMA: A system for integrative genomic microarray analysis of cancer genomes. BMC Genomics, 7, 324.PubMed Chari, R., Lockwood, W. W., Coe, B. P., Chu, A., Macey, D., Thomson, A., et al. (2006). SIGMA: A system for integrative genomic microarray analysis of cancer genomes. BMC Genomics, 7, 324.PubMed
84.
go back to reference Rhead, B., Karolchik, D., Kuhn, R. M., Hinrichs, A. S., Zweig, A. S., Fujita, P. A., et al. (2010). The UCSC genome browser database: Update 2010. Nucleic Acids Research, 38, D613–D619.PubMed Rhead, B., Karolchik, D., Kuhn, R. M., Hinrichs, A. S., Zweig, A. S., Fujita, P. A., et al. (2010). The UCSC genome browser database: Update 2010. Nucleic Acids Research, 38, D613–D619.PubMed
85.
go back to reference Albertson, D. G., Collins, C., McCormick, F., & Gray, J. W. (2003). Chromosome aberrations in solid tumors. Nature Genetics, 34(4), 369–376.PubMed Albertson, D. G., Collins, C., McCormick, F., & Gray, J. W. (2003). Chromosome aberrations in solid tumors. Nature Genetics, 34(4), 369–376.PubMed
86.
go back to reference Coe, B. P., Ylstra, B., Carvalho, B., Meijer, G. A., Macaulay, C., & Lam, W. L. (2007). Resolving the resolution of array CGH. Genomics, 89(5), 647–653.PubMed Coe, B. P., Ylstra, B., Carvalho, B., Meijer, G. A., Macaulay, C., & Lam, W. L. (2007). Resolving the resolution of array CGH. Genomics, 89(5), 647–653.PubMed
87.
go back to reference Lockwood, W. W., Chari, R., Chi, B., & Lam, W. L. (2006). Recent advances in array comparative genomic hybridization technologies and their applications in human genetics. European Journal of Human Genetics, 14(2), 139–148.PubMed Lockwood, W. W., Chari, R., Chi, B., & Lam, W. L. (2006). Recent advances in array comparative genomic hybridization technologies and their applications in human genetics. European Journal of Human Genetics, 14(2), 139–148.PubMed
88.
go back to reference Pollack, J. R., Perou, C. M., Alizadeh, A. A., Eisen, M. B., Pergamenschikov, A., Williams, C. F., et al. (1999). Genome-wide analysis of DNA copy-number changes using cDNA microarrays. Nature Genetics, 23(1), 41–46.PubMed Pollack, J. R., Perou, C. M., Alizadeh, A. A., Eisen, M. B., Pergamenschikov, A., Williams, C. F., et al. (1999). Genome-wide analysis of DNA copy-number changes using cDNA microarrays. Nature Genetics, 23(1), 41–46.PubMed
89.
go back to reference Almagro-Garcia, J., Manske, M., Carret, C., Campino, S., Auburn, S., Macinnis, B. L., et al. (2009). SnoopCGH: software for visualizing comparative genomic hybridization data. Bioinformatics, 25(20), 2732–2733.PubMed Almagro-Garcia, J., Manske, M., Carret, C., Campino, S., Auburn, S., Macinnis, B. L., et al. (2009). SnoopCGH: software for visualizing comparative genomic hybridization data. Bioinformatics, 25(20), 2732–2733.PubMed
90.
go back to reference Chari, R., Lockwood, W. W., & Lam, W. L. (2007). Computational methods for the analysis of array comparative genomic hybridization. Cancer Information, 2, 48–58. Chari, R., Lockwood, W. W., & Lam, W. L. (2007). Computational methods for the analysis of array comparative genomic hybridization. Cancer Information, 2, 48–58.
91.
go back to reference Chi, B., DeLeeuw, R. J., Coe, B. P., MacAulay, C., & Lam, W. L. (2004). SeeGH—a software tool for visualization of whole genome array comparative genomic hybridization data. BMC Bioinformatics, 5, 13.PubMed Chi, B., DeLeeuw, R. J., Coe, B. P., MacAulay, C., & Lam, W. L. (2004). SeeGH—a software tool for visualization of whole genome array comparative genomic hybridization data. BMC Bioinformatics, 5, 13.PubMed
92.
go back to reference Chi, B., deLeeuw, R. J., Coe, B. P., Ng, R. T., MacAulay, C., & Lam, W. L. (2008). MD-SeeGH: A platform for integrative analysis of multi-dimensional genomic data. BMC Bioinformatics, 9, 243.PubMed Chi, B., deLeeuw, R. J., Coe, B. P., Ng, R. T., MacAulay, C., & Lam, W. L. (2008). MD-SeeGH: A platform for integrative analysis of multi-dimensional genomic data. BMC Bioinformatics, 9, 243.PubMed
93.
go back to reference Venkatraman, E. S., & Olshen, A. B. (2007). A faster circular binary segmentation algorithm for the analysis of array CGH data. Bioinformatics, 23(6), 657–663.PubMed Venkatraman, E. S., & Olshen, A. B. (2007). A faster circular binary segmentation algorithm for the analysis of array CGH data. Bioinformatics, 23(6), 657–663.PubMed
94.
go back to reference Bignell, G. R., Huang, J., Greshock, J., Watt, S., Butler, A., West, S., et al. (2004). High-resolution analysis of DNA copy number using oligonucleotide microarrays. Genome Research, 14(2), 287–295.PubMed Bignell, G. R., Huang, J., Greshock, J., Watt, S., Butler, A., West, S., et al. (2004). High-resolution analysis of DNA copy number using oligonucleotide microarrays. Genome Research, 14(2), 287–295.PubMed
95.
go back to reference Iacobucci, I., Storlazzi, C. T., Cilloni, D., Lonetti, A., Ottaviani, E., Soverini, S., et al. (2009). Identification and molecular characterization of recurrent genomic deletions on 7p12 in the IKZF1 gene in a large cohort of BCR-ABL1-positive acute lymphoblastic leukemia patients: On behalf of Gruppo Italiano Malattie Ematologiche dell’Adulto Acute Leukemia Working Party (GIMEMA AL WP). Blood, 114(10), 2159–2167.PubMed Iacobucci, I., Storlazzi, C. T., Cilloni, D., Lonetti, A., Ottaviani, E., Soverini, S., et al. (2009). Identification and molecular characterization of recurrent genomic deletions on 7p12 in the IKZF1 gene in a large cohort of BCR-ABL1-positive acute lymphoblastic leukemia patients: On behalf of Gruppo Italiano Malattie Ematologiche dell’Adulto Acute Leukemia Working Party (GIMEMA AL WP). Blood, 114(10), 2159–2167.PubMed
96.
go back to reference Niini, T., Lopez-Guerrero, J. A., Ninomiya, S., Guled, M., Hattinger, C. M., Michelacci, F., et al. (2009). Frequent deletion of CDKN2A and recurrent coamplification of KIT, PDGFRA, and KDR in fibrosarcoma of bone—an array comparative genomic hybridization study. Genes, Chromosomes, and Cancer, 49(2), 132–143. Niini, T., Lopez-Guerrero, J. A., Ninomiya, S., Guled, M., Hattinger, C. M., Michelacci, F., et al. (2009). Frequent deletion of CDKN2A and recurrent coamplification of KIT, PDGFRA, and KDR in fibrosarcoma of bone—an array comparative genomic hybridization study. Genes, Chromosomes, and Cancer, 49(2), 132–143.
97.
go back to reference Selzer, R. R., Richmond, T. A., Pofahl, N. J., Green, R. D., Eis, P. S., Nair, P., et al. (2005). Analysis of chromosome breakpoints in neuroblastoma at sub-kilobase resolution using fine-tiling oligonucleotide array CGH. Genes, Chromosomes, and Cancer, 44(3), 305–319.PubMed Selzer, R. R., Richmond, T. A., Pofahl, N. J., Green, R. D., Eis, P. S., Nair, P., et al. (2005). Analysis of chromosome breakpoints in neuroblastoma at sub-kilobase resolution using fine-tiling oligonucleotide array CGH. Genes, Chromosomes, and Cancer, 44(3), 305–319.PubMed
98.
go back to reference Zhao, X., Li, C., Paez, J. G., Chin, K., Janne, P. A., Chen, T. H., et al. (2004). An integrated view of copy number and allelic alterations in the cancer genome using single nucleotide polymorphism arrays. Cancer Research, 64(9), 3060–3071.PubMed Zhao, X., Li, C., Paez, J. G., Chin, K., Janne, P. A., Chen, T. H., et al. (2004). An integrated view of copy number and allelic alterations in the cancer genome using single nucleotide polymorphism arrays. Cancer Research, 64(9), 3060–3071.PubMed
99.
go back to reference Wang, T. L., Maierhofer, C., Speicher, M. R., Lengauer, C., Vogelstein, B., Kinzler, K. W., et al. (2002). Digital karyotyping. Proceedings of the National Academy of Sciences of the United States of America, 99(25), 16156–16161.PubMed Wang, T. L., Maierhofer, C., Speicher, M. R., Lengauer, C., Vogelstein, B., Kinzler, K. W., et al. (2002). Digital karyotyping. Proceedings of the National Academy of Sciences of the United States of America, 99(25), 16156–16161.PubMed
100.
go back to reference Tuzun, E., Sharp, A. J., Bailey, J. A., Kaul, R., Morrison, V. A., Pertz, L. M., et al. (2005). Fine-scale structural variation of the human genome. Nature Genetics, 37(7), 727–732.PubMed Tuzun, E., Sharp, A. J., Bailey, J. A., Kaul, R., Morrison, V. A., Pertz, L. M., et al. (2005). Fine-scale structural variation of the human genome. Nature Genetics, 37(7), 727–732.PubMed
101.
go back to reference Volik, S., Raphael, B. J., Huang, G., Stratton, M. R., Bignel, G., Murnane, J., et al. (2006). Decoding the fine-scale structure of a breast cancer genome and transcriptome. Genome Research, 16(3), 394–404.PubMed Volik, S., Raphael, B. J., Huang, G., Stratton, M. R., Bignel, G., Murnane, J., et al. (2006). Decoding the fine-scale structure of a breast cancer genome and transcriptome. Genome Research, 16(3), 394–404.PubMed
102.
go back to reference Volik, S., Zhao, S., Chin, K., Brebner, J. H., Herndon, D. R., Tao, Q., et al. (2003). End-sequence profiling: Sequence-based analysis of aberrant genomes. Proceedings of the National Academy of Sciences of the United States of America, 100(13), 7696–7701.PubMed Volik, S., Zhao, S., Chin, K., Brebner, J. H., Herndon, D. R., Tao, Q., et al. (2003). End-sequence profiling: Sequence-based analysis of aberrant genomes. Proceedings of the National Academy of Sciences of the United States of America, 100(13), 7696–7701.PubMed
103.
go back to reference McPherson, J. D. (2009). Next-generation gap. Nature Methods, 6(11 Suppl), S2–S5.PubMed McPherson, J. D. (2009). Next-generation gap. Nature Methods, 6(11 Suppl), S2–S5.PubMed
104.
go back to reference Alkan, C., Kidd, J. M., Marques-Bonet, T., Aksay, G., Antonacci, F., Hormozdiari, F., et al. (2009). Personalized copy number and segmental duplication maps using next-generation sequencing. Nature Genetics, 41(10), 1061–1067.PubMed Alkan, C., Kidd, J. M., Marques-Bonet, T., Aksay, G., Antonacci, F., Hormozdiari, F., et al. (2009). Personalized copy number and segmental duplication maps using next-generation sequencing. Nature Genetics, 41(10), 1061–1067.PubMed
105.
go back to reference Conrad, D. F., Andrews, T. D., Carter, N. P., Hurles, M. E., & Pritchard, J. K. (2006). A high-resolution survey of deletion polymorphism in the human genome. Nature Genetics, 38(1), 75–81.PubMed Conrad, D. F., Andrews, T. D., Carter, N. P., Hurles, M. E., & Pritchard, J. K. (2006). A high-resolution survey of deletion polymorphism in the human genome. Nature Genetics, 38(1), 75–81.PubMed
106.
go back to reference Conrad, D. F., Pinto, D., Redon, R., Feuk, L., Gokcumen, O., Zhang, Y., et al. (2009). Origins and functional impact of copy number variation in the human genome. Nature. doi:10.1038/nature08516 Conrad, D. F., Pinto, D., Redon, R., Feuk, L., Gokcumen, O., Zhang, Y., et al. (2009). Origins and functional impact of copy number variation in the human genome. Nature. doi:10.​1038/​nature08516
107.
go back to reference Fiegler, H., Redon, R., Andrews, D., Scott, C., Andrews, R., Carder, C., et al. (2006). Accurate and reliable high-throughput detection of copy number variation in the human genome. Genome Research, 16(12), 1566–1574.PubMed Fiegler, H., Redon, R., Andrews, D., Scott, C., Andrews, R., Carder, C., et al. (2006). Accurate and reliable high-throughput detection of copy number variation in the human genome. Genome Research, 16(12), 1566–1574.PubMed
108.
go back to reference Jakobsson, M., Scholz, S. W., Scheet, P., Gibbs, J. R., VanLiere, J. M., Fung, H. C., et al. (2008). Genotype, haplotype and copy-number variation in worldwide human populations. Nature, 451(7181), 998–1003.PubMed Jakobsson, M., Scholz, S. W., Scheet, P., Gibbs, J. R., VanLiere, J. M., Fung, H. C., et al. (2008). Genotype, haplotype and copy-number variation in worldwide human populations. Nature, 451(7181), 998–1003.PubMed
109.
go back to reference Kidd, J. M., Cooper, G. M., Donahue, W. F., Hayden, H. S., Sampas, N., Graves, T., et al. (2008). Mapping and sequencing of structural variation from eight human genomes. Nature, 453(7191), 56–64.PubMed Kidd, J. M., Cooper, G. M., Donahue, W. F., Hayden, H. S., Sampas, N., Graves, T., et al. (2008). Mapping and sequencing of structural variation from eight human genomes. Nature, 453(7191), 56–64.PubMed
110.
go back to reference McCarroll, S. A., Kuruvilla, F. G., Korn, J. M., Cawley, S., Nemesh, J., Wysoker, A., et al. (2008). Integrated detection and population-genetic analysis of SNPs and copy number variation. Nature Genetics, 40(10), 1166–1174.PubMed McCarroll, S. A., Kuruvilla, F. G., Korn, J. M., Cawley, S., Nemesh, J., Wysoker, A., et al. (2008). Integrated detection and population-genetic analysis of SNPs and copy number variation. Nature Genetics, 40(10), 1166–1174.PubMed
111.
go back to reference Shaikh, T. H., Gai, X., Perin, J. C., Glessner, J. T., Xie, H., Murphy, K., et al. (2009). High-resolution mapping and analysis of copy number variations in the human genome: a data resource for clinical and research applications. Genome Research, 19(9), 1682–1690.PubMed Shaikh, T. H., Gai, X., Perin, J. C., Glessner, J. T., Xie, H., Murphy, K., et al. (2009). High-resolution mapping and analysis of copy number variations in the human genome: a data resource for clinical and research applications. Genome Research, 19(9), 1682–1690.PubMed
112.
go back to reference Hastings, P. J., Ira, G., & Lupski, J. R. (2009). A microhomology-mediated break-induced replication model for the origin of human copy number variation. PLoS Genetics, 5(1), e1000327.PubMed Hastings, P. J., Ira, G., & Lupski, J. R. (2009). A microhomology-mediated break-induced replication model for the origin of human copy number variation. PLoS Genetics, 5(1), e1000327.PubMed
113.
go back to reference Diskin, S. J., Hou, C., Glessner, J. T., Attiyeh, E. F., Laudenslager, M., Bosse, K., et al. (2009). Copy number variation at 1q21.1 associated with neuroblastoma. Nature, 459(7249), 987–991.PubMed Diskin, S. J., Hou, C., Glessner, J. T., Attiyeh, E. F., Laudenslager, M., Bosse, K., et al. (2009). Copy number variation at 1q21.1 associated with neuroblastoma. Nature, 459(7249), 987–991.PubMed
114.
go back to reference Lockwood, W. W., Chari, R., Coe, B. P., Girard, L., Macaulay, C., Lam, S., et al. (2008). DNA amplification is a ubiquitous mechanism of oncogene activation in lung and other cancers. Oncogene, 27(33), 4615–4624.PubMed Lockwood, W. W., Chari, R., Coe, B. P., Girard, L., Macaulay, C., Lam, S., et al. (2008). DNA amplification is a ubiquitous mechanism of oncogene activation in lung and other cancers. Oncogene, 27(33), 4615–4624.PubMed
115.
go back to reference Myllykangas, S., Himberg, J., Bohling, T., Nagy, B., Hollmen, J., & Knuutila, S. (2006). DNA copy number amplification profiling of human neoplasms. Oncogene, 25(55), 7324–7332.PubMed Myllykangas, S., Himberg, J., Bohling, T., Nagy, B., Hollmen, J., & Knuutila, S. (2006). DNA copy number amplification profiling of human neoplasms. Oncogene, 25(55), 7324–7332.PubMed
116.
go back to reference Teschendorff, A. E., & Caldas, C. (2009). The breast cancer somatic ‘muta-ome’: tackling the complexity. Breast Cancer Research, 11(2), 301.PubMed Teschendorff, A. E., & Caldas, C. (2009). The breast cancer somatic ‘muta-ome’: tackling the complexity. Breast Cancer Research, 11(2), 301.PubMed
117.
go back to reference Chin, S. F., Teschendorff, A. E., Marioni, J. C., Wang, Y., Barbosa-Morais, N. L., Thorne, N. P., et al. (2007). High-resolution aCGH and expression profiling identifies a novel genomic subtype of ER negative breast cancer. Genome Biology, 8(10), R215.PubMed Chin, S. F., Teschendorff, A. E., Marioni, J. C., Wang, Y., Barbosa-Morais, N. L., Thorne, N. P., et al. (2007). High-resolution aCGH and expression profiling identifies a novel genomic subtype of ER negative breast cancer. Genome Biology, 8(10), R215.PubMed
118.
go back to reference Coe, B. P., Lockwood, W. W., Girard, L., Chari, R., Macaulay, C., Lam, S., et al. (2006). Differential disruption of cell cycle pathways in small cell and non-small cell lung cancer. British Journal of Cancer, 94(12), 1927–1935.PubMed Coe, B. P., Lockwood, W. W., Girard, L., Chari, R., Macaulay, C., Lam, S., et al. (2006). Differential disruption of cell cycle pathways in small cell and non-small cell lung cancer. British Journal of Cancer, 94(12), 1927–1935.PubMed
119.
go back to reference Bass, A. J., Watanabe, H., Mermel, C. H., Yu, S., Perner, S., Verhaak, R. G., et al. (2009). SOX2 is an amplified lineage-survival oncogene in lung and esophageal squamous cell carcinomas. Nature Genetics, 41(11), 1238–1242.PubMed Bass, A. J., Watanabe, H., Mermel, C. H., Yu, S., Perner, S., Verhaak, R. G., et al. (2009). SOX2 is an amplified lineage-survival oncogene in lung and esophageal squamous cell carcinomas. Nature Genetics, 41(11), 1238–1242.PubMed
120.
go back to reference Garraway, L. A., Widlund, H. R., Rubin, M. A., Getz, G., Berger, A. J., Ramaswamy, S., et al. (2005). Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature, 436(7047), 117–122.PubMed Garraway, L. A., Widlund, H. R., Rubin, M. A., Getz, G., Berger, A. J., Ramaswamy, S., et al. (2005). Integrative genomic analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. Nature, 436(7047), 117–122.PubMed
121.
go back to reference Weir, B. A., Woo, M. S., Getz, G., Perner, S., Ding, L., Beroukhim, R., et al. (2007). Characterizing the cancer genome in lung adenocarcinoma. Nature, 450(7171), 893–898.PubMed Weir, B. A., Woo, M. S., Getz, G., Perner, S., Ding, L., Beroukhim, R., et al. (2007). Characterizing the cancer genome in lung adenocarcinoma. Nature, 450(7171), 893–898.PubMed
122.
go back to reference Kwei, K. A., Kim, Y. H., Girard, L., Kao, J., Pacyna-Gengelbach, M., Salari, K., et al. (2008). Genomic profiling identifies TITF1 as a lineage-specific oncogene amplified in lung cancer. Oncogene, 27(25), 3635–3640.PubMed Kwei, K. A., Kim, Y. H., Girard, L., Kao, J., Pacyna-Gengelbach, M., Salari, K., et al. (2008). Genomic profiling identifies TITF1 as a lineage-specific oncogene amplified in lung cancer. Oncogene, 27(25), 3635–3640.PubMed
123.
go back to reference Plomin, R., Haworth, C. M., & Davis, O. S. (2009). Common disorders are quantitative traits. Nature Reviews Genetics, 10(12), 872–878.PubMed Plomin, R., Haworth, C. M., & Davis, O. S. (2009). Common disorders are quantitative traits. Nature Reviews Genetics, 10(12), 872–878.PubMed
124.
go back to reference Savas, S., & Liu, G. (2009). Genetic variations as cancer prognostic markers: Review and update. Human Mutation, 30(10), 1369–1377.PubMed Savas, S., & Liu, G. (2009). Genetic variations as cancer prognostic markers: Review and update. Human Mutation, 30(10), 1369–1377.PubMed
125.
go back to reference Ansorge, W. J. (2009). Next-generation DNA sequencing techniques. New Biotechnology, 25(4), 195–203.PubMed Ansorge, W. J. (2009). Next-generation DNA sequencing techniques. New Biotechnology, 25(4), 195–203.PubMed
126.
go back to reference Shah, S. P., Kobel, M., Senz, J., Morin, R. D., Clarke, B. A., Wiegand, K. C., et al. (2009). Mutation of FOXL2 in granulosa-cell tumors of the ovary. New England Journal of Medicine, 360(26), 2719–2729.PubMed Shah, S. P., Kobel, M., Senz, J., Morin, R. D., Clarke, B. A., Wiegand, K. C., et al. (2009). Mutation of FOXL2 in granulosa-cell tumors of the ovary. New England Journal of Medicine, 360(26), 2719–2729.PubMed
127.
go back to reference Greenman, C., Stephens, P., Smith, R., Dalgliesh, G. L., Hunter, C., Bignell, G., et al. (2007). Patterns of somatic mutation in human cancer genomes. Nature, 446(7132), 153–158.PubMed Greenman, C., Stephens, P., Smith, R., Dalgliesh, G. L., Hunter, C., Bignell, G., et al. (2007). Patterns of somatic mutation in human cancer genomes. Nature, 446(7132), 153–158.PubMed
128.
go back to reference Stratton, M. R., Campbell, P. J., & Futreal, P. A. (2009). The cancer genome. Nature, 458(7239), 719–724.PubMed Stratton, M. R., Campbell, P. J., & Futreal, P. A. (2009). The cancer genome. Nature, 458(7239), 719–724.PubMed
129.
go back to reference Cavenee, W. K., Hansen, M. F., Nordenskjold, M., Kock, E., Maumenee, I., Squire, J. A., et al. (1985). Genetic origin of mutations predisposing to retinoblastoma. Science, 228(4698), 501–503.PubMed Cavenee, W. K., Hansen, M. F., Nordenskjold, M., Kock, E., Maumenee, I., Squire, J. A., et al. (1985). Genetic origin of mutations predisposing to retinoblastoma. Science, 228(4698), 501–503.PubMed
130.
go back to reference Knudson, A. G., Jr. (1971). Mutation and cancer: statistical study of retinoblastoma. Proceedings of the National Academy of Sciences of the United States of America, 68(4), 820–823.PubMed Knudson, A. G., Jr. (1971). Mutation and cancer: statistical study of retinoblastoma. Proceedings of the National Academy of Sciences of the United States of America, 68(4), 820–823.PubMed
131.
go back to reference Benz, C. C., Fedele, V., Xu, F., Ylstra, B., Ginzinger, D., Yu, M., et al. (2006). Altered promoter usage characterizes monoallelic transcription arising with ERBB2 amplification in human breast cancers. Genes, Chromosomes, and Cancer, 45(11), 983–994.PubMed Benz, C. C., Fedele, V., Xu, F., Ylstra, B., Ginzinger, D., Yu, M., et al. (2006). Altered promoter usage characterizes monoallelic transcription arising with ERBB2 amplification in human breast cancers. Genes, Chromosomes, and Cancer, 45(11), 983–994.PubMed
132.
go back to reference LaFramboise, T., Weir, B. A., Zhao, X., Beroukhim, R., Li, C., Harrington, D., et al. (2005). Allele-specific amplification in cancer revealed by SNP array analysis. PLoS Comput Biol, 1(6), e65.PubMed LaFramboise, T., Weir, B. A., Zhao, X., Beroukhim, R., Li, C., Harrington, D., et al. (2005). Allele-specific amplification in cancer revealed by SNP array analysis. PLoS Comput Biol, 1(6), e65.PubMed
133.
go back to reference Melcher, R., Al-Taie, O., Kudlich, T., Hartmann, E., Maisch, S., Steinlein, C., et al. (2007). SNP-Array genotyping and spectral karyotyping reveal uniparental disomy as early mutational event in MSS- and MSI-colorectal cancer cell lines. Cytogenetic and Genome Research, 118(2–4), 214–221.PubMed Melcher, R., Al-Taie, O., Kudlich, T., Hartmann, E., Maisch, S., Steinlein, C., et al. (2007). SNP-Array genotyping and spectral karyotyping reveal uniparental disomy as early mutational event in MSS- and MSI-colorectal cancer cell lines. Cytogenetic and Genome Research, 118(2–4), 214–221.PubMed
134.
go back to reference Nomura, M., Shigematsu, H., Li, L., Suzuki, M., Takahashi, T., Estess, P., et al. (2007). Polymorphisms, mutations, and amplification of the EGFR gene in non-small cell lung cancers. PLoS Medicine, 4(4), e125.PubMed Nomura, M., Shigematsu, H., Li, L., Suzuki, M., Takahashi, T., Estess, P., et al. (2007). Polymorphisms, mutations, and amplification of the EGFR gene in non-small cell lung cancers. PLoS Medicine, 4(4), e125.PubMed
135.
go back to reference Sholl, L. M., Yeap, B. Y., Iafrate, A. J., Holmes-Tisch, A. J., Chou, Y. P., Wu, M. T., et al. (2009). Lung adenocarcinoma with EGFR amplification has distinct clinicopathologic and molecular features in never-smokers. Cancer Research, 69(21), 8341–8348.PubMed Sholl, L. M., Yeap, B. Y., Iafrate, A. J., Holmes-Tisch, A. J., Chou, Y. P., Wu, M. T., et al. (2009). Lung adenocarcinoma with EGFR amplification has distinct clinicopathologic and molecular features in never-smokers. Cancer Research, 69(21), 8341–8348.PubMed
136.
go back to reference Soh, J., Okumura, N., Lockwood, W. W., Yamamoto, H., Shigematsu, H., Zhang, W., et al. (2009). Oncogene mutations, copy number gains and mutant allele specific imbalance (MASI) frequently occur together in tumor cells. PLoS ONE, 4(10), e7464.PubMed Soh, J., Okumura, N., Lockwood, W. W., Yamamoto, H., Shigematsu, H., Zhang, W., et al. (2009). Oncogene mutations, copy number gains and mutant allele specific imbalance (MASI) frequently occur together in tumor cells. PLoS ONE, 4(10), e7464.PubMed
137.
go back to reference Bacolod, M. D., Schemmann, G. S., Giardina, S. F., Paty, P., Notterman, D. A., & Barany, F. (2009). Emerging paradigms in cancer genetics: some important findings from high-density single nucleotide polymorphism array studies. Cancer Research, 69(3), 723–727.PubMed Bacolod, M. D., Schemmann, G. S., Giardina, S. F., Paty, P., Notterman, D. A., & Barany, F. (2009). Emerging paradigms in cancer genetics: some important findings from high-density single nucleotide polymorphism array studies. Cancer Research, 69(3), 723–727.PubMed
138.
go back to reference Robinson, W. P. (2000). Mechanisms leading to uniparental disomy and their clinical consequences. Bioessays, 22(5), 452–459.PubMed Robinson, W. P. (2000). Mechanisms leading to uniparental disomy and their clinical consequences. Bioessays, 22(5), 452–459.PubMed
139.
go back to reference Tuna, M., Knuutila, S., & Mills, G. B. (2009). Uniparental disomy in cancer. Trends in Molecular Medicine, 15(3), 120–128.PubMed Tuna, M., Knuutila, S., & Mills, G. B. (2009). Uniparental disomy in cancer. Trends in Molecular Medicine, 15(3), 120–128.PubMed
140.
go back to reference Zhu, X., Dunn, J. M., Goddard, A. D., Squire, J. A., Becker, A., Phillips, R. A., et al. (1992). Mechanisms of loss of heterozygosity in retinoblastoma. Cytogenetics and Cell Genetics, 59(4), 248–252.PubMed Zhu, X., Dunn, J. M., Goddard, A. D., Squire, J. A., Becker, A., Phillips, R. A., et al. (1992). Mechanisms of loss of heterozygosity in retinoblastoma. Cytogenetics and Cell Genetics, 59(4), 248–252.PubMed
141.
go back to reference Gondek, L. P., Dunbar, A. J., Szpurka, H., McDevitt, M. A., & Maciejewski, J. P. (2007). SNP array karyotyping allows for the detection of uniparental disomy and cryptic chromosomal abnormalities in MDS/MPD-U and MPD. PLoS ONE, 2(11), e1225.PubMed Gondek, L. P., Dunbar, A. J., Szpurka, H., McDevitt, M. A., & Maciejewski, J. P. (2007). SNP array karyotyping allows for the detection of uniparental disomy and cryptic chromosomal abnormalities in MDS/MPD-U and MPD. PLoS ONE, 2(11), e1225.PubMed
142.
go back to reference Tiu, R. V., Gondek, L. P., O’Keefe, C. L., Huh, J., Sekeres, M. A., Elson, P., et al. (2009). New lesions detected by single nucleotide polymorphism array-based chromosomal analysis have important clinical impact in acute myeloid leukemia. Journal of Clinical Oncology, 27(31), 5219–5226.PubMed Tiu, R. V., Gondek, L. P., O’Keefe, C. L., Huh, J., Sekeres, M. A., Elson, P., et al. (2009). New lesions detected by single nucleotide polymorphism array-based chromosomal analysis have important clinical impact in acute myeloid leukemia. Journal of Clinical Oncology, 27(31), 5219–5226.PubMed
143.
go back to reference Yamamoto, G., Nannya, Y., Kato, M., Sanada, M., Levine, R. L., Kawamata, N., et al. (2007). Highly sensitive method for genomewide detection of allelic composition in nonpaired, primary tumor specimens by use of affymetrix single-nucleotide-polymorphism genotyping microarrays. American Journal of Human Genetics, 81(1), 114–126.PubMed Yamamoto, G., Nannya, Y., Kato, M., Sanada, M., Levine, R. L., Kawamata, N., et al. (2007). Highly sensitive method for genomewide detection of allelic composition in nonpaired, primary tumor specimens by use of affymetrix single-nucleotide-polymorphism genotyping microarrays. American Journal of Human Genetics, 81(1), 114–126.PubMed
144.
go back to reference Darbary, H. K., Dutt, S. S., Sait, S. J., Nowak, N. J., Heinaman, R. E., Stoler, D. L., et al. (2009). Uniparentalism in sporadic colorectal cancer is independent of imprint status, and coordinate for chromosomes 14 and 18. Cancer Genetics and Cytogenetics, 189(2), 77–86.PubMed Darbary, H. K., Dutt, S. S., Sait, S. J., Nowak, N. J., Heinaman, R. E., Stoler, D. L., et al. (2009). Uniparentalism in sporadic colorectal cancer is independent of imprint status, and coordinate for chromosomes 14 and 18. Cancer Genetics and Cytogenetics, 189(2), 77–86.PubMed
145.
go back to reference Grand, F. H., Hidalgo-Curtis, C. E., Ernst, T., Zoi, K., Zoi, C., McGuire, C., et al. (2009). Frequent CBL mutations associated with 11q acquired uniparental disomy in myeloproliferative neoplasms. Blood, 113(24), 6182–6192.PubMed Grand, F. H., Hidalgo-Curtis, C. E., Ernst, T., Zoi, K., Zoi, C., McGuire, C., et al. (2009). Frequent CBL mutations associated with 11q acquired uniparental disomy in myeloproliferative neoplasms. Blood, 113(24), 6182–6192.PubMed
146.
go back to reference Gupta, M., Raghavan, M., Gale, R. E., Chelala, C., Allen, C., Molloy, G., et al. (2008). Novel regions of acquired uniparental disomy discovered in acute myeloid leukemia. Genes, Chromosomes, and Cancer, 47(9), 729–739.PubMed Gupta, M., Raghavan, M., Gale, R. E., Chelala, C., Allen, C., Molloy, G., et al. (2008). Novel regions of acquired uniparental disomy discovered in acute myeloid leukemia. Genes, Chromosomes, and Cancer, 47(9), 729–739.PubMed
147.
go back to reference Kawamata, N., Ogawa, S., Gueller, S., Ross, S. H., Huynh, T., Chen, J., et al. (2009). Identified hidden genomic changes in mantle cell lymphoma using high-resolution single nucleotide polymorphism genomic array. Experimental Hematology, 37(8), 937–946.PubMed Kawamata, N., Ogawa, S., Gueller, S., Ross, S. H., Huynh, T., Chen, J., et al. (2009). Identified hidden genomic changes in mantle cell lymphoma using high-resolution single nucleotide polymorphism genomic array. Experimental Hematology, 37(8), 937–946.PubMed
148.
go back to reference Makishima, H., Cazzolli, H., Szpurka, H., Dunbar, A., Tiu, R., Huh, J., et al. (2009). Mutations of e3 ubiquitin ligase cbl family members constitute a novel common pathogenic lesion in myeloid malignancies. Journal of Clinical Oncology, 27(36), 6109–6116.PubMed Makishima, H., Cazzolli, H., Szpurka, H., Dunbar, A., Tiu, R., Huh, J., et al. (2009). Mutations of e3 ubiquitin ligase cbl family members constitute a novel common pathogenic lesion in myeloid malignancies. Journal of Clinical Oncology, 27(36), 6109–6116.PubMed
149.
go back to reference Walter, M. J., Payton, J. E., Ries, R. E., Shannon, W. D., Deshmukh, H., Zhao, Y., et al. (2009). Acquired copy number alterations in adult acute myeloid leukemia genomes. Proceedings of the National Academy of Sciences of the United States of America, 106(31), 12950–12955.PubMed Walter, M. J., Payton, J. E., Ries, R. E., Shannon, W. D., Deshmukh, H., Zhao, Y., et al. (2009). Acquired copy number alterations in adult acute myeloid leukemia genomes. Proceedings of the National Academy of Sciences of the United States of America, 106(31), 12950–12955.PubMed
150.
go back to reference Yin, D., Ogawa, S., Kawamata, N., Tunici, P., Finocchiaro, G., Eoli, M., et al. (2009). High-resolution genomic copy number profiling of glioblastoma multiforme by single nucleotide polymorphism DNA microarray. Mol Cancer Res, 7(5), 665–677.PubMed Yin, D., Ogawa, S., Kawamata, N., Tunici, P., Finocchiaro, G., Eoli, M., et al. (2009). High-resolution genomic copy number profiling of glioblastoma multiforme by single nucleotide polymorphism DNA microarray. Mol Cancer Res, 7(5), 665–677.PubMed
151.
go back to reference Purdie, K. J., Lambert, S. R., Teh, M. T., Chaplin, T., Molloy, G., Raghavan, M., et al. (2007). Allelic imbalances and microdeletions affecting the PTPRD gene in cutaneous squamous cell carcinomas detected using single nucleotide polymorphism microarray analysis. Genes, Chromosomes, and Cancer, 46(7), 661–669.PubMed Purdie, K. J., Lambert, S. R., Teh, M. T., Chaplin, T., Molloy, G., Raghavan, M., et al. (2007). Allelic imbalances and microdeletions affecting the PTPRD gene in cutaneous squamous cell carcinomas detected using single nucleotide polymorphism microarray analysis. Genes, Chromosomes, and Cancer, 46(7), 661–669.PubMed
152.
go back to reference Akagi, T., Ito, T., Kato, M., Jin, Z., Cheng, Y., Kan, T., et al. (2009). Chromosomal abnormalities and novel disease-related regions in progression from Barrett’s esophagus to esophageal adenocarcinoma. International Journal of Cancer, 125(10), 2349–2359. Akagi, T., Ito, T., Kato, M., Jin, Z., Cheng, Y., Kan, T., et al. (2009). Chromosomal abnormalities and novel disease-related regions in progression from Barrett’s esophagus to esophageal adenocarcinoma. International Journal of Cancer, 125(10), 2349–2359.
153.
go back to reference Andersen, C. L., Wiuf, C., Kruhoffer, M., Korsgaard, M., Laurberg, S., & Orntoft, T. F. (2007). Frequent occurrence of uniparental disomy in colorectal cancer. Carcinogenesis, 28(1), 38–48.PubMed Andersen, C. L., Wiuf, C., Kruhoffer, M., Korsgaard, M., Laurberg, S., & Orntoft, T. F. (2007). Frequent occurrence of uniparental disomy in colorectal cancer. Carcinogenesis, 28(1), 38–48.PubMed
154.
go back to reference Kerkel, K., Spadola, A., Yuan, E., Kosek, J., Jiang, L., Hod, E., et al. (2008). Genomic surveys by methylation-sensitive SNP analysis identify sequence-dependent allele-specific DNA methylation. Nature Genetics, 40(7), 904–908.PubMed Kerkel, K., Spadola, A., Yuan, E., Kosek, J., Jiang, L., Hod, E., et al. (2008). Genomic surveys by methylation-sensitive SNP analysis identify sequence-dependent allele-specific DNA methylation. Nature Genetics, 40(7), 904–908.PubMed
155.
go back to reference Jones, P. A., & Baylin, S. B. (2007). The epigenomics of cancer. Cell, 128(4), 683–692.PubMed Jones, P. A., & Baylin, S. B. (2007). The epigenomics of cancer. Cell, 128(4), 683–692.PubMed
156.
go back to reference Esteller, M. (2008). Epigenetics in cancer. New England Journal of Medicine, 358(11), 1148–1159.PubMed Esteller, M. (2008). Epigenetics in cancer. New England Journal of Medicine, 358(11), 1148–1159.PubMed
157.
go back to reference Feinberg, A. P. (2007). Phenotypic plasticity and the epigenetics of human disease. Nature, 447(7143), 433–440.PubMed Feinberg, A. P. (2007). Phenotypic plasticity and the epigenetics of human disease. Nature, 447(7143), 433–440.PubMed
158.
go back to reference Vucic, E. A., Brown, C. J., & Lam, W. L. (2008). Epigenetics of cancer progression. Pharmacogenomics, 9(2), 215–234.PubMed Vucic, E. A., Brown, C. J., & Lam, W. L. (2008). Epigenetics of cancer progression. Pharmacogenomics, 9(2), 215–234.PubMed
159.
go back to reference Feinberg, A. P., Gehrke, C. W., Kuo, K. C., & Ehrlich, M. (1988). Reduced genomic 5-methylcytosine content in human colonic neoplasia. Cancer Research, 48(5), 1159–1161.PubMed Feinberg, A. P., Gehrke, C. W., Kuo, K. C., & Ehrlich, M. (1988). Reduced genomic 5-methylcytosine content in human colonic neoplasia. Cancer Research, 48(5), 1159–1161.PubMed
160.
go back to reference Feinberg, A. P., & Tycko, B. (2004). The history of cancer epigenetics. Nature Reviews Cancer, 4(2), 143–153.PubMed Feinberg, A. P., & Tycko, B. (2004). The history of cancer epigenetics. Nature Reviews Cancer, 4(2), 143–153.PubMed
161.
go back to reference Lo, P. K., & Sukumar, S. (2008). Epigenomics and breast cancer. Pharmacogenomics, 9(12), 1879–1902.PubMed Lo, P. K., & Sukumar, S. (2008). Epigenomics and breast cancer. Pharmacogenomics, 9(12), 1879–1902.PubMed
162.
go back to reference Toyota, M., Ahuja, N., Ohe-Toyota, M., Herman, J. G., Baylin, S. B., & Issa, J. P. (1999). CpG island methylator phenotype in colorectal cancer. Proceedings of the National Academy of Sciences of the United States of America, 96(15), 8681–8686.PubMed Toyota, M., Ahuja, N., Ohe-Toyota, M., Herman, J. G., Baylin, S. B., & Issa, J. P. (1999). CpG island methylator phenotype in colorectal cancer. Proceedings of the National Academy of Sciences of the United States of America, 96(15), 8681–8686.PubMed
163.
go back to reference Issa, J. P. (2004). CpG island methylator phenotype in cancer. Nature Reviews Cancer, 4(12), 988–993.PubMed Issa, J. P. (2004). CpG island methylator phenotype in cancer. Nature Reviews Cancer, 4(12), 988–993.PubMed
164.
go back to reference Tanemura, A., Terando, A. M., Sim, M. S., van Hoesel, A. Q., de Maat, M. F., Morton, D. L., et al. (2009). CpG island methylator phenotype predicts progression of malignant melanoma. Clinical Cancer Research, 15(5), 1801–1807.PubMed Tanemura, A., Terando, A. M., Sim, M. S., van Hoesel, A. Q., de Maat, M. F., Morton, D. L., et al. (2009). CpG island methylator phenotype predicts progression of malignant melanoma. Clinical Cancer Research, 15(5), 1801–1807.PubMed
165.
go back to reference Dai, Z., Lakshmanan, R. R., Zhu, W. G., Smiraglia, D. J., Rush, L. J., Fruhwald, M. C., et al. (2001). Global methylation profiling of lung cancer identifies novel methylated genes. Neoplasia, 3(4), 314–323.PubMed Dai, Z., Lakshmanan, R. R., Zhu, W. G., Smiraglia, D. J., Rush, L. J., Fruhwald, M. C., et al. (2001). Global methylation profiling of lung cancer identifies novel methylated genes. Neoplasia, 3(4), 314–323.PubMed
166.
go back to reference Takai, D., Yagi, Y., Wakazono, K., Ohishi, N., Morita, Y., Sugimura, T., et al. (2001). Silencing of HTR1B and reduced expression of EDN1 in human lung cancers, revealed by methylation-sensitive representational difference analysis. Oncogene, 20(51), 7505–7513.PubMed Takai, D., Yagi, Y., Wakazono, K., Ohishi, N., Morita, Y., Sugimura, T., et al. (2001). Silencing of HTR1B and reduced expression of EDN1 in human lung cancers, revealed by methylation-sensitive representational difference analysis. Oncogene, 20(51), 7505–7513.PubMed
167.
go back to reference Hu, M., Yao, J., Cai, L., Bachman, K. E., van den Brule, F., Velculescu, V., et al. (2005). Distinct epigenetic changes in the stromal cells of breast cancers. Nature Genetics, 37(8), 899–905.PubMed Hu, M., Yao, J., Cai, L., Bachman, K. E., van den Brule, F., Velculescu, V., et al. (2005). Distinct epigenetic changes in the stromal cells of breast cancers. Nature Genetics, 37(8), 899–905.PubMed
168.
go back to reference Irizarry, R. A., Ladd-Acosta, C., Carvalho, B., Wu, H., Brandenburg, S. A., Jeddeloh, J. A., et al. (2008). Comprehensive high-throughput arrays for relative methylation (CHARM). Genome Research, 18(5), 780–790.PubMed Irizarry, R. A., Ladd-Acosta, C., Carvalho, B., Wu, H., Brandenburg, S. A., Jeddeloh, J. A., et al. (2008). Comprehensive high-throughput arrays for relative methylation (CHARM). Genome Research, 18(5), 780–790.PubMed
169.
go back to reference Yan, P. S., Chen, C. M., Shi, H., Rahmatpanah, F., Wei, S. H., Caldwell, C. W., et al. (2001). Dissecting complex epigenetic alterations in breast cancer using CpG island microarrays. Cancer Research, 61(23), 8375–8380.PubMed Yan, P. S., Chen, C. M., Shi, H., Rahmatpanah, F., Wei, S. H., Caldwell, C. W., et al. (2001). Dissecting complex epigenetic alterations in breast cancer using CpG island microarrays. Cancer Research, 61(23), 8375–8380.PubMed
170.
go back to reference Yamamoto, F., & Yamamoto, M. (2004). A DNA microarray-based methylation-sensitive (MS)-AFLP hybridization method for genetic and epigenetic analyses. Mol Genet Genomics, 271(6), 678–686.PubMed Yamamoto, F., & Yamamoto, M. (2004). A DNA microarray-based methylation-sensitive (MS)-AFLP hybridization method for genetic and epigenetic analyses. Mol Genet Genomics, 271(6), 678–686.PubMed
171.
go back to reference Omura, N., Li, C. P., Li, A., Hong, S. M., Walter, K., Jimeno, A., et al. (2008). Genome-wide profiling of methylated promoters in pancreatic adenocarcinoma. Cancer Biol Ther, 7(7), 1146–1156.PubMed Omura, N., Li, C. P., Li, A., Hong, S. M., Walter, K., Jimeno, A., et al. (2008). Genome-wide profiling of methylated promoters in pancreatic adenocarcinoma. Cancer Biol Ther, 7(7), 1146–1156.PubMed
172.
go back to reference Trinh, B. N., Long, T. I., & Laird, P. W. (2001). DNA methylation analysis by MethyLight technology. Methods, 25(4), 456–462.PubMed Trinh, B. N., Long, T. I., & Laird, P. W. (2001). DNA methylation analysis by MethyLight technology. Methods, 25(4), 456–462.PubMed
173.
go back to reference Fan, J. B., Gunderson, K. L., Bibikova, M., Yeakley, J. M., Chen, J., Wickham Garcia, E., et al. (2006). Illumina universal bead arrays. Methods in Enzymology, 410, 57–73.PubMed Fan, J. B., Gunderson, K. L., Bibikova, M., Yeakley, J. M., Chen, J., Wickham Garcia, E., et al. (2006). Illumina universal bead arrays. Methods in Enzymology, 410, 57–73.PubMed
174.
go back to reference Houshdaran, S., Cortessis, V. K., Siegmund, K., Yang, A., Laird, P. W., & Sokol, R. Z. (2007). Widespread epigenetic abnormalities suggest a broad DNA methylation erasure defect in abnormal human sperm. PLoS ONE, 2(12), e1289.PubMed Houshdaran, S., Cortessis, V. K., Siegmund, K., Yang, A., Laird, P. W., & Sokol, R. Z. (2007). Widespread epigenetic abnormalities suggest a broad DNA methylation erasure defect in abnormal human sperm. PLoS ONE, 2(12), e1289.PubMed
175.
go back to reference Houseman, E. A., Christensen, B. C., Karagas, M. R., Wrensch, M. R., Nelson, H. H., Wiemels, J. L., et al. (2009). Copy number variation has little impact on bead-array-based measures of DNA methylation. Bioinformatics, 25(16), 1999–2005.PubMed Houseman, E. A., Christensen, B. C., Karagas, M. R., Wrensch, M. R., Nelson, H. H., Wiemels, J. L., et al. (2009). Copy number variation has little impact on bead-array-based measures of DNA methylation. Bioinformatics, 25(16), 1999–2005.PubMed
176.
go back to reference Breton, C. V., Byun, H. M., Wenten, M., Pan, F., Yang, A., & Gilliland, F. D. (2009). Prenatal tobacco smoke exposure affects global and gene-specific DNA methylation. American Journal of Respiratory and Critical Care Medicine, 180(5), 462–467.PubMed Breton, C. V., Byun, H. M., Wenten, M., Pan, F., Yang, A., & Gilliland, F. D. (2009). Prenatal tobacco smoke exposure affects global and gene-specific DNA methylation. American Journal of Respiratory and Critical Care Medicine, 180(5), 462–467.PubMed
177.
go back to reference Taylor, K. H., Pena-Hernandez, K. E., Davis, J. W., Arthur, G. L., Duff, D. J., Shi, H., et al. (2007). Large-scale CpG methylation analysis identifies novel candidate genes and reveals methylation hotspots in acute lymphoblastic leukemia. Cancer Research, 67(6), 2617–2625.PubMed Taylor, K. H., Pena-Hernandez, K. E., Davis, J. W., Arthur, G. L., Duff, D. J., Shi, H., et al. (2007). Large-scale CpG methylation analysis identifies novel candidate genes and reveals methylation hotspots in acute lymphoblastic leukemia. Cancer Research, 67(6), 2617–2625.PubMed
178.
go back to reference Weber, M., Hellmann, I., Stadler, M. B., Ramos, L., Paabo, S., Rebhan, M., et al. (2007). Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nature Genetics, 39(4), 457–466.PubMed Weber, M., Hellmann, I., Stadler, M. B., Ramos, L., Paabo, S., Rebhan, M., et al. (2007). Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nature Genetics, 39(4), 457–466.PubMed
179.
go back to reference Rauch, T., & Pfeifer, G. P. (2005). Methylated-CpG island recovery assay: a new technique for the rapid detection of methylated-CpG islands in cancer. Laboratory Investigation, 85(9), 1172–1180.PubMed Rauch, T., & Pfeifer, G. P. (2005). Methylated-CpG island recovery assay: a new technique for the rapid detection of methylated-CpG islands in cancer. Laboratory Investigation, 85(9), 1172–1180.PubMed
180.
go back to reference Jacinto, F. V., Ballestar, E., Ropero, S., & Esteller, M. (2007). Discovery of epigenetically silenced genes by methylated DNA immunoprecipitation in colon cancer cells. Cancer Research, 67(24), 11481–11486.PubMed Jacinto, F. V., Ballestar, E., Ropero, S., & Esteller, M. (2007). Discovery of epigenetically silenced genes by methylated DNA immunoprecipitation in colon cancer cells. Cancer Research, 67(24), 11481–11486.PubMed
181.
go back to reference Ballestar, E., Paz, M. F., Valle, L., Wei, S., Fraga, M. F., Espada, J., et al. (2003). Methyl-CpG binding proteins identify novel sites of epigenetic inactivation in human cancer. EMBO Journal, 22(23), 6335–6345.PubMed Ballestar, E., Paz, M. F., Valle, L., Wei, S., Fraga, M. F., Espada, J., et al. (2003). Methyl-CpG binding proteins identify novel sites of epigenetic inactivation in human cancer. EMBO Journal, 22(23), 6335–6345.PubMed
182.
go back to reference Serre, D., Lee, B. H., & Ting, A. H. (2009). MBD-isolated Genome Sequencing provides a high-throughput and comprehensive survey of DNA methylation in the human genome. Nucleic Acids Research. doi:10.1093/nar/gkp992. Serre, D., Lee, B. H., & Ting, A. H. (2009). MBD-isolated Genome Sequencing provides a high-throughput and comprehensive survey of DNA methylation in the human genome. Nucleic Acids Research. doi:10.​1093/​nar/​gkp992.
183.
go back to reference Down, T. A., Rakyan, V. K., Turner, D. J., Flicek, P., Li, H., Kulesha, E., et al. (2008). A Bayesian deconvolution strategy for immunoprecipitation-based DNA methylome analysis. Nature Biotechnology, 26(7), 779–785.PubMed Down, T. A., Rakyan, V. K., Turner, D. J., Flicek, P., Li, H., Kulesha, E., et al. (2008). A Bayesian deconvolution strategy for immunoprecipitation-based DNA methylome analysis. Nature Biotechnology, 26(7), 779–785.PubMed
184.
go back to reference Thu, K. L., Pikor, L. A., Kennett, J. Y., Alvarez, C. E., & Lam, W. L. (2009). Methylation analysis by DNA immunoprecipitation. Journal of Cellular Physiology, 222(3), 522–531. Thu, K. L., Pikor, L. A., Kennett, J. Y., Alvarez, C. E., & Lam, W. L. (2009). Methylation analysis by DNA immunoprecipitation. Journal of Cellular Physiology, 222(3), 522–531.
185.
go back to reference Pelizzola, M., Koga, Y., Urban, A. E., Krauthammer, M., Weissman, S., Halaban, R., et al. (2008). MEDME: an experimental and analytical methodology for the estimation of DNA methylation levels based on microarray derived MeDIP-enrichment. Genome Research, 18(10), 1652–1659.PubMed Pelizzola, M., Koga, Y., Urban, A. E., Krauthammer, M., Weissman, S., Halaban, R., et al. (2008). MEDME: an experimental and analytical methodology for the estimation of DNA methylation levels based on microarray derived MeDIP-enrichment. Genome Research, 18(10), 1652–1659.PubMed
186.
go back to reference Yamashita, S., Hosoya, K., Gyobu, K., Takeshima, H., & Ushijima, T. (2009). Development of a novel output value for quantitative assessment in methylated DNA immunoprecipitation-CpG island microarray analysis. DNA Research, 16(5), 275–286.PubMed Yamashita, S., Hosoya, K., Gyobu, K., Takeshima, H., & Ushijima, T. (2009). Development of a novel output value for quantitative assessment in methylated DNA immunoprecipitation-CpG island microarray analysis. DNA Research, 16(5), 275–286.PubMed
187.
go back to reference Irizarry, R. A., Ladd-Acosta, C., Wen, B., Wu, Z., Montano, C., Onyango, P., et al. (2009). The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nature Genetics, 41(2), 178–186.PubMed Irizarry, R. A., Ladd-Acosta, C., Wen, B., Wu, Z., Montano, C., Onyango, P., et al. (2009). The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nature Genetics, 41(2), 178–186.PubMed
188.
go back to reference Lorincz, M. C., Dickerson, D. R., Schmitt, M., & Groudine, M. (2004). Intragenic DNA methylation alters chromatin structure and elongation efficiency in mammalian cells. Nature Structural & Molecular Biology, 11(11), 1068–1075. Lorincz, M. C., Dickerson, D. R., Schmitt, M., & Groudine, M. (2004). Intragenic DNA methylation alters chromatin structure and elongation efficiency in mammalian cells. Nature Structural & Molecular Biology, 11(11), 1068–1075.
189.
go back to reference Frigola, J., Song, J., Stirzaker, C., Hinshelwood, R. A., Peinado, M. A., & Clark, S. J. (2006). Epigenetic remodeling in colorectal cancer results in coordinate gene suppression across an entire chromosome band. Nature Genetics, 38(5), 540–549.PubMed Frigola, J., Song, J., Stirzaker, C., Hinshelwood, R. A., Peinado, M. A., & Clark, S. J. (2006). Epigenetic remodeling in colorectal cancer results in coordinate gene suppression across an entire chromosome band. Nature Genetics, 38(5), 540–549.PubMed
190.
go back to reference Zhong, S., Fields, C. R., Su, N., Pan, Y. X., & Robertson, K. D. (2007). Pharmacologic inhibition of epigenetic modifications, coupled with gene expression profiling, reveals novel targets of aberrant DNA methylation and histone deacetylation in lung cancer. Oncogene, 26(18), 2621–2634.PubMed Zhong, S., Fields, C. R., Su, N., Pan, Y. X., & Robertson, K. D. (2007). Pharmacologic inhibition of epigenetic modifications, coupled with gene expression profiling, reveals novel targets of aberrant DNA methylation and histone deacetylation in lung cancer. Oncogene, 26(18), 2621–2634.PubMed
191.
go back to reference Lister, R., & Ecker, J. R. (2009). Finding the fifth base: genome-wide sequencing of cytosine methylation. Genome Research, 19(6), 959–966.PubMed Lister, R., & Ecker, J. R. (2009). Finding the fifth base: genome-wide sequencing of cytosine methylation. Genome Research, 19(6), 959–966.PubMed
192.
go back to reference Byun, H. M., Siegmund, K. D., Pan, F., Weisenberger, D. J., Kanel, G., Laird, P. W., et al. (2009). Epigenetic profiling of somatic tissues from human autopsy specimens identifies tissue- and individual-specific DNA methylation patterns. Human Molecular Genetics, 18(24), 4808–4817.PubMed Byun, H. M., Siegmund, K. D., Pan, F., Weisenberger, D. J., Kanel, G., Laird, P. W., et al. (2009). Epigenetic profiling of somatic tissues from human autopsy specimens identifies tissue- and individual-specific DNA methylation patterns. Human Molecular Genetics, 18(24), 4808–4817.PubMed
193.
go back to reference Fraga, M. F., Ballestar, E., Paz, M. F., Ropero, S., Setien, F., Ballestar, M. L., et al. (2005). Epigenetic differences arise during the lifetime of monozygotic twins. Proceedings of the National Academy of Sciences of the United States of America, 102(30), 10604–10609.PubMed Fraga, M. F., Ballestar, E., Paz, M. F., Ropero, S., Setien, F., Ballestar, M. L., et al. (2005). Epigenetic differences arise during the lifetime of monozygotic twins. Proceedings of the National Academy of Sciences of the United States of America, 102(30), 10604–10609.PubMed
194.
go back to reference Deng, J., Shoemaker, R., Xie, B., Gore, A., LeProust, E. M., Antosiewicz-Bourget, J., et al. (2009). Targeted bisulfite sequencing reveals changes in DNA methylation associated with nuclear reprogramming. Nature Biotechnology, 27(4), 353–360.PubMed Deng, J., Shoemaker, R., Xie, B., Gore, A., LeProust, E. M., Antosiewicz-Bourget, J., et al. (2009). Targeted bisulfite sequencing reveals changes in DNA methylation associated with nuclear reprogramming. Nature Biotechnology, 27(4), 353–360.PubMed
195.
go back to reference Costello, J. F., Fruhwald, M. C., Smiraglia, D. J., Rush, L. J., Robertson, G. P., Gao, X., et al. (2000). Aberrant CpG-island methylation has non-random and tumour-type-specific patterns. Nature Genetics, 24(2), 132–138.PubMed Costello, J. F., Fruhwald, M. C., Smiraglia, D. J., Rush, L. J., Robertson, G. P., Gao, X., et al. (2000). Aberrant CpG-island methylation has non-random and tumour-type-specific patterns. Nature Genetics, 24(2), 132–138.PubMed
196.
go back to reference Gama-Sosa, M. A., Midgett, R. M., Slagel, V. A., Githens, S., Kuo, K. C., Gehrke, C. W., et al. (1983). Tissue-specific differences in DNA methylation in various mammals. Biochimica et Biophysica Acta, 740(2), 212–219.PubMed Gama-Sosa, M. A., Midgett, R. M., Slagel, V. A., Githens, S., Kuo, K. C., Gehrke, C. W., et al. (1983). Tissue-specific differences in DNA methylation in various mammals. Biochimica et Biophysica Acta, 740(2), 212–219.PubMed
197.
go back to reference Richardson, B. (2003). Impact of aging on DNA methylation. Ageing Research Reviews, 2(3), 245–261.PubMed Richardson, B. (2003). Impact of aging on DNA methylation. Ageing Research Reviews, 2(3), 245–261.PubMed
198.
go back to reference Eckhardt, F., Beck, S., Gut, I. G., & Berlin, K. (2004). Future potential of the human epigenome project. Expert Review of Molecular Diagnostics, 4(5), 609–618.PubMed Eckhardt, F., Beck, S., Gut, I. G., & Berlin, K. (2004). Future potential of the human epigenome project. Expert Review of Molecular Diagnostics, 4(5), 609–618.PubMed
199.
go back to reference Kohda, M., Hoshiya, H., Katoh, M., Tanaka, I., Masuda, R., Takemura, T., et al. (2001). Frequent loss of imprinting of IGF2 and MEST in lung adenocarcinoma. Molecular Carcinogenesis, 31(4), 184–191.PubMed Kohda, M., Hoshiya, H., Katoh, M., Tanaka, I., Masuda, R., Takemura, T., et al. (2001). Frequent loss of imprinting of IGF2 and MEST in lung adenocarcinoma. Molecular Carcinogenesis, 31(4), 184–191.PubMed
200.
go back to reference Kondo, M., Suzuki, H., Ueda, R., Osada, H., Takagi, K., & Takahashi, T. (1995). Frequent loss of imprinting of the H19 gene is often associated with its overexpression in human lung cancers. Oncogene, 10(6), 1193–1198.PubMed Kondo, M., Suzuki, H., Ueda, R., Osada, H., Takagi, K., & Takahashi, T. (1995). Frequent loss of imprinting of the H19 gene is often associated with its overexpression in human lung cancers. Oncogene, 10(6), 1193–1198.PubMed
201.
go back to reference Rainier, S., Johnson, L. A., Dobry, C. J., Ping, A. J., Grundy, P. E., & Feinberg, A. P. (1993). Relaxation of imprinted genes in human cancer. Nature, 362(6422), 747–749.PubMed Rainier, S., Johnson, L. A., Dobry, C. J., Ping, A. J., Grundy, P. E., & Feinberg, A. P. (1993). Relaxation of imprinted genes in human cancer. Nature, 362(6422), 747–749.PubMed
202.
go back to reference Pal, N., Wadey, R. B., Buckle, B., Yeomans, E., Pritchard, J., & Cowell, J. K. (1990). Preferential loss of maternal alleles in sporadic Wilms’ tumour. Oncogene, 5(11), 1665–1668.PubMed Pal, N., Wadey, R. B., Buckle, B., Yeomans, E., Pritchard, J., & Cowell, J. K. (1990). Preferential loss of maternal alleles in sporadic Wilms’ tumour. Oncogene, 5(11), 1665–1668.PubMed
203.
go back to reference Schroeder, W. T., Chao, L. Y., Dao, D. D., Strong, L. C., Pathak, S., Riccardi, V., et al. (1987). Nonrandom loss of maternal chromosome 11 alleles in Wilms tumors. American Journal of Human Genetics, 40(5), 413–420.PubMed Schroeder, W. T., Chao, L. Y., Dao, D. D., Strong, L. C., Pathak, S., Riccardi, V., et al. (1987). Nonrandom loss of maternal chromosome 11 alleles in Wilms tumors. American Journal of Human Genetics, 40(5), 413–420.PubMed
204.
go back to reference Scrable, H., Cavenee, W., Ghavimi, F., Lovell, M., Morgan, K., & Sapienza, C. (1989). A model for embryonal rhabdomyosarcoma tumorigenesis that involves genome imprinting. Proceedings of the National Academy of Sciences of the United States of America, 86(19), 7480–7484.PubMed Scrable, H., Cavenee, W., Ghavimi, F., Lovell, M., Morgan, K., & Sapienza, C. (1989). A model for embryonal rhabdomyosarcoma tumorigenesis that involves genome imprinting. Proceedings of the National Academy of Sciences of the United States of America, 86(19), 7480–7484.PubMed
205.
go back to reference Gaudet, F., Hodgson, J. G., Eden, A., Jackson-Grusby, L., Dausman, J., Gray, J. W., et al. (2003). Induction of tumors in mice by genomic hypomethylation. Science, 300(5618), 489–492.PubMed Gaudet, F., Hodgson, J. G., Eden, A., Jackson-Grusby, L., Dausman, J., Gray, J. W., et al. (2003). Induction of tumors in mice by genomic hypomethylation. Science, 300(5618), 489–492.PubMed
206.
go back to reference Rizwana, R., & Hahn, P. J. (1999). CpG methylation reduces genomic instability. Journal of Cell Science, 112(Pt 24), 4513–4519.PubMed Rizwana, R., & Hahn, P. J. (1999). CpG methylation reduces genomic instability. Journal of Cell Science, 112(Pt 24), 4513–4519.PubMed
207.
go back to reference Daskalos, A., Nikolaidis, G., Xinarianos, G., Savvari, P., Cassidy, A., Zakopoulou, R., et al. (2009). Hypomethylation of retrotransposable elements correlates with genomic instability in non-small cell lung cancer. International Journal of Cancer, 124(1), 81–87. Daskalos, A., Nikolaidis, G., Xinarianos, G., Savvari, P., Cassidy, A., Zakopoulou, R., et al. (2009). Hypomethylation of retrotransposable elements correlates with genomic instability in non-small cell lung cancer. International Journal of Cancer, 124(1), 81–87.
208.
go back to reference Walsh, C. P., Chaillet, J. R., & Bestor, T. H. (1998). Transcription of IAP endogenous retroviruses is constrained by cytosine methylation. Nature Genetics, 20(2), 116–117.PubMed Walsh, C. P., Chaillet, J. R., & Bestor, T. H. (1998). Transcription of IAP endogenous retroviruses is constrained by cytosine methylation. Nature Genetics, 20(2), 116–117.PubMed
209.
go back to reference Chalitchagorn, K., Shuangshoti, S., Hourpai, N., Kongruttanachok, N., Tangkijvanich, P., Thong-ngam, D., et al. (2004). Distinctive pattern of LINE-1 methylation level in normal tissues and the association with carcinogenesis. Oncogene, 23(54), 8841–8846.PubMed Chalitchagorn, K., Shuangshoti, S., Hourpai, N., Kongruttanachok, N., Tangkijvanich, P., Thong-ngam, D., et al. (2004). Distinctive pattern of LINE-1 methylation level in normal tissues and the association with carcinogenesis. Oncogene, 23(54), 8841–8846.PubMed
210.
go back to reference Rauch, T. A., Zhong, X., Wu, X., Wang, M., Kernstine, K. H., Wang, Z., et al. (2008). High-resolution mapping of DNA hypermethylation and hypomethylation in lung cancer. Proceedings of the National Academy of Sciences of the United States of America, 105(1), 252–257.PubMed Rauch, T. A., Zhong, X., Wu, X., Wang, M., Kernstine, K. H., Wang, Z., et al. (2008). High-resolution mapping of DNA hypermethylation and hypomethylation in lung cancer. Proceedings of the National Academy of Sciences of the United States of America, 105(1), 252–257.PubMed
211.
go back to reference Groudine, M., Eisenman, R., & Weintraub, H. (1981). Chromatin structure of endogenous retroviral genes and activation by an inhibitor of DNA methylation. Nature, 292(5821), 311–317.PubMed Groudine, M., Eisenman, R., & Weintraub, H. (1981). Chromatin structure of endogenous retroviral genes and activation by an inhibitor of DNA methylation. Nature, 292(5821), 311–317.PubMed
212.
go back to reference Wilson, I. M., Davies, J. J., Weber, M., Brown, C. J., Alvarez, C. E., MacAulay, C., et al. (2006). Epigenomics: mapping the methylome. Cell Cycle, 5(2), 155–158.PubMed Wilson, I. M., Davies, J. J., Weber, M., Brown, C. J., Alvarez, C. E., MacAulay, C., et al. (2006). Epigenomics: mapping the methylome. Cell Cycle, 5(2), 155–158.PubMed
213.
go back to reference Cadieux, B., Ching, T. T., VandenBerg, S. R., & Costello, J. F. (2006). Genome-wide hypomethylation in human glioblastomas associated with specific copy number alteration, methylenetetrahydrofolate reductase allele status, and increased proliferation. Cancer Research, 66(17), 8469–8476.PubMed Cadieux, B., Ching, T. T., VandenBerg, S. R., & Costello, J. F. (2006). Genome-wide hypomethylation in human glioblastomas associated with specific copy number alteration, methylenetetrahydrofolate reductase allele status, and increased proliferation. Cancer Research, 66(17), 8469–8476.PubMed
214.
go back to reference Zabarovsky, E. R., Lerman, M. I., & Minna, J. D. (2002). Tumor suppressor genes on chromosome 3p involved in the pathogenesis of lung and other cancers. Oncogene, 21(45), 6915–6935.PubMed Zabarovsky, E. R., Lerman, M. I., & Minna, J. D. (2002). Tumor suppressor genes on chromosome 3p involved in the pathogenesis of lung and other cancers. Oncogene, 21(45), 6915–6935.PubMed
215.
go back to reference Belinsky, S. A., Palmisano, W. A., Gilliland, F. D., Crooks, L. A., Divine, K. K., Winters, S. A., et al. (2002). Aberrant promoter methylation in bronchial epithelium and sputum from current and former smokers. Cancer Research, 62(8), 2370–2377.PubMed Belinsky, S. A., Palmisano, W. A., Gilliland, F. D., Crooks, L. A., Divine, K. K., Winters, S. A., et al. (2002). Aberrant promoter methylation in bronchial epithelium and sputum from current and former smokers. Cancer Research, 62(8), 2370–2377.PubMed
216.
go back to reference Palmisano, W. A., Divine, K. K., Saccomanno, G., Gilliland, F. D., Baylin, S. B., Herman, J. G., et al. (2000). Predicting lung cancer by detecting aberrant promoter methylation in sputum. Cancer Research, 60(21), 5954–5958.PubMed Palmisano, W. A., Divine, K. K., Saccomanno, G., Gilliland, F. D., Baylin, S. B., Herman, J. G., et al. (2000). Predicting lung cancer by detecting aberrant promoter methylation in sputum. Cancer Research, 60(21), 5954–5958.PubMed
217.
go back to reference Belinsky, S. A. (2004). Gene-promoter hypermethylation as a biomarker in lung cancer. Nature Reviews Cancer, 4(9), 707–717.PubMed Belinsky, S. A. (2004). Gene-promoter hypermethylation as a biomarker in lung cancer. Nature Reviews Cancer, 4(9), 707–717.PubMed
218.
go back to reference Tessema, M., Willink, R., Do, K., Yu, Y. Y., Yu, W., Machida, E. O., et al. (2008). Promoter methylation of genes in and around the candidate lung cancer susceptibility locus 6q23-25. Cancer Research, 68(6), 1707–1714.PubMed Tessema, M., Willink, R., Do, K., Yu, Y. Y., Yu, W., Machida, E. O., et al. (2008). Promoter methylation of genes in and around the candidate lung cancer susceptibility locus 6q23-25. Cancer Research, 68(6), 1707–1714.PubMed
219.
go back to reference Heintzman, N. D., Hon, G. C., Hawkins, R. D., Kheradpour, P., Stark, A., Harp, L. F., et al. (2009). Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature, 459(7243), 108–112.PubMed Heintzman, N. D., Hon, G. C., Hawkins, R. D., Kheradpour, P., Stark, A., Harp, L. F., et al. (2009). Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature, 459(7243), 108–112.PubMed
220.
go back to reference Komashko, V. M., Acevedo, L. G., Squazzo, S. L., Iyengar, S. S., Rabinovich, A., O’Geen, H., et al. (2008). Using ChIP-chip technology to reveal common principles of transcriptional repression in normal and cancer cells. Genome Research, 18(4), 521–532.PubMed Komashko, V. M., Acevedo, L. G., Squazzo, S. L., Iyengar, S. S., Rabinovich, A., O’Geen, H., et al. (2008). Using ChIP-chip technology to reveal common principles of transcriptional repression in normal and cancer cells. Genome Research, 18(4), 521–532.PubMed
221.
go back to reference Ke, X. S., Qu, Y., Rostad, K., Li, W. C., Lin, B., Halvorsen, O. J., et al. (2009). Genome-wide profiling of histone h3 lysine 4 and lysine 27 trimethylation reveals an epigenetic signature in prostate carcinogenesis. PLoS ONE, 4(3), e4687.PubMed Ke, X. S., Qu, Y., Rostad, K., Li, W. C., Lin, B., Halvorsen, O. J., et al. (2009). Genome-wide profiling of histone h3 lysine 4 and lysine 27 trimethylation reveals an epigenetic signature in prostate carcinogenesis. PLoS ONE, 4(3), e4687.PubMed
222.
go back to reference Kondo, Y., Shen, L., Cheng, A. S., Ahmed, S., Boumber, Y., Charo, C., et al. (2008). Gene silencing in cancer by histone H3 lysine 27 trimethylation independent of promoter DNA methylation. Nature Genetics, 40(6), 741–750.PubMed Kondo, Y., Shen, L., Cheng, A. S., Ahmed, S., Boumber, Y., Charo, C., et al. (2008). Gene silencing in cancer by histone H3 lysine 27 trimethylation independent of promoter DNA methylation. Nature Genetics, 40(6), 741–750.PubMed
223.
go back to reference Yu, J., Rhodes, D. R., Tomlins, S. A., Cao, X., Chen, G., Mehra, R., et al. (2007). A polycomb repression signature in metastatic prostate cancer predicts cancer outcome. Cancer Research, 67(22), 10657–10663.PubMed Yu, J., Rhodes, D. R., Tomlins, S. A., Cao, X., Chen, G., Mehra, R., et al. (2007). A polycomb repression signature in metastatic prostate cancer predicts cancer outcome. Cancer Research, 67(22), 10657–10663.PubMed
224.
go back to reference Wu, J., Wang, S. H., Potter, D., Liu, J. C., Smith, L. T., Wu, Y. Z., et al. (2007). Diverse histone modifications on histone 3 lysine 9 and their relation to DNA methylation in specifying gene silencing. BMC Genomics, 8, 131.PubMed Wu, J., Wang, S. H., Potter, D., Liu, J. C., Smith, L. T., Wu, Y. Z., et al. (2007). Diverse histone modifications on histone 3 lysine 9 and their relation to DNA methylation in specifying gene silencing. BMC Genomics, 8, 131.PubMed
225.
go back to reference Krivtsov, A. V., Feng, Z., Lemieux, M. E., Faber, J., Vempati, S., Sinha, A. U., et al. (2008). H3K79 methylation profiles define murine and human MLL-AF4 leukemias. Cancer Cell, 14(5), 355–368.PubMed Krivtsov, A. V., Feng, Z., Lemieux, M. E., Faber, J., Vempati, S., Sinha, A. U., et al. (2008). H3K79 methylation profiles define murine and human MLL-AF4 leukemias. Cancer Cell, 14(5), 355–368.PubMed
226.
go back to reference Lin, B., Wang, J., Hong, X., Yan, X., Hwang, D., Cho, J. H., et al. (2009). Integrated expression profiling and ChIP-seq analyses of the growth inhibition response program of the androgen receptor. PLoS ONE, 4(8), e6589.PubMed Lin, B., Wang, J., Hong, X., Yan, X., Hwang, D., Cho, J. H., et al. (2009). Integrated expression profiling and ChIP-seq analyses of the growth inhibition response program of the androgen receptor. PLoS ONE, 4(8), e6589.PubMed
227.
go back to reference Fullwood, M. J., Liu, M. H., Pan, Y. F., Liu, J., Xu, H., Mohamed, Y. B., et al. (2009). An oestrogen-receptor-alpha-bound human chromatin interactome. Nature, 462(7269), 58–64.PubMed Fullwood, M. J., Liu, M. H., Pan, Y. F., Liu, J., Xu, H., Mohamed, Y. B., et al. (2009). An oestrogen-receptor-alpha-bound human chromatin interactome. Nature, 462(7269), 58–64.PubMed
228.
go back to reference Coe, B. P., Chari, R., Lockwood, W. W., & Lam, W. L. (2008). Evolving strategies for global gene expression analysis of cancer. Journal of Cellular Physiology, 217(3), 590–597.PubMed Coe, B. P., Chari, R., Lockwood, W. W., & Lam, W. L. (2008). Evolving strategies for global gene expression analysis of cancer. Journal of Cellular Physiology, 217(3), 590–597.PubMed
229.
go back to reference Liang, P., & Pardee, A. B. (2003). Analysing differential gene expression in cancer. Nature Reviews Cancer, 3(11), 869–876.PubMed Liang, P., & Pardee, A. B. (2003). Analysing differential gene expression in cancer. Nature Reviews Cancer, 3(11), 869–876.PubMed
230.
go back to reference Nevins, J. R., & Potti, A. (2007). Mining gene expression profiles: Expression signatures as cancer phenotypes. Nature Reviews Genetics, 8(8), 601–609.PubMed Nevins, J. R., & Potti, A. (2007). Mining gene expression profiles: Expression signatures as cancer phenotypes. Nature Reviews Genetics, 8(8), 601–609.PubMed
231.
go back to reference Pollack, J. R., Sorlie, T., Perou, C. M., Rees, C. A., Jeffrey, S. S., Lonning, P. E., et al. (2002). Microarray analysis reveals a major direct role of DNA copy number alteration in the transcriptional program of human breast tumors. Proceedings of the National Academy of Sciences of the United States of America, 99(20), 12963–12968.PubMed Pollack, J. R., Sorlie, T., Perou, C. M., Rees, C. A., Jeffrey, S. S., Lonning, P. E., et al. (2002). Microarray analysis reveals a major direct role of DNA copy number alteration in the transcriptional program of human breast tumors. Proceedings of the National Academy of Sciences of the United States of America, 99(20), 12963–12968.PubMed
232.
go back to reference Heidenblad, M., Lindgren, D., Veltman, J. A., Jonson, T., Mahlamaki, E. H., Gorunova, L., et al. (2005). Microarray analyses reveal strong influence of DNA copy number alterations on the transcriptional patterns in pancreatic cancer: implications for the interpretation of genomic amplifications. Oncogene, 24(10), 1794–1801.PubMed Heidenblad, M., Lindgren, D., Veltman, J. A., Jonson, T., Mahlamaki, E. H., Gorunova, L., et al. (2005). Microarray analyses reveal strong influence of DNA copy number alterations on the transcriptional patterns in pancreatic cancer: implications for the interpretation of genomic amplifications. Oncogene, 24(10), 1794–1801.PubMed
233.
go back to reference Hyman, E., Kauraniemi, P., Hautaniemi, S., Wolf, M., Mousses, S., Rozenblum, E., et al. (2002). Impact of DNA amplification on gene expression patterns in breast cancer. Cancer Research, 62(21), 6240–6245.PubMed Hyman, E., Kauraniemi, P., Hautaniemi, S., Wolf, M., Mousses, S., Rozenblum, E., et al. (2002). Impact of DNA amplification on gene expression patterns in breast cancer. Cancer Research, 62(21), 6240–6245.PubMed
234.
go back to reference Wolf, M., Mousses, S., Hautaniemi, S., Karhu, R., Huusko, P., Allinen, M., et al. (2004). High-resolution analysis of gene copy number alterations in human prostate cancer using CGH on cDNA microarrays: Impact of copy number on gene expression. Neoplasia, 6(3), 240–247.PubMed Wolf, M., Mousses, S., Hautaniemi, S., Karhu, R., Huusko, P., Allinen, M., et al. (2004). High-resolution analysis of gene copy number alterations in human prostate cancer using CGH on cDNA microarrays: Impact of copy number on gene expression. Neoplasia, 6(3), 240–247.PubMed
235.
go back to reference Adelaide, J., Finetti, P., Bekhouche, I., Repellini, L., Geneix, J., Sircoulomb, F., et al. (2007). Integrated profiling of basal and luminal breast cancers. Cancer Research, 67(24), 11565–11575.PubMed Adelaide, J., Finetti, P., Bekhouche, I., Repellini, L., Geneix, J., Sircoulomb, F., et al. (2007). Integrated profiling of basal and luminal breast cancers. Cancer Research, 67(24), 11565–11575.PubMed
236.
go back to reference Broet, P., Camilleri-Broet, S., Zhang, S., Alifano, M., Bangarusamy, D., Battistella, M., et al. (2009). Prediction of clinical outcome in multiple lung cancer cohorts by integrative genomics: Implications for chemotherapy selection. Cancer Research, 69(3), 1055–1062.PubMed Broet, P., Camilleri-Broet, S., Zhang, S., Alifano, M., Bangarusamy, D., Battistella, M., et al. (2009). Prediction of clinical outcome in multiple lung cancer cohorts by integrative genomics: Implications for chemotherapy selection. Cancer Research, 69(3), 1055–1062.PubMed
237.
go back to reference Chin, K., DeVries, S., Fridlyand, J., Spellman, P. T., Roydasgupta, R., Kuo, W. L., et al. (2006). Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. Cancer Cell, 10(6), 529–541.PubMed Chin, K., DeVries, S., Fridlyand, J., Spellman, P. T., Roydasgupta, R., Kuo, W. L., et al. (2006). Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. Cancer Cell, 10(6), 529–541.PubMed
238.
go back to reference Natrajan, R., Weigelt, B., Mackay, A., Geyer, F. C., Grigoriadis, A., Tan, D. S., et al. (2009). An integrative genomic and transcriptomic analysis reveals molecular pathways and networks regulated by copy number aberrations in basal-like, HER2 and luminal cancers. Breast Cancer Research and Treatment. doi:s00280-009-1073-y/s10549-009-0501-3. Natrajan, R., Weigelt, B., Mackay, A., Geyer, F. C., Grigoriadis, A., Tan, D. S., et al. (2009). An integrative genomic and transcriptomic analysis reveals molecular pathways and networks regulated by copy number aberrations in basal-like, HER2 and luminal cancers. Breast Cancer Research and Treatment. doi:s00280-009-1073-y/​s10549-009-0501-3.
239.
go back to reference Deng, S., Calin, G. A., Croce, C. M., Coukos, G., & Zhang, L. (2008). Mechanisms of microRNA deregulation in human cancer. Cell Cycle, 7(17), 2643–2646.PubMed Deng, S., Calin, G. A., Croce, C. M., Coukos, G., & Zhang, L. (2008). Mechanisms of microRNA deregulation in human cancer. Cell Cycle, 7(17), 2643–2646.PubMed
240.
go back to reference Kuo, K. T., Guan, B., Feng, Y., Mao, T. L., Chen, X., Jinawath, N., et al. (2009). Analysis of DNA copy number alterations in ovarian serous tumors identifies new molecular genetic changes in low-grade and high-grade carcinomas. Cancer Research, 69(9), 4036–4042.PubMed Kuo, K. T., Guan, B., Feng, Y., Mao, T. L., Chen, X., Jinawath, N., et al. (2009). Analysis of DNA copy number alterations in ovarian serous tumors identifies new molecular genetic changes in low-grade and high-grade carcinomas. Cancer Research, 69(9), 4036–4042.PubMed
241.
go back to reference Lionetti, M., Agnelli, L., Mosca, L., Fabris, S., Andronache, A., Todoerti, K., et al. (2009). Integrative high-resolution microarray analysis of human myeloma cell lines reveals deregulated miRNA expression associated with allelic imbalances and gene expression profiles. Genes, Chromosomes, and Cancer, 48(6), 521–531.PubMed Lionetti, M., Agnelli, L., Mosca, L., Fabris, S., Andronache, A., Todoerti, K., et al. (2009). Integrative high-resolution microarray analysis of human myeloma cell lines reveals deregulated miRNA expression associated with allelic imbalances and gene expression profiles. Genes, Chromosomes, and Cancer, 48(6), 521–531.PubMed
242.
go back to reference Starczynowski, D. T., Kuchenbauer, F., Argiropoulos, B., Sung, S., Morin, R., Muranyi, A., et al. (2009). Identification of miR-145 and miR-146a as mediators of the 5q- syndrome phenotype. Natural Medicines, 16, 49–58. Starczynowski, D. T., Kuchenbauer, F., Argiropoulos, B., Sung, S., Morin, R., Muranyi, A., et al. (2009). Identification of miR-145 and miR-146a as mediators of the 5q- syndrome phenotype. Natural Medicines, 16, 49–58.
243.
go back to reference Zhang, L., Volinia, S., Bonome, T., Calin, G. A., Greshock, J., Yang, N., et al. (2008). Genomic and epigenetic alterations deregulate microRNA expression in human epithelial ovarian cancer. Proceedings of the National Academy of Sciences of the United States of America, 105(19), 7004–7009.PubMed Zhang, L., Volinia, S., Bonome, T., Calin, G. A., Greshock, J., Yang, N., et al. (2008). Genomic and epigenetic alterations deregulate microRNA expression in human epithelial ovarian cancer. Proceedings of the National Academy of Sciences of the United States of America, 105(19), 7004–7009.PubMed
244.
go back to reference Calin, G. A., & Croce, C. M. (2006). MicroRNA signatures in human cancers. Nature Reviews Cancer, 6(11), 857–866.PubMed Calin, G. A., & Croce, C. M. (2006). MicroRNA signatures in human cancers. Nature Reviews Cancer, 6(11), 857–866.PubMed
245.
go back to reference Nicoloso, M. S., Spizzo, R., Shimizu, M., Rossi, S., & Calin, G. A. (2009). MicroRNAs—the micro steering wheel of tumour metastases. Nature Reviews Cancer, 9(4), 293–302.PubMed Nicoloso, M. S., Spizzo, R., Shimizu, M., Rossi, S., & Calin, G. A. (2009). MicroRNAs—the micro steering wheel of tumour metastases. Nature Reviews Cancer, 9(4), 293–302.PubMed
246.
go back to reference Wolf, N. G., Farver, C., Abdul-Karim, F. W., & Schwartz, S. (2003). Analysis of microsatellite instability and X-inactivation in ovarian borderline tumors lacking numerical abnormalities by comparative genomic hybridization. Cancer Genetics and Cytogenetics, 145(2), 133–138.PubMed Wolf, N. G., Farver, C., Abdul-Karim, F. W., & Schwartz, S. (2003). Analysis of microsatellite instability and X-inactivation in ovarian borderline tumors lacking numerical abnormalities by comparative genomic hybridization. Cancer Genetics and Cytogenetics, 145(2), 133–138.PubMed
247.
go back to reference Olson, P., Lu, J., Zhang, H., Shai, A., Chun, M. G., Wang, Y., et al. (2009). MicroRNA dynamics in the stages of tumorigenesis correlate with hallmark capabilities of cancer. Genes and Development, 23(18), 2152–2165.PubMed Olson, P., Lu, J., Zhang, H., Shai, A., Chun, M. G., Wang, Y., et al. (2009). MicroRNA dynamics in the stages of tumorigenesis correlate with hallmark capabilities of cancer. Genes and Development, 23(18), 2152–2165.PubMed
248.
go back to reference Garzon, R., Calin, G. A., & Croce, C. M. (2009). MicroRNAs in cancer. Annual Review of Medicine, 60, 167–179.PubMed Garzon, R., Calin, G. A., & Croce, C. M. (2009). MicroRNAs in cancer. Annual Review of Medicine, 60, 167–179.PubMed
249.
go back to reference Lujambio, A., & Esteller, M. (2009). How epigenetics can explain human metastasis: A new role for microRNAs. Cell Cycle, 8(3), 377–382.PubMed Lujambio, A., & Esteller, M. (2009). How epigenetics can explain human metastasis: A new role for microRNAs. Cell Cycle, 8(3), 377–382.PubMed
250.
go back to reference Iorio, M. V., Visone, R., Di Leva, G., Donati, V., Petrocca, F., Casalini, P., et al. (2007). MicroRNA signatures in human ovarian cancer. Cancer Research, 67(18), 8699–8707.PubMed Iorio, M. V., Visone, R., Di Leva, G., Donati, V., Petrocca, F., Casalini, P., et al. (2007). MicroRNA signatures in human ovarian cancer. Cancer Research, 67(18), 8699–8707.PubMed
251.
go back to reference Lujambio, A., & Esteller, M. (2007). CpG island hypermethylation of tumor suppressor microRNAs in human cancer. Cell Cycle, 6(12), 1455–1459.PubMed Lujambio, A., & Esteller, M. (2007). CpG island hypermethylation of tumor suppressor microRNAs in human cancer. Cell Cycle, 6(12), 1455–1459.PubMed
252.
go back to reference Lujambio, A., Ropero, S., Ballestar, E., Fraga, M. F., Cerrato, C., Setien, F., et al. (2007). Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Research, 67(4), 1424–1429.PubMed Lujambio, A., Ropero, S., Ballestar, E., Fraga, M. F., Cerrato, C., Setien, F., et al. (2007). Genetic unmasking of an epigenetically silenced microRNA in human cancer cells. Cancer Research, 67(4), 1424–1429.PubMed
253.
go back to reference Guil, S., & Esteller, M. (2009). DNA methylomes, histone codes and miRNAs: Tying it all together. International Journal of Biochemistry and Cell Biology, 41(1), 87–95.PubMed Guil, S., & Esteller, M. (2009). DNA methylomes, histone codes and miRNAs: Tying it all together. International Journal of Biochemistry and Cell Biology, 41(1), 87–95.PubMed
254.
go back to reference Sadikovic, B., Yoshimoto, M., Chilton-MacNeill, S., Thorner, P., Squire, J. A., & Zielenska, M. (2009). Identification of interactive networks of gene expression associated with osteosarcoma oncogenesis by integrated molecular profiling. Human Molecular Genetics, 18(11), 1962–1975.PubMed Sadikovic, B., Yoshimoto, M., Chilton-MacNeill, S., Thorner, P., Squire, J. A., & Zielenska, M. (2009). Identification of interactive networks of gene expression associated with osteosarcoma oncogenesis by integrated molecular profiling. Human Molecular Genetics, 18(11), 1962–1975.PubMed
255.
go back to reference Adamovic, T., Trosso, F., Roshani, L., Andersson, L., Petersen, G., Rajaei, S., et al. (2005). Oncogene amplification in the proximal part of chromosome 6 in rat endometrial adenocarcinoma as revealed by combined BAC/PAC FISH, chromosome painting, zoo-FISH, and allelotyping. Genes, Chromosomes, and Cancer, 44(2), 139–153.PubMed Adamovic, T., Trosso, F., Roshani, L., Andersson, L., Petersen, G., Rajaei, S., et al. (2005). Oncogene amplification in the proximal part of chromosome 6 in rat endometrial adenocarcinoma as revealed by combined BAC/PAC FISH, chromosome painting, zoo-FISH, and allelotyping. Genes, Chromosomes, and Cancer, 44(2), 139–153.PubMed
256.
go back to reference Ferrandina, G., Mey, V., Nannizzi, S., Ricciardi, S., Petrillo, M., Ferlini, C., et al. (2009). Expression of nucleoside transporters, deoxycitidine kinase, ribonucleotide reductase regulatory subunits, and gemcitabine catabolic enzymes in primary ovarian cancer. Cancer Chemotherapy and Pharmacology. doi:s00280-009-1073-y/s00280-009-1073-y. Ferrandina, G., Mey, V., Nannizzi, S., Ricciardi, S., Petrillo, M., Ferlini, C., et al. (2009). Expression of nucleoside transporters, deoxycitidine kinase, ribonucleotide reductase regulatory subunits, and gemcitabine catabolic enzymes in primary ovarian cancer. Cancer Chemotherapy and Pharmacology. doi:s00280-009-1073-y/​s00280-009-1073-y.
257.
go back to reference Fernandez-Ranvier, G. G., Weng, J., Yeh, R. F., Khanafshar, E., Suh, I., Barker, C., et al. (2008). Identification of biomarkers of adrenocortical carcinoma using genomewide gene expression profiling. Archives of Surgery, 143(9), 841–846. discussion 846.PubMed Fernandez-Ranvier, G. G., Weng, J., Yeh, R. F., Khanafshar, E., Suh, I., Barker, C., et al. (2008). Identification of biomarkers of adrenocortical carcinoma using genomewide gene expression profiling. Archives of Surgery, 143(9), 841–846. discussion 846.PubMed
258.
go back to reference Segditsas, S., Sieber, O., Deheragoda, M., East, P., Rowan, A., Jeffery, R., et al. (2008). Putative direct and indirect Wnt targets identified through consistent gene expression changes in APC-mutant intestinal adenomas from humans and mice. Human Molecular Genetics, 17(24), 3864–3875.PubMed Segditsas, S., Sieber, O., Deheragoda, M., East, P., Rowan, A., Jeffery, R., et al. (2008). Putative direct and indirect Wnt targets identified through consistent gene expression changes in APC-mutant intestinal adenomas from humans and mice. Human Molecular Genetics, 17(24), 3864–3875.PubMed
259.
go back to reference Joshi, M. D., Ahmad, R., Yin, L., Raina, D., Rajabi, H., Bubley, G., et al. (2009). MUC1 oncoprotein is a druggable target in human prostate cancer cells. Molecular Cancer Therapeutics, 8(11), 3056–3065.PubMed Joshi, M. D., Ahmad, R., Yin, L., Raina, D., Rajabi, H., Bubley, G., et al. (2009). MUC1 oncoprotein is a druggable target in human prostate cancer cells. Molecular Cancer Therapeutics, 8(11), 3056–3065.PubMed
260.
go back to reference Khodarev, N. N., Pitroda, S. P., Beckett, M. A., MacDermed, D. M., Huang, L., Kufe, D. W., et al. (2009). MUC1-induced transcriptional programs associated with tumorigenesis predict outcome in breast and lung cancer. Cancer Research, 69(7), 2833–2837.PubMed Khodarev, N. N., Pitroda, S. P., Beckett, M. A., MacDermed, D. M., Huang, L., Kufe, D. W., et al. (2009). MUC1-induced transcriptional programs associated with tumorigenesis predict outcome in breast and lung cancer. Cancer Research, 69(7), 2833–2837.PubMed
261.
go back to reference Senapati, S., Das, S., & Batra, S. K. (2009). Mucin-interacting proteins: from function to therapeutics. Trends in Biochemical Sciences. Senapati, S., Das, S., & Batra, S. K. (2009). Mucin-interacting proteins: from function to therapeutics. Trends in Biochemical Sciences.
262.
go back to reference Buys, T. P., Aviel-Ronen, S., Waddell, T. K., Lam, W. L., & Tsao, M. S. (2009). Defining genomic alteration boundaries for a combined small cell and non-small cell lung carcinoma. Journal of Thoracic Oncology, 4(2), 227–239.PubMed Buys, T. P., Aviel-Ronen, S., Waddell, T. K., Lam, W. L., & Tsao, M. S. (2009). Defining genomic alteration boundaries for a combined small cell and non-small cell lung carcinoma. Journal of Thoracic Oncology, 4(2), 227–239.PubMed
263.
go back to reference Brommesson, S., Jonsson, G., Strand, C., Grabau, D., Malmstrom, P., Ringner, M., et al. (2008). Tiling array-CGH for the assessment of genomic similarities among synchronous unilateral and bilateral invasive breast cancer tumor pairs. BMC Clinical Pathology, 8, 6.PubMed Brommesson, S., Jonsson, G., Strand, C., Grabau, D., Malmstrom, P., Ringner, M., et al. (2008). Tiling array-CGH for the assessment of genomic similarities among synchronous unilateral and bilateral invasive breast cancer tumor pairs. BMC Clinical Pathology, 8, 6.PubMed
264.
go back to reference Kawanishi, H., Takahashi, T., Ito, M., Matsui, Y., Watanabe, J., Ito, N., et al. (2007). Genetic analysis of multifocal superficial urothelial cancers by array-based comparative genomic hybridisation. British Journal of Cancer, 97(2), 260–266.PubMed Kawanishi, H., Takahashi, T., Ito, M., Matsui, Y., Watanabe, J., Ito, N., et al. (2007). Genetic analysis of multifocal superficial urothelial cancers by array-based comparative genomic hybridisation. British Journal of Cancer, 97(2), 260–266.PubMed
265.
go back to reference Mhawech-Fauceglia, P., Rai, H., Nowak, N., Cheney, R. T., Rodabaugh, K., Lele, S., et al. (2008). The use of array-based comparative genomic hybridization (a-CGH) to distinguish metastatic from primary synchronous carcinomas of the ovary and the uterus. Histopathology, 53(4), 490–495.PubMed Mhawech-Fauceglia, P., Rai, H., Nowak, N., Cheney, R. T., Rodabaugh, K., Lele, S., et al. (2008). The use of array-based comparative genomic hybridization (a-CGH) to distinguish metastatic from primary synchronous carcinomas of the ovary and the uterus. Histopathology, 53(4), 490–495.PubMed
266.
go back to reference Nakano, H., Soda, H., Nakamura, Y., Uchida, K., Takasu, M., Nakatomi, K., et al. (2007). Different epidermal growth factor receptor gene mutations in a patient with 2 synchronous lung cancers. Clinical Lung Cancer, 8(9), 562–564.PubMed Nakano, H., Soda, H., Nakamura, Y., Uchida, K., Takasu, M., Nakatomi, K., et al. (2007). Different epidermal growth factor receptor gene mutations in a patient with 2 synchronous lung cancers. Clinical Lung Cancer, 8(9), 562–564.PubMed
267.
go back to reference Ryoo, B. Y., Na, I. I., Yang, S. H., Koh, J. S., Kim, C. H., & Lee, J. C. (2006). Synchronous multiple primary lung cancers with different response to gefitinib. Lung Cancer, 53(2), 245–248.PubMed Ryoo, B. Y., Na, I. I., Yang, S. H., Koh, J. S., Kim, C. H., & Lee, J. C. (2006). Synchronous multiple primary lung cancers with different response to gefitinib. Lung Cancer, 53(2), 245–248.PubMed
268.
go back to reference Speel, E. J., van de Wouw, A. J., Claessen, S. M., Haesevoets, A., Hopman, A. H., van der Wurff, A. A., et al. (2008). Molecular evidence for a clonal relationship between multiple lesions in patients with unknown primary adenocarcinoma. International Journal of Cancer, 123(6), 1292–1300. Speel, E. J., van de Wouw, A. J., Claessen, S. M., Haesevoets, A., Hopman, A. H., van der Wurff, A. A., et al. (2008). Molecular evidence for a clonal relationship between multiple lesions in patients with unknown primary adenocarcinoma. International Journal of Cancer, 123(6), 1292–1300.
269.
go back to reference Wa, C. V., DeVries, S., Chen, Y. Y., Waldman, F. M., & Hwang, E. S. (2005). Clinical application of array-based comparative genomic hybridization to define the relationship between multiple synchronous tumors. Modern Pathology, 18(4), 591–597.PubMed Wa, C. V., DeVries, S., Chen, Y. Y., Waldman, F. M., & Hwang, E. S. (2005). Clinical application of array-based comparative genomic hybridization to define the relationship between multiple synchronous tumors. Modern Pathology, 18(4), 591–597.PubMed
270.
go back to reference Agelopoulos, K., Tidow, N., Korsching, E., Voss, R., Hinrichs, B., Brandt, B., et al. (2003). Molecular cytogenetic investigations of synchronous bilateral breast cancer. Journal of Clinical Pathology, 56(9), 660–665.PubMed Agelopoulos, K., Tidow, N., Korsching, E., Voss, R., Hinrichs, B., Brandt, B., et al. (2003). Molecular cytogenetic investigations of synchronous bilateral breast cancer. Journal of Clinical Pathology, 56(9), 660–665.PubMed
271.
go back to reference Whitehurst, A. W., Bodemann, B. O., Cardenas, J., Ferguson, D., Girard, L., Peyton, M., et al. (2007). Synthetic lethal screen identification of chemosensitizer loci in cancer cells. Nature, 446(7137), 815–819.PubMed Whitehurst, A. W., Bodemann, B. O., Cardenas, J., Ferguson, D., Girard, L., Peyton, M., et al. (2007). Synthetic lethal screen identification of chemosensitizer loci in cancer cells. Nature, 446(7137), 815–819.PubMed
272.
go back to reference Barbie, D. A., Tamayo, P., Boehm, J. S., Kim, S. Y., Moody, S. E., Dunn, I. F., et al. (2009). Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature, 462(7269), 108–112.PubMed Barbie, D. A., Tamayo, P., Boehm, J. S., Kim, S. Y., Moody, S. E., Dunn, I. F., et al. (2009). Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature, 462(7269), 108–112.PubMed
273.
go back to reference Berns, K., Hijmans, E. M., Mullenders, J., Brummelkamp, T. R., Velds, A., Heimerikx, M., et al. (2004). A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature, 428(6981), 431–437.PubMed Berns, K., Hijmans, E. M., Mullenders, J., Brummelkamp, T. R., Velds, A., Heimerikx, M., et al. (2004). A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature, 428(6981), 431–437.PubMed
274.
go back to reference Gobeil, S., Zhu, X., Doillon, C. J., & Green, M. R. (2008). A genome-wide shRNA screen identifies GAS1 as a novel melanoma metastasis suppressor gene. Genes and Development, 22(21), 2932–2940.PubMed Gobeil, S., Zhu, X., Doillon, C. J., & Green, M. R. (2008). A genome-wide shRNA screen identifies GAS1 as a novel melanoma metastasis suppressor gene. Genes and Development, 22(21), 2932–2940.PubMed
275.
go back to reference Luo, B., Cheung, H. W., Subramanian, A., Sharifnia, T., Okamoto, M., Yang, X., et al. (2008). Highly parallel identification of essential genes in cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 105(51), 20380–20385.PubMed Luo, B., Cheung, H. W., Subramanian, A., Sharifnia, T., Okamoto, M., Yang, X., et al. (2008). Highly parallel identification of essential genes in cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 105(51), 20380–20385.PubMed
276.
go back to reference Luo, J., Emanuele, M. J., Li, D., Creighton, C. J., Schlabach, M. R., Westbrook, T. F., et al. (2009). A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene. Cell, 137(5), 835–848.PubMed Luo, J., Emanuele, M. J., Li, D., Creighton, C. J., Schlabach, M. R., Westbrook, T. F., et al. (2009). A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene. Cell, 137(5), 835–848.PubMed
277.
go back to reference Moffat, J., Grueneberg, D. A., Yang, X., Kim, S. Y., Kloepfer, A. M., Hinkle, G., et al. (2006). A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen. Cell, 124(6), 1283–1298.PubMed Moffat, J., Grueneberg, D. A., Yang, X., Kim, S. Y., Kloepfer, A. M., Hinkle, G., et al. (2006). A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen. Cell, 124(6), 1283–1298.PubMed
278.
go back to reference Scholl, C., Frohling, S., Dunn, I. F., Schinzel, A. C., Barbie, D. A., Kim, S. Y., et al. (2009). Synthetic lethal interaction between oncogenic KRAS dependency and STK33 suppression in human cancer cells. Cell, 137(5), 821–834.PubMed Scholl, C., Frohling, S., Dunn, I. F., Schinzel, A. C., Barbie, D. A., Kim, S. Y., et al. (2009). Synthetic lethal interaction between oncogenic KRAS dependency and STK33 suppression in human cancer cells. Cell, 137(5), 821–834.PubMed
279.
go back to reference Silva, J. M., Marran, K., Parker, J. S., Silva, J., Golding, M., Schlabach, M. R., et al. (2008). Profiling essential genes in human mammary cells by multiplex RNAi screening. Science, 319(5863), 617–620.PubMed Silva, J. M., Marran, K., Parker, J. S., Silva, J., Golding, M., Schlabach, M. R., et al. (2008). Profiling essential genes in human mammary cells by multiplex RNAi screening. Science, 319(5863), 617–620.PubMed
280.
go back to reference Apweiler, R., Aslanidis, C., Deufel, T., Gerstner, A., Hansen, J., Hochstrasser, D., et al. (2009). Approaching clinical proteomics: current state and future fields of application in cellular proteomics. Cytometry A, 75(10), 816–832.PubMed Apweiler, R., Aslanidis, C., Deufel, T., Gerstner, A., Hansen, J., Hochstrasser, D., et al. (2009). Approaching clinical proteomics: current state and future fields of application in cellular proteomics. Cytometry A, 75(10), 816–832.PubMed
281.
go back to reference Apweiler, R., Aslanidis, C., Deufel, T., Gerstner, A., Hansen, J., Hochstrasser, D., et al. (2009). Approaching clinical proteomics: Current state and future fields of application in fluid proteomics. Clinical Chemistry and Laboratory Medicine, 47(6), 724–744.PubMed Apweiler, R., Aslanidis, C., Deufel, T., Gerstner, A., Hansen, J., Hochstrasser, D., et al. (2009). Approaching clinical proteomics: Current state and future fields of application in fluid proteomics. Clinical Chemistry and Laboratory Medicine, 47(6), 724–744.PubMed
282.
go back to reference Peng, X. Q., Wang, F., Geng, X., & Zhang, W. M. (2009). Current advances in tumor proteomics and candidate biomarkers for hepatic cancer. Expert Review of Proteomics, 6(5), 551–561.PubMed Peng, X. Q., Wang, F., Geng, X., & Zhang, W. M. (2009). Current advances in tumor proteomics and candidate biomarkers for hepatic cancer. Expert Review of Proteomics, 6(5), 551–561.PubMed
283.
go back to reference Tainsky, M. A. (2009). Genomic and proteomic biomarkers for cancer: A multitude of opportunities. Biochimica et Biophysica Acta, 1796(2), 176–193.PubMed Tainsky, M. A. (2009). Genomic and proteomic biomarkers for cancer: A multitude of opportunities. Biochimica et Biophysica Acta, 1796(2), 176–193.PubMed
284.
go back to reference Zamo, A., & Cecconi, D. (2009). Proteomic analysis of lymphoid and haematopoietic neoplasms: There’s more than biomarker discovery. J Proteomics. Zamo, A., & Cecconi, D. (2009). Proteomic analysis of lymphoid and haematopoietic neoplasms: There’s more than biomarker discovery. J Proteomics.
285.
go back to reference Griffin, J. L., & Kauppinen, R. A. (2007). A metabolomics perspective of human brain tumours. FEBS Journal, 274(5), 1132–1139.PubMed Griffin, J. L., & Kauppinen, R. A. (2007). A metabolomics perspective of human brain tumours. FEBS Journal, 274(5), 1132–1139.PubMed
286.
go back to reference Spratlin, J. L., Serkova, N. J., & Eckhardt, S. G. (2009). Clinical applications of metabolomics in oncology: A review. Clinical Cancer Research, 15(2), 431–440.PubMed Spratlin, J. L., Serkova, N. J., & Eckhardt, S. G. (2009). Clinical applications of metabolomics in oncology: A review. Clinical Cancer Research, 15(2), 431–440.PubMed
287.
go back to reference Sreekumar, A., Poisson, L. M., Rajendiran, T. M., Khan, A. P., Cao, Q., Yu, J., et al. (2009). Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature, 457(7231), 910–914.PubMed Sreekumar, A., Poisson, L. M., Rajendiran, T. M., Khan, A. P., Cao, Q., Yu, J., et al. (2009). Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature, 457(7231), 910–914.PubMed
Metadata
Title
Integrating the multiple dimensions of genomic and epigenomic landscapes of cancer
Authors
Raj Chari
Kelsie L. Thu
Ian M. Wilson
William W. Lockwood
Kim M. Lonergan
Bradley P. Coe
Chad A. Malloff
Adi F. Gazdar
Stephen Lam
Cathie Garnis
Calum E. MacAulay
Carlos E. Alvarez
Wan L. Lam
Publication date
01-03-2010
Publisher
Springer US
Published in
Cancer and Metastasis Reviews / Issue 1/2010
Print ISSN: 0167-7659
Electronic ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-010-9199-2

Other articles of this Issue 1/2010

Cancer and Metastasis Reviews 1/2010 Go to the issue

EditorialNotes

Preface

Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine