Skip to main content
Top
Published in: Breast Cancer Research and Treatment 3/2013

01-10-2013 | Clinical Trial

Phase I–II study of the farnesyl transferase inhibitor tipifarnib plus sequential weekly paclitaxel and doxorubicin–cyclophosphamide in HER2/neu-negative inflammatory carcinoma and non-inflammatory estrogen receptor-positive breast carcinoma

Authors: Eleni Andreopoulou, Ivette S. Vigoda, Vicente Valero, Dawn L. Hershman, George Raptis, Linda T. Vahdat, Hyo S. Han, John J. Wright, Christine M. Pellegrino, Massimo Cristofanilli, Ricardo H. Alvarez, Karen Fehn, Susan Fineberg, Joseph A. Sparano

Published in: Breast Cancer Research and Treatment | Issue 3/2013

Login to get access

Abstract

Tipifarnib (T) is a farnesyl transferase inhibitor (FTI) that enhances the antineoplastic effects of cytotoxic therapy in vitro, has activity in metastatic breast cancer, and enhances the pathologic complete response (pCR) rate to neoadjuvant doxorubicin–cyclophosphamide (AC) chemotherapy. We, therefore, performed a phase I–II trial of T plus neoadjuvant sequential weekly paclitaxel and 2-week AC chemotherapy in locally advanced breast cancer. Eligible patients with HER2-negative clinical stage IIB–IIIC breast cancer received 12 weekly doses of paclitaxel (80 mg/m2) followed by AC (60/600 mg/m2 every 2 weeks and filgrastim), plus T (100 or 200 mg PO on days 1–3 of each P dose, and 200 mg PO on days 2–7 of each AC cycle). The trial was powered to detect an improvement in breast pCR rate from 15 to 35 % (α = 0.10, β = 0.10) in two strata, including ER and/or PR-positive, non-inflammatory (stratum A) and inflammatory carcinoma (stratum B). Of the 60 patients accrued, there were no dose-limiting toxicities among the first six patients treated at the first T dose level (100 mg BID; N = 3) or second T dose level (200 mg BID; N = 3) plus paclitaxel. Breast pCR occurred in 6/33 patients (18 %, 95 % confidence intervals (CI) 7–36 %) and 1/22 patients (4 %, 95 % CI 0–8 %) in stratum B. Combination of the FTI T with weekly paclitaxel–AC is unlikely to be associated with a breast pCR rate of 35 % or higher in patients with locally advanced HER2/neu-negative inflammatory or non-inflammatory ER- and/or PR-positive breast carcinoma.
Literature
1.
go back to reference Rochlitz CF, Scott GK, Dodson JM et al (1989) Incidence of activating ras oncogene mutations associated with primary and metastatic human breast cancer. Cancer Res 49:357–360PubMed Rochlitz CF, Scott GK, Dodson JM et al (1989) Incidence of activating ras oncogene mutations associated with primary and metastatic human breast cancer. Cancer Res 49:357–360PubMed
2.
go back to reference Thor A, Ohuchi N, Hand PH et al (1986) ras gene alterations and enhanced levels of ras p21 expression in a spectrum of benign and malignant human mammary tissues. Lab Invest 55:603–615PubMed Thor A, Ohuchi N, Hand PH et al (1986) ras gene alterations and enhanced levels of ras p21 expression in a spectrum of benign and malignant human mammary tissues. Lab Invest 55:603–615PubMed
3.
go back to reference Smith CA, Pollice AA, Gu LP et al (2000) Correlations among p53, Her-2/neu, and ras overexpression and aneuploidy by multiparameter flow cytometry in human breast cancer: evidence for a common phenotypic evolutionary pattern in infiltrating ductal carcinomas. Clin Cancer Res 6:112–126PubMed Smith CA, Pollice AA, Gu LP et al (2000) Correlations among p53, Her-2/neu, and ras overexpression and aneuploidy by multiparameter flow cytometry in human breast cancer: evidence for a common phenotypic evolutionary pattern in infiltrating ductal carcinomas. Clin Cancer Res 6:112–126PubMed
4.
go back to reference Bunone G, Briand PA, Miksicek RJ et al (1996) Activation of the unliganded estrogen receptor by EGF involves the MAP kinase pathway and direct phosphorylation. EMBO J 15:2174–2183PubMed Bunone G, Briand PA, Miksicek RJ et al (1996) Activation of the unliganded estrogen receptor by EGF involves the MAP kinase pathway and direct phosphorylation. EMBO J 15:2174–2183PubMed
5.
go back to reference Kato S, Masuhiro Y, Watanabe M et al (2000) Molecular mechanism of a cross-talk between oestrogen and growth factor signalling pathways. Genes Cells 5:593–601PubMedCrossRef Kato S, Masuhiro Y, Watanabe M et al (2000) Molecular mechanism of a cross-talk between oestrogen and growth factor signalling pathways. Genes Cells 5:593–601PubMedCrossRef
6.
go back to reference Theillet C, Lidereau R, Escot C et al (1986) Loss of a c-H-ras-1 allele and aggressive human primary breast carcinomas. Cancer Res 46:4776–4781PubMed Theillet C, Lidereau R, Escot C et al (1986) Loss of a c-H-ras-1 allele and aggressive human primary breast carcinomas. Cancer Res 46:4776–4781PubMed
7.
go back to reference Kleer CG, van Golen KL, Zhang Y et al (2002) Characterization of RhoC expression in benign and malignant breast disease: a potential new marker for small breast carcinomas with metastatic ability. Am J Pathol 160:579–584PubMedCrossRef Kleer CG, van Golen KL, Zhang Y et al (2002) Characterization of RhoC expression in benign and malignant breast disease: a potential new marker for small breast carcinomas with metastatic ability. Am J Pathol 160:579–584PubMedCrossRef
8.
go back to reference van Golen KL, Bao L, DiVito MM et al (2002) Reversion of RhoC GTPase-induced inflammatory breast cancer phenotype by treatment with a farnesyl transferase inhibitor. Mol Cancer Ther 1:575–583PubMed van Golen KL, Bao L, DiVito MM et al (2002) Reversion of RhoC GTPase-induced inflammatory breast cancer phenotype by treatment with a farnesyl transferase inhibitor. Mol Cancer Ther 1:575–583PubMed
9.
go back to reference Zhu K, Hamilton AD, Sebti SM (2003) Farnesyltransferase inhibitors as anticancer agents: current status. Curr Opin Investig Drugs 4:1428–1435PubMed Zhu K, Hamilton AD, Sebti SM (2003) Farnesyltransferase inhibitors as anticancer agents: current status. Curr Opin Investig Drugs 4:1428–1435PubMed
10.
go back to reference Crespo NC, Ohkanda J, Yen TJ et al (2001) The farnesyltransferase inhibitor, FTI-2153, blocks bipolar spindle formation and chromosome alignment and causes prometaphase accumulation during mitosis of human lung cancer cells. J Biol Chem 276:16161–16167PubMedCrossRef Crespo NC, Ohkanda J, Yen TJ et al (2001) The farnesyltransferase inhibitor, FTI-2153, blocks bipolar spindle formation and chromosome alignment and causes prometaphase accumulation during mitosis of human lung cancer cells. J Biol Chem 276:16161–16167PubMedCrossRef
11.
go back to reference Crespo NC, Delarue F, Ohkanda J et al (2002) The farnesyltransferase inhibitor, FTI-2153, inhibits bipolar spindle formation during mitosis independently of transformation and Ras and p53 mutation status. Cell Death Differ 9:702–709PubMedCrossRef Crespo NC, Delarue F, Ohkanda J et al (2002) The farnesyltransferase inhibitor, FTI-2153, inhibits bipolar spindle formation during mitosis independently of transformation and Ras and p53 mutation status. Cell Death Differ 9:702–709PubMedCrossRef
12.
go back to reference Ashar HR, James L, Gray K et al (2001) The farnesyl transferase inhibitor SCH 66336 induces a G(2) → M or G(1) pause in sensitive human tumor cell lines. Exp Cell Res 262:17–27PubMedCrossRef Ashar HR, James L, Gray K et al (2001) The farnesyl transferase inhibitor SCH 66336 induces a G(2) → M or G(1) pause in sensitive human tumor cell lines. Exp Cell Res 262:17–27PubMedCrossRef
13.
go back to reference Sepp-Lorenzino L, Rosen N (1998) A farnesyl-protein transferase inhibitor induces p21 expression and G1 block in p53 wild type tumor cells. J Biol Chem 273:20243–20251PubMedCrossRef Sepp-Lorenzino L, Rosen N (1998) A farnesyl-protein transferase inhibitor induces p21 expression and G1 block in p53 wild type tumor cells. J Biol Chem 273:20243–20251PubMedCrossRef
14.
go back to reference Le Gouill S, Pellat-Deceunynck C, Harousseau JL et al (2002) Farnesyl transferase inhibitor R115777 induces apoptosis of human myeloma cells. Leukemia 16:1664–1667PubMedCrossRef Le Gouill S, Pellat-Deceunynck C, Harousseau JL et al (2002) Farnesyl transferase inhibitor R115777 induces apoptosis of human myeloma cells. Leukemia 16:1664–1667PubMedCrossRef
15.
go back to reference Han JY, Oh SH, Morgillo F et al (2005) Hypoxia-inducible factor 1alpha and antiangiogenic activity of farnesyltransferase inhibitor SCH66336 in human aerodigestive tract cancer. J Natl Cancer Inst 97:1272–1286PubMedCrossRef Han JY, Oh SH, Morgillo F et al (2005) Hypoxia-inducible factor 1alpha and antiangiogenic activity of farnesyltransferase inhibitor SCH66336 in human aerodigestive tract cancer. J Natl Cancer Inst 97:1272–1286PubMedCrossRef
16.
go back to reference Kelland LR, Smith V, Valenti M et al (2001) Preclinical antitumor activity and pharmacodynamic studies with the farnesyl protein transferase inhibitor R115777 in human breast cancer. Clin Cancer Res 7:3544–3550PubMed Kelland LR, Smith V, Valenti M et al (2001) Preclinical antitumor activity and pharmacodynamic studies with the farnesyl protein transferase inhibitor R115777 in human breast cancer. Clin Cancer Res 7:3544–3550PubMed
17.
go back to reference Sun J, Ohkanda J, Coppola D et al (2003) Geranylgeranyltransferase I inhibitor GGTI-2154 induces breast carcinoma apoptosis and tumor regression in H-Ras transgenic mice. Cancer Res 63:8922–8929PubMed Sun J, Ohkanda J, Coppola D et al (2003) Geranylgeranyltransferase I inhibitor GGTI-2154 induces breast carcinoma apoptosis and tumor regression in H-Ras transgenic mice. Cancer Res 63:8922–8929PubMed
18.
go back to reference Kohl NE, Omer CA, Conner MW et al (1995) Inhibition of farnesyltransferase induces regression of mammary and salivary carcinomas in ras transgenic mice. Nat Med 1:792–797PubMedCrossRef Kohl NE, Omer CA, Conner MW et al (1995) Inhibition of farnesyltransferase induces regression of mammary and salivary carcinomas in ras transgenic mice. Nat Med 1:792–797PubMedCrossRef
19.
go back to reference Marcus AI, Zhou J, O’Brate A et al (2005) The synergistic combination of the farnesyl transferase inhibitor lonafarnib and paclitaxel enhances tubulin acetylation and requires a functional tubulin deacetylase. Cancer Res 65:3883–3893PubMedCrossRef Marcus AI, Zhou J, O’Brate A et al (2005) The synergistic combination of the farnesyl transferase inhibitor lonafarnib and paclitaxel enhances tubulin acetylation and requires a functional tubulin deacetylase. Cancer Res 65:3883–3893PubMedCrossRef
20.
go back to reference Loprevite M, Favoni RE, De Cupis A et al (2004) In vitro study of farnesyltransferase inhibitor SCH 66336, in combination with chemotherapy and radiation, in non-small cell lung cancer cell lines. Oncol Rep 11:407–414PubMed Loprevite M, Favoni RE, De Cupis A et al (2004) In vitro study of farnesyltransferase inhibitor SCH 66336, in combination with chemotherapy and radiation, in non-small cell lung cancer cell lines. Oncol Rep 11:407–414PubMed
21.
go back to reference Wang EJ, Johnson WW (2003) The farnesyl protein transferase inhibitor lonafarnib (SCH66336) is an inhibitor of multidrug resistance proteins 1 and 2. Chemotherapy 49:303–308PubMedCrossRef Wang EJ, Johnson WW (2003) The farnesyl protein transferase inhibitor lonafarnib (SCH66336) is an inhibitor of multidrug resistance proteins 1 and 2. Chemotherapy 49:303–308PubMedCrossRef
22.
go back to reference Jin W, Wu L, Liang K et al (2003) Roles of the PI-3K and MEK pathways in Ras-mediated chemoresistance in breast cancer cells. Br J Cancer 89:185–191PubMedCrossRef Jin W, Wu L, Liang K et al (2003) Roles of the PI-3K and MEK pathways in Ras-mediated chemoresistance in breast cancer cells. Br J Cancer 89:185–191PubMedCrossRef
23.
go back to reference Weinstein-Oppenheimer CR, Henriquez-Roldan CF, Davis JM et al (2001) Role of the Raf signal transduction cascade in the in vitro resistance to the anticancer drug doxorubicin. Clin Cancer Res 7:2898–2907PubMed Weinstein-Oppenheimer CR, Henriquez-Roldan CF, Davis JM et al (2001) Role of the Raf signal transduction cascade in the in vitro resistance to the anticancer drug doxorubicin. Clin Cancer Res 7:2898–2907PubMed
24.
go back to reference Rasouli-Nia A, Liu D, Perdue S et al (1998) High Raf-1 kinase activity protects human tumor cells against paclitaxel-induced cytotoxicity. Clin Cancer Res 4:1111–1116PubMed Rasouli-Nia A, Liu D, Perdue S et al (1998) High Raf-1 kinase activity protects human tumor cells against paclitaxel-induced cytotoxicity. Clin Cancer Res 4:1111–1116PubMed
25.
go back to reference Cornwell MM, Smith DE (1993) A signal transduction pathway for activation of the mdr1 promoter involves the proto-oncogene c-raf kinase. J Biol Chem 268:15347–15350PubMed Cornwell MM, Smith DE (1993) A signal transduction pathway for activation of the mdr1 promoter involves the proto-oncogene c-raf kinase. J Biol Chem 268:15347–15350PubMed
26.
go back to reference Johnston SR, Hickish T, Ellis P et al (2003) Phase II study of the efficacy and tolerability of two dosing regimens of the farnesyl transferase inhibitor, R115777, in advanced breast cancer. J Clin Oncol 21:2492–2499PubMedCrossRef Johnston SR, Hickish T, Ellis P et al (2003) Phase II study of the efficacy and tolerability of two dosing regimens of the farnesyl transferase inhibitor, R115777, in advanced breast cancer. J Clin Oncol 21:2492–2499PubMedCrossRef
27.
go back to reference Sparano JA, Moulder S, Kazi A et al (2006) Targeted inhibition of farnesyltransferase in locally advanced breast cancer: a phase I and II trial of tipifarnib plus dose-dense doxorubicin and cyclophosphamide. J Clin Oncol 24:3013–3018PubMedCrossRef Sparano JA, Moulder S, Kazi A et al (2006) Targeted inhibition of farnesyltransferase in locally advanced breast cancer: a phase I and II trial of tipifarnib plus dose-dense doxorubicin and cyclophosphamide. J Clin Oncol 24:3013–3018PubMedCrossRef
28.
go back to reference Sparano JA, Moulder S, Kazi A et al (2009) Phase II trial of tipifarnib plus neoadjuvant doxorubicin–cyclophosphamide in patients with clinical stage IIB–IIIC breast cancer. Clin Cancer Res 15:2942–2948PubMedCrossRef Sparano JA, Moulder S, Kazi A et al (2009) Phase II trial of tipifarnib plus neoadjuvant doxorubicin–cyclophosphamide in patients with clinical stage IIB–IIIC breast cancer. Clin Cancer Res 15:2942–2948PubMedCrossRef
29.
go back to reference Bear HD, Anderson S, Brown A et al (2003) The effect on tumor response of adding sequential preoperative docetaxel to preoperative doxorubicin and cyclophosphamide: preliminary results from National Surgical Adjuvant Breast and Bowel Project Protocol B-27. J Clin Oncol 21:4165–4174PubMedCrossRef Bear HD, Anderson S, Brown A et al (2003) The effect on tumor response of adding sequential preoperative docetaxel to preoperative doxorubicin and cyclophosphamide: preliminary results from National Surgical Adjuvant Breast and Bowel Project Protocol B-27. J Clin Oncol 21:4165–4174PubMedCrossRef
30.
go back to reference Green MC, Buzdar AU, Smith T et al (2005) Weekly paclitaxel improves pathologic complete remission in operable breast cancer when compared with paclitaxel once every 3 weeks. J Clin Oncol 23:5983–5992PubMedCrossRef Green MC, Buzdar AU, Smith T et al (2005) Weekly paclitaxel improves pathologic complete remission in operable breast cancer when compared with paclitaxel once every 3 weeks. J Clin Oncol 23:5983–5992PubMedCrossRef
31.
go back to reference Sparano JA, Wang M, Martino S et al (2008) Weekly paclitaxel in the adjuvant treatment of breast cancer. N Engl J Med 358:1663–1671PubMedCrossRef Sparano JA, Wang M, Martino S et al (2008) Weekly paclitaxel in the adjuvant treatment of breast cancer. N Engl J Med 358:1663–1671PubMedCrossRef
32.
go back to reference Therasse P, Arbuck SG, Eisenhauer EA et al (2000) New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 92:205–216PubMedCrossRef Therasse P, Arbuck SG, Eisenhauer EA et al (2000) New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 92:205–216PubMedCrossRef
33.
go back to reference Symmans WF, Peintinger F, Hatzis C et al (2007) Measurement of residual breast cancer burden to predict survival after neoadjuvant chemotherapy. J Clin Oncol 25:4414–4422PubMedCrossRef Symmans WF, Peintinger F, Hatzis C et al (2007) Measurement of residual breast cancer burden to predict survival after neoadjuvant chemotherapy. J Clin Oncol 25:4414–4422PubMedCrossRef
34.
go back to reference Guarneri V, Broglio K, Kau SW et al (2006) Prognostic value of pathologic complete response after primary chemotherapy in relation to hormone receptor status and other factors. J Clin Oncol 24:1037–1044PubMedCrossRef Guarneri V, Broglio K, Kau SW et al (2006) Prognostic value of pathologic complete response after primary chemotherapy in relation to hormone receptor status and other factors. J Clin Oncol 24:1037–1044PubMedCrossRef
35.
go back to reference Kuerer HM, Newman LA, Smith TL et al (1999) Clinical course of breast cancer patients with complete pathologic primary tumor and axillary lymph node response to doxorubicin-based neoadjuvant chemotherapy. J Clin Oncol 17:460–469PubMed Kuerer HM, Newman LA, Smith TL et al (1999) Clinical course of breast cancer patients with complete pathologic primary tumor and axillary lymph node response to doxorubicin-based neoadjuvant chemotherapy. J Clin Oncol 17:460–469PubMed
36.
go back to reference Prowell TM, Pazdur R (2012) Pathological complete response and accelerated drug approval in early breast cancer. N Engl J Med 366:2438–2441PubMedCrossRef Prowell TM, Pazdur R (2012) Pathological complete response and accelerated drug approval in early breast cancer. N Engl J Med 366:2438–2441PubMedCrossRef
37.
go back to reference Prowell TM, Pazdur R (2012) Pathological complete response and accelerated drug approval in early breast cancer. N Engl J Med 366:2438–2441PubMedCrossRef Prowell TM, Pazdur R (2012) Pathological complete response and accelerated drug approval in early breast cancer. N Engl J Med 366:2438–2441PubMedCrossRef
38.
go back to reference Barker AD, Sigman CC, Kelloff GJ et al (2009) I-SPY 2: an adaptive breast cancer trial design in the setting of neoadjuvant chemotherapy. Clin Pharmacol Ther 86:97–100PubMedCrossRef Barker AD, Sigman CC, Kelloff GJ et al (2009) I-SPY 2: an adaptive breast cancer trial design in the setting of neoadjuvant chemotherapy. Clin Pharmacol Ther 86:97–100PubMedCrossRef
39.
go back to reference Cortazar P, Zhang L, Untch M et al (2012) Meta-Analysis results from the collaborative trials in neoadjuvant breast cancer (CTNeoBC). Breast Cancer Res Treat 72:S1–11, 2012 Cortazar P, Zhang L, Untch M et al (2012) Meta-Analysis results from the collaborative trials in neoadjuvant breast cancer (CTNeoBC). Breast Cancer Res Treat 72:S1–11, 2012
40.
go back to reference Esserman LJ, Berry DA, Cheang MC et al (2012) Chemotherapy response and recurrence-free survival in neoadjuvant breast cancer depends on biomarker profiles: results from the I-SPY 1 TRIAL (CALGB 150007/150012; ACRIN 6657). Breast Cancer Res Treat 132:1049–1062PubMedCrossRef Esserman LJ, Berry DA, Cheang MC et al (2012) Chemotherapy response and recurrence-free survival in neoadjuvant breast cancer depends on biomarker profiles: results from the I-SPY 1 TRIAL (CALGB 150007/150012; ACRIN 6657). Breast Cancer Res Treat 132:1049–1062PubMedCrossRef
41.
go back to reference Houssami N, Macaskill P, von Minckwitz G et al (2012) Meta-analysis of the association of breast cancer subtype and pathologic complete response to neoadjuvant chemotherapy. Eur J Cancer 48:3342–3354PubMedCrossRef Houssami N, Macaskill P, von Minckwitz G et al (2012) Meta-analysis of the association of breast cancer subtype and pathologic complete response to neoadjuvant chemotherapy. Eur J Cancer 48:3342–3354PubMedCrossRef
Metadata
Title
Phase I–II study of the farnesyl transferase inhibitor tipifarnib plus sequential weekly paclitaxel and doxorubicin–cyclophosphamide in HER2/neu-negative inflammatory carcinoma and non-inflammatory estrogen receptor-positive breast carcinoma
Authors
Eleni Andreopoulou
Ivette S. Vigoda
Vicente Valero
Dawn L. Hershman
George Raptis
Linda T. Vahdat
Hyo S. Han
John J. Wright
Christine M. Pellegrino
Massimo Cristofanilli
Ricardo H. Alvarez
Karen Fehn
Susan Fineberg
Joseph A. Sparano
Publication date
01-10-2013
Publisher
Springer US
Published in
Breast Cancer Research and Treatment / Issue 3/2013
Print ISSN: 0167-6806
Electronic ISSN: 1573-7217
DOI
https://doi.org/10.1007/s10549-013-2704-x

Other articles of this Issue 3/2013

Breast Cancer Research and Treatment 3/2013 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine