Skip to main content
Top
Published in: Angiogenesis 2/2020

Open Access 01-05-2020 | Colorectal Cancer | Original Paper

Cancer-associated fibroblast-derived WNT2 increases tumor angiogenesis in colon cancer

Authors: Daniela Unterleuthner, Patrick Neuhold, Katharina Schwarz, Lukas Janker, Benjamin Neuditschko, Harini Nivarthi, Ilija Crncec, Nina Kramer, Christine Unger, Markus Hengstschläger, Robert Eferl, Richard Moriggl, Wolfgang Sommergruber, Christopher Gerner, Helmut Dolznig

Published in: Angiogenesis | Issue 2/2020

Login to get access

Abstract

WNT2 acts as a pro-angiogenic factor in placental vascularization and increases angiogenesis in liver sinusoidal endothelial cells (ECs) and other ECs. Increased WNT2 expression is detectable in many carcinomas and participates in tumor progression. In human colorectal cancer (CRC), WNT2 is selectively elevated in cancer-associated fibroblasts (CAFs), leading to increased invasion and metastasis. However, if there is a role for WNT2 in colon cancer, angiogenesis was not addressed so far. We demonstrate that WNT2 enhances EC migration/invasion, while it induces canonical WNT signaling in a small subset of cells. Knockdown of WNT2 in CAFs significantly reduced angiogenesis in a physiologically relevant assay, which allows precise assessment of key angiogenic properties. In line with these results, expression of WNT2 in otherwise WNT2-devoid skin fibroblasts led to increased angiogenesis. In CRC xenografts, WNT2 overexpression resulted in enhanced vessel density and tumor volume. Moreover, WNT2 expression correlates with vessel markers in human CRC. Secretome profiling of CAFs by mass spectrometry and cytokine arrays revealed that proteins associated with pro-angiogenic functions are elevated by WNT2. These included extracellular matrix molecules, ANG-2, IL-6, G-CSF, and PGF. The latter three increased angiogenesis. Thus, stromal-derived WNT2 elevates angiogenesis in CRC by shifting the balance towards pro-angiogenic signals.
Appendix
Available only for authorised users
Literature
1.
go back to reference Bray F et al (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424PubMed Bray F et al (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424PubMed
2.
go back to reference Castells M et al (2012) Implication of tumor microenvironment in chemoresistance: tumor-associated stromal cells protect tumor cells from cell death. Int J Mol Sci 13(8):9545–9571PubMedPubMedCentral Castells M et al (2012) Implication of tumor microenvironment in chemoresistance: tumor-associated stromal cells protect tumor cells from cell death. Int J Mol Sci 13(8):9545–9571PubMedPubMedCentral
3.
go back to reference Tlsty TD, Coussens LM (2006) Tumor stroma and regulation of cancer development. Annu Rev Pathol 1:119–150PubMed Tlsty TD, Coussens LM (2006) Tumor stroma and regulation of cancer development. Annu Rev Pathol 1:119–150PubMed
4.
go back to reference Quail DF, Joyce JA (2013) Microenvironmental regulation of tumor progression and metastasis. Nat Med 19(11):1423–1437PubMedPubMedCentral Quail DF, Joyce JA (2013) Microenvironmental regulation of tumor progression and metastasis. Nat Med 19(11):1423–1437PubMedPubMedCentral
5.
go back to reference Isella C et al (2015) Stromal contribution to the colorectal cancer transcriptome. Nat Genet 47(4):312–319PubMed Isella C et al (2015) Stromal contribution to the colorectal cancer transcriptome. Nat Genet 47(4):312–319PubMed
6.
go back to reference Calon A et al (2015) Stromal gene expression defines poor-prognosis subtypes in colorectal cancer. Nat Genet 47(4):320–329PubMed Calon A et al (2015) Stromal gene expression defines poor-prognosis subtypes in colorectal cancer. Nat Genet 47(4):320–329PubMed
7.
go back to reference Rozario T, DeSimone DW (2010) The extracellular matrix in development and morphogenesis: a dynamic view. Dev Biol 341(1):126–140PubMed Rozario T, DeSimone DW (2010) The extracellular matrix in development and morphogenesis: a dynamic view. Dev Biol 341(1):126–140PubMed
8.
go back to reference Lu P et al (2011) Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb Perspect Biol. 3(12):a005058PubMedPubMedCentral Lu P et al (2011) Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb Perspect Biol. 3(12):a005058PubMedPubMedCentral
9.
go back to reference Taipale J, Keski-Oja J (1997) Growth factors in the extracellular matrix. FASEB J 11(1):51–59PubMed Taipale J, Keski-Oja J (1997) Growth factors in the extracellular matrix. FASEB J 11(1):51–59PubMed
10.
go back to reference Arroyo AG, Iruela-Arispe ML (2010) Extracellular matrix, inflammation, and the angiogenic response. Cardiovasc Res 86(2):226–235PubMedPubMedCentral Arroyo AG, Iruela-Arispe ML (2010) Extracellular matrix, inflammation, and the angiogenic response. Cardiovasc Res 86(2):226–235PubMedPubMedCentral
11.
go back to reference Gascard P, Tlsty TD (2016) Carcinoma-associated fibroblasts: orchestrating the composition of malignancy. Genes Dev 30(9):1002–1019PubMedPubMedCentral Gascard P, Tlsty TD (2016) Carcinoma-associated fibroblasts: orchestrating the composition of malignancy. Genes Dev 30(9):1002–1019PubMedPubMedCentral
12.
go back to reference Xing F, Saidou J, Watabe K (2010) Cancer associated fibroblasts (CAFs) in tumor microenvironment. Front Biosci (Landmark Ed) 15:166–179 Xing F, Saidou J, Watabe K (2010) Cancer associated fibroblasts (CAFs) in tumor microenvironment. Front Biosci (Landmark Ed) 15:166–179
13.
go back to reference Cirri P, Chiarugi P (2012) Cancer-associated-fibroblasts and tumour cells: a diabolic liaison driving cancer progression. Cancer Metastasis Rev 31(1–2):195–208PubMed Cirri P, Chiarugi P (2012) Cancer-associated-fibroblasts and tumour cells: a diabolic liaison driving cancer progression. Cancer Metastasis Rev 31(1–2):195–208PubMed
14.
go back to reference Katoh M (2001) Frequent up-regulation of WNT2 in primary gastric cancer and colorectal cancer. Int J Oncol 19(5):1003–1007PubMed Katoh M (2001) Frequent up-regulation of WNT2 in primary gastric cancer and colorectal cancer. Int J Oncol 19(5):1003–1007PubMed
15.
go back to reference Vider BZ et al (1996) Evidence for the involvement of the Wnt 2 gene in human colorectal cancer. Oncogene 12(1):153–158PubMed Vider BZ et al (1996) Evidence for the involvement of the Wnt 2 gene in human colorectal cancer. Oncogene 12(1):153–158PubMed
16.
go back to reference Fu L et al (2011) Wnt2 secreted by tumour fibroblasts promotes tumour progression in oesophageal cancer by activation of the Wnt/beta-catenin signalling pathway. Gut 60(12):1635–1643PubMed Fu L et al (2011) Wnt2 secreted by tumour fibroblasts promotes tumour progression in oesophageal cancer by activation of the Wnt/beta-catenin signalling pathway. Gut 60(12):1635–1643PubMed
17.
go back to reference Zhou Y et al (2016) WNT2 Promotes Cervical Carcinoma Metastasis and Induction of Epithelial-Mesenchymal Transition. PLoS One 11(8):e0160414PubMedPubMedCentral Zhou Y et al (2016) WNT2 Promotes Cervical Carcinoma Metastasis and Induction of Epithelial-Mesenchymal Transition. PLoS One 11(8):e0160414PubMedPubMedCentral
18.
go back to reference Jiang H et al (2014) Activation of the Wnt pathway through Wnt2 promotes metastasis in pancreatic cancer. Am J Cancer Res 4(5):537–544PubMedPubMedCentral Jiang H et al (2014) Activation of the Wnt pathway through Wnt2 promotes metastasis in pancreatic cancer. Am J Cancer Res 4(5):537–544PubMedPubMedCentral
19.
go back to reference Bravo DT et al (2013) Frizzled-8 receptor is activated by the Wnt-2 ligand in non-small cell lung cancer. BMC Cancer 13:316PubMedPubMedCentral Bravo DT et al (2013) Frizzled-8 receptor is activated by the Wnt-2 ligand in non-small cell lung cancer. BMC Cancer 13:316PubMedPubMedCentral
20.
go back to reference Fevr T et al (2007) Wnt/beta-catenin is essential for intestinal homeostasis and maintenance of intestinal stem cells. Mol Cell Biol 27(21):7551–7559PubMedPubMedCentral Fevr T et al (2007) Wnt/beta-catenin is essential for intestinal homeostasis and maintenance of intestinal stem cells. Mol Cell Biol 27(21):7551–7559PubMedPubMedCentral
21.
go back to reference Pinto D et al (2003) Canonical Wnt signals are essential for homeostasis of the intestinal epithelium. Genes Dev 17(14):1709–1713PubMedPubMedCentral Pinto D et al (2003) Canonical Wnt signals are essential for homeostasis of the intestinal epithelium. Genes Dev 17(14):1709–1713PubMedPubMedCentral
22.
go back to reference Huels DJ et al (2018) Wnt ligands influence tumour initiation by controlling the number of intestinal stem cells. Nat Commun 9(1):1132PubMedPubMedCentral Huels DJ et al (2018) Wnt ligands influence tumour initiation by controlling the number of intestinal stem cells. Nat Commun 9(1):1132PubMedPubMedCentral
23.
go back to reference Gregorieff A, Clevers H (2005) Wnt signaling in the intestinal epithelium: from endoderm to cancer. Genes Dev 19(8):877–890PubMed Gregorieff A, Clevers H (2005) Wnt signaling in the intestinal epithelium: from endoderm to cancer. Genes Dev 19(8):877–890PubMed
24.
go back to reference Kramer N et al (2017) Autocrine WNT2 signaling in fibroblasts promotes colorectal cancer progression. Oncogene 36(39):5460–5472PubMed Kramer N et al (2017) Autocrine WNT2 signaling in fibroblasts promotes colorectal cancer progression. Oncogene 36(39):5460–5472PubMed
25.
go back to reference Rupp C et al (2015) IGFBP7, a novel tumor stroma marker, with growth-promoting effects in colon cancer through a paracrine tumor-stroma interaction. Oncogene 34(7):815–825PubMed Rupp C et al (2015) IGFBP7, a novel tumor stroma marker, with growth-promoting effects in colon cancer through a paracrine tumor-stroma interaction. Oncogene 34(7):815–825PubMed
26.
go back to reference Goss AM et al (2011) Wnt2 signaling is necessary and sufficient to activate the airway smooth muscle program in the lung by regulating myocardin/Mrtf-B and Fgf10 expression. Dev Biol 356(2):541–552PubMedPubMedCentral Goss AM et al (2011) Wnt2 signaling is necessary and sufficient to activate the airway smooth muscle program in the lung by regulating myocardin/Mrtf-B and Fgf10 expression. Dev Biol 356(2):541–552PubMedPubMedCentral
27.
go back to reference Onizuka T et al (2012) Wnt2 accelerates cardiac myocyte differentiation from ES-cell derived mesodermal cells via non-canonical pathway. J Mol Cell Cardiol 52(3):650–659PubMed Onizuka T et al (2012) Wnt2 accelerates cardiac myocyte differentiation from ES-cell derived mesodermal cells via non-canonical pathway. J Mol Cell Cardiol 52(3):650–659PubMed
28.
go back to reference Monkley SJ et al (1996) Targeted disruption of the Wnt2 gene results in placentation defects. Development 122(11):3343–3353PubMed Monkley SJ et al (1996) Targeted disruption of the Wnt2 gene results in placentation defects. Development 122(11):3343–3353PubMed
29.
go back to reference Klein D et al (2009) Wnt2 acts as an angiogenic growth factor for non-sinusoidal endothelial cells and inhibits expression of stanniocalcin-1. Angiogenesis 12(3):251–265PubMed Klein D et al (2009) Wnt2 acts as an angiogenic growth factor for non-sinusoidal endothelial cells and inhibits expression of stanniocalcin-1. Angiogenesis 12(3):251–265PubMed
30.
go back to reference Klein D et al (2008) Wnt2 acts as a cell type-specific, autocrine growth factor in rat hepatic sinusoidal endothelial cells cross-stimulating the VEGF pathway. Hepatology 47(3):1018–1031PubMed Klein D et al (2008) Wnt2 acts as a cell type-specific, autocrine growth factor in rat hepatic sinusoidal endothelial cells cross-stimulating the VEGF pathway. Hepatology 47(3):1018–1031PubMed
31.
go back to reference Ding BS et al (2010) Inductive angiocrine signals from sinusoidal endothelium are required for liver regeneration. Nature 468(7321):310–315PubMedPubMedCentral Ding BS et al (2010) Inductive angiocrine signals from sinusoidal endothelium are required for liver regeneration. Nature 468(7321):310–315PubMedPubMedCentral
32.
go back to reference Muthukkaruppan VR, Kubai L, Auerbach R (1982) Tumor-induced neovascularization in the mouse eye. J Natl Cancer Inst 69(3):699–708PubMed Muthukkaruppan VR, Kubai L, Auerbach R (1982) Tumor-induced neovascularization in the mouse eye. J Natl Cancer Inst 69(3):699–708PubMed
33.
go back to reference Hillen F, Griffioen AW (2007) Tumour vascularization: sprouting angiogenesis and beyond. Cancer Metastasis Rev 26(3–4):489–502PubMedPubMedCentral Hillen F, Griffioen AW (2007) Tumour vascularization: sprouting angiogenesis and beyond. Cancer Metastasis Rev 26(3–4):489–502PubMedPubMedCentral
34.
go back to reference Bergers G, Benjamin LE (2003) Tumorigenesis and the angiogenic switch. Nat Rev Cancer 3(6):401–410PubMed Bergers G, Benjamin LE (2003) Tumorigenesis and the angiogenic switch. Nat Rev Cancer 3(6):401–410PubMed
35.
go back to reference Baeriswyl V, Christofori G (2009) The angiogenic switch in carcinogenesis. Semin Cancer Biol 19(5):329–337PubMed Baeriswyl V, Christofori G (2009) The angiogenic switch in carcinogenesis. Semin Cancer Biol 19(5):329–337PubMed
36.
go back to reference Nyberg P, Salo T, Kalluri R (2008) Tumor microenvironment and angiogenesis. Front Biosci 13:6537–6553PubMed Nyberg P, Salo T, Kalluri R (2008) Tumor microenvironment and angiogenesis. Front Biosci 13:6537–6553PubMed
37.
go back to reference Watnick RS (2012) The role of the tumor microenvironment in regulating angiogenesis. Cold Spring Harb Perspect Med 2(12):a006676PubMedPubMedCentral Watnick RS (2012) The role of the tumor microenvironment in regulating angiogenesis. Cold Spring Harb Perspect Med 2(12):a006676PubMedPubMedCentral
38.
go back to reference Mongiat M et al. (2016) Extracellular matrix, a hard player in angiogenesis. Int J Mol Sci, 2016. 17(11): 1822PubMedCentral Mongiat M et al. (2016) Extracellular matrix, a hard player in angiogenesis. Int J Mol Sci, 2016. 17(11): 1822PubMedCentral
39.
go back to reference Neve A et al (2014) Extracellular matrix modulates angiogenesis in physiological and pathological conditions. Biomed Res Int 2014:756078PubMedPubMedCentral Neve A et al (2014) Extracellular matrix modulates angiogenesis in physiological and pathological conditions. Biomed Res Int 2014:756078PubMedPubMedCentral
40.
go back to reference Unterleuthner D et al (2017) An optimized 3D coculture assay for preclinical testing of pro- and antiangiogenic drugs. SLAS Discov 22(5):602–613PubMed Unterleuthner D et al (2017) An optimized 3D coculture assay for preclinical testing of pro- and antiangiogenic drugs. SLAS Discov 22(5):602–613PubMed
41.
go back to reference Nakatsu MN, Davis J, Hughes CC (2007) Optimized fibrin gel bead assay for the study of angiogenesis. J Vis Exp 3: 186 Nakatsu MN, Davis J, Hughes CC (2007) Optimized fibrin gel bead assay for the study of angiogenesis. J Vis Exp 3: 186
42.
go back to reference Mary Goldman BC, Hastie M, Repečka K, Kamath A, McDade F, Dave Rogers, View ORCID ProfileAngela N. Brooks, Jingchun Zhu, David Haussler (2019) The UCSC Xena platform for public and private cancer genomics data visualization and interpretation. bioarxiv Mary Goldman BC, Hastie M, Repečka K, Kamath A, McDade F, Dave Rogers, View ORCID ProfileAngela N. Brooks, Jingchun Zhu, David Haussler (2019) The UCSC Xena platform for public and private cancer genomics data visualization and interpretation. bioarxiv
44.
go back to reference Rosner M et al (2010) Efficient siRNA-mediated prolonged gene silencing in human amniotic fluid stem cells. Nat Protoc 5(6):1081–1095PubMed Rosner M et al (2010) Efficient siRNA-mediated prolonged gene silencing in human amniotic fluid stem cells. Nat Protoc 5(6):1081–1095PubMed
45.
go back to reference Bileck A et al (2014) Comprehensive assessment of proteins regulated by dexamethasone reveals novel effects in primary human peripheral blood mononuclear cells. J Proteome Res 13(12):5989–6000PubMed Bileck A et al (2014) Comprehensive assessment of proteins regulated by dexamethasone reveals novel effects in primary human peripheral blood mononuclear cells. J Proteome Res 13(12):5989–6000PubMed
46.
go back to reference Mayer RL et al (2018) Proteomics and metabolomics identify molecular mechanisms of aging potentially predisposing for chronic lymphocytic leukemia. Mol Cell Proteom 17(2):290–303 Mayer RL et al (2018) Proteomics and metabolomics identify molecular mechanisms of aging potentially predisposing for chronic lymphocytic leukemia. Mol Cell Proteom 17(2):290–303
47.
go back to reference Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26(12):1367–1372PubMed Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26(12):1367–1372PubMed
48.
go back to reference Tyanova S et al (2016) The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods 13(9):731–740PubMed Tyanova S et al (2016) The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods 13(9):731–740PubMed
49.
go back to reference Oliveros JC, Venny. An interactive tool for comparing lists with Venn's diagrams. 2007–2015 Oliveros JC, Venny. An interactive tool for comparing lists with Venn's diagrams. 2007–2015
50.
go back to reference Huang da W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57PubMed Huang da W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57PubMed
51.
go back to reference Huang da W, Sherman BT, Lempicki RA (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37(1):1–13PubMed Huang da W, Sherman BT, Lempicki RA (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37(1):1–13PubMed
52.
53.
54.
go back to reference Hylander BL et al (2013) Origin of the vasculature supporting growth of primary patient tumor xenografts. J Transl Med 11:110PubMedPubMedCentral Hylander BL et al (2013) Origin of the vasculature supporting growth of primary patient tumor xenografts. J Transl Med 11:110PubMedPubMedCentral
55.
go back to reference Nilsson T et al (2010) Mass spectrometry in high-throughput proteomics: ready for the big time. Nat Methods 7(9):681–685PubMed Nilsson T et al (2010) Mass spectrometry in high-throughput proteomics: ready for the big time. Nat Methods 7(9):681–685PubMed
56.
go back to reference Kupcova Skalnikova H et al (2017) Advances in proteomic techniques for cytokine analysis: focus on melanoma research. Int J Mol Sci 18(12):2697 Kupcova Skalnikova H et al (2017) Advances in proteomic techniques for cytokine analysis: focus on melanoma research. Int J Mol Sci 18(12):2697
57.
go back to reference Zhang Z, Wang J, Dong X (2018) Wnt2 contributes to the progression of gastric cancer by promoting cell migration and invasion. Oncol Lett 16(3):2857–2864PubMedPubMedCentral Zhang Z, Wang J, Dong X (2018) Wnt2 contributes to the progression of gastric cancer by promoting cell migration and invasion. Oncol Lett 16(3):2857–2864PubMedPubMedCentral
58.
go back to reference Stanganello E et al (2015) Filopodia-based Wnt transport during vertebrate tissue patterning. Nat Commun 6:5846PubMed Stanganello E et al (2015) Filopodia-based Wnt transport during vertebrate tissue patterning. Nat Commun 6:5846PubMed
60.
go back to reference Goodwin AM, Kitajewski J, D'Amore PA (2007) Wnt1 and Wnt5a affect endothelial proliferation and capillary length; Wnt2 does not. Growth Factors 25(1):25–32PubMed Goodwin AM, Kitajewski J, D'Amore PA (2007) Wnt1 and Wnt5a affect endothelial proliferation and capillary length; Wnt2 does not. Growth Factors 25(1):25–32PubMed
61.
go back to reference Friis T et al (2003) A quantitative ELISA-based co-culture angiogenesis and cell proliferation assay. APMIS 111(6):658–668PubMed Friis T et al (2003) A quantitative ELISA-based co-culture angiogenesis and cell proliferation assay. APMIS 111(6):658–668PubMed
62.
go back to reference Williams H et al (2016) Wnt2 and WISP-1/CCN4 induce intimal thickening via promotion of smooth muscle cell migration. Arterioscler Thromb Vasc Biol 36(7):1417–1424PubMed Williams H et al (2016) Wnt2 and WISP-1/CCN4 induce intimal thickening via promotion of smooth muscle cell migration. Arterioscler Thromb Vasc Biol 36(7):1417–1424PubMed
63.
go back to reference Torres S et al (2013) Proteome profiling of cancer-associated fibroblasts identifies novel proinflammatory signatures and prognostic markers for colorectal cancer. Clin Cancer Res 19(21):6006–6019PubMed Torres S et al (2013) Proteome profiling of cancer-associated fibroblasts identifies novel proinflammatory signatures and prognostic markers for colorectal cancer. Clin Cancer Res 19(21):6006–6019PubMed
64.
go back to reference Drev D et al (2017) Proteomic profiling identifies markers for inflammation-related tumor-fibroblast interaction. Clin Proteom 14:33 Drev D et al (2017) Proteomic profiling identifies markers for inflammation-related tumor-fibroblast interaction. Clin Proteom 14:33
65.
go back to reference De Boeck A et al (2013) Differential secretome analysis of cancer-associated fibroblasts and bone marrow-derived precursors to identify microenvironmental regulators of colon cancer progression. Proteomics 13(2):379–388PubMed De Boeck A et al (2013) Differential secretome analysis of cancer-associated fibroblasts and bone marrow-derived precursors to identify microenvironmental regulators of colon cancer progression. Proteomics 13(2):379–388PubMed
66.
go back to reference van Hinsbergh VW, Koolwijk P (2008) Endothelial sprouting and angiogenesis: matrix metalloproteinases in the lead. Cardiovasc Res 78(2):203–212PubMed van Hinsbergh VW, Koolwijk P (2008) Endothelial sprouting and angiogenesis: matrix metalloproteinases in the lead. Cardiovasc Res 78(2):203–212PubMed
67.
go back to reference Pollina EA et al (2008) Regulating the angiogenic balance in tissues. Cell Cycle 7(13):2056–2070PubMed Pollina EA et al (2008) Regulating the angiogenic balance in tissues. Cell Cycle 7(13):2056–2070PubMed
68.
go back to reference Nagasaki T et al (2014) Interleukin-6 released by colon cancer-associated fibroblasts is critical for tumour angiogenesis: anti-interleukin-6 receptor antibody suppressed angiogenesis and inhibited tumour-stroma interaction. Br J Cancer 110(2):469–478PubMed Nagasaki T et al (2014) Interleukin-6 released by colon cancer-associated fibroblasts is critical for tumour angiogenesis: anti-interleukin-6 receptor antibody suppressed angiogenesis and inhibited tumour-stroma interaction. Br J Cancer 110(2):469–478PubMed
69.
go back to reference Natori T et al (2002) G-CSF stimulates angiogenesis and promotes tumor growth: potential contribution of bone marrow-derived endothelial progenitor cells. Biochem Biophys Res Commun 297(4):1058–1061PubMed Natori T et al (2002) G-CSF stimulates angiogenesis and promotes tumor growth: potential contribution of bone marrow-derived endothelial progenitor cells. Biochem Biophys Res Commun 297(4):1058–1061PubMed
70.
go back to reference Ziche M et al (1997) Placenta growth factor-1 is chemotactic, mitogenic, and angiogenic. Lab Invest 76(4):517–531PubMed Ziche M et al (1997) Placenta growth factor-1 is chemotactic, mitogenic, and angiogenic. Lab Invest 76(4):517–531PubMed
71.
go back to reference Oliner J et al (2004) Suppression of angiogenesis and tumor growth by selective inhibition of angiopoietin-2. Cancer Cell 6(5):507–516PubMed Oliner J et al (2004) Suppression of angiogenesis and tumor growth by selective inhibition of angiopoietin-2. Cancer Cell 6(5):507–516PubMed
72.
go back to reference Eriksson A et al (2002) Placenta growth factor-1 antagonizes VEGF-induced angiogenesis and tumor growth by the formation of functionally inactive PlGF-1/VEGF heterodimers. Cancer Cell 1(1):99–108PubMed Eriksson A et al (2002) Placenta growth factor-1 antagonizes VEGF-induced angiogenesis and tumor growth by the formation of functionally inactive PlGF-1/VEGF heterodimers. Cancer Cell 1(1):99–108PubMed
73.
go back to reference Tura O et al (2010) Granulocyte colony-stimulating factor (G-CSF) depresses angiogenesis in vivo and in vitro: implications for sourcing cells for vascular regeneration therapy. J Thromb Haemost 8(7):1614–1623PubMedPubMedCentral Tura O et al (2010) Granulocyte colony-stimulating factor (G-CSF) depresses angiogenesis in vivo and in vitro: implications for sourcing cells for vascular regeneration therapy. J Thromb Haemost 8(7):1614–1623PubMedPubMedCentral
74.
go back to reference Aguirre-Gamboa R et al (2013) SurvExpress: an online biomarker validation tool and database for cancer gene expression data using survival analysis. PLoS ONE 8(9):e74250PubMedPubMedCentral Aguirre-Gamboa R et al (2013) SurvExpress: an online biomarker validation tool and database for cancer gene expression data using survival analysis. PLoS ONE 8(9):e74250PubMedPubMedCentral
Metadata
Title
Cancer-associated fibroblast-derived WNT2 increases tumor angiogenesis in colon cancer
Authors
Daniela Unterleuthner
Patrick Neuhold
Katharina Schwarz
Lukas Janker
Benjamin Neuditschko
Harini Nivarthi
Ilija Crncec
Nina Kramer
Christine Unger
Markus Hengstschläger
Robert Eferl
Richard Moriggl
Wolfgang Sommergruber
Christopher Gerner
Helmut Dolznig
Publication date
01-05-2020
Publisher
Springer Netherlands
Published in
Angiogenesis / Issue 2/2020
Print ISSN: 0969-6970
Electronic ISSN: 1573-7209
DOI
https://doi.org/10.1007/s10456-019-09688-8

Other articles of this Issue 2/2020

Angiogenesis 2/2020 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.