Skip to main content
Top
Published in: Angiogenesis 1/2008

01-03-2008 | Original paper

Sprouty proteins, masterminds of receptor tyrosine kinase signaling

Authors: Miguel A. Cabrita, Gerhard Christofori

Published in: Angiogenesis | Issue 1/2008

Login to get access

Abstract

Angiogenesis relies on endothelial cells properly processing signals from growth factors provided in both an autocrine and a paracrine manner. These mitogens bind to their cognate receptor tyrosine kinases (RTKs) on the cell surface, thereby activating a myriad of complex intracellular signaling pathways whose outputs include cell growth, migration, and morphogenesis. Understanding how these cascades are precisely controlled will provide insight into physiological and pathological angiogenesis. The Sprouty (Spry) family of proteins is a highly conserved group of negative feedback loop modulators of growth factor-mediated mitogen-activated protein kinase (MAPK) activation originally described in Drosophila. There are four mammalian orthologs (Spry1-4) whose modulation of RTK-induced signaling pathways is growth factor- and cell context-dependant. Endothelial cells are a group of highly differentiated cell types necessary for defining the mammalian vasculature. These cells respond to a plethora of growth factors and express all four Spry isoforms, thus highlighting the complexity that is required to form and maintain vessels in mammals. This review describes Spry functions in the context of endothelial biology and angiogenesis, and provides an update on Spry-interacting proteins and Spry mechanisms of action.
Literature
1.
go back to reference Gschwind A, Fischer OM, Ullrich A (2004) The discovery of receptor tyrosine kinases: targets for cancer therapy. Nat Rev Cancer 4:361–370PubMedCrossRef Gschwind A, Fischer OM, Ullrich A (2004) The discovery of receptor tyrosine kinases: targets for cancer therapy. Nat Rev Cancer 4:361–370PubMedCrossRef
4.
go back to reference Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86:353–364PubMedCrossRef Hanahan D, Folkman J (1996) Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86:353–364PubMedCrossRef
6.
go back to reference Dor Y, Djonov V, Keshet E (2003) Making vascular networks in the adult: branching morphogenesis without a roadmap. Trends Cell Biol 13:131–136PubMedCrossRef Dor Y, Djonov V, Keshet E (2003) Making vascular networks in the adult: branching morphogenesis without a roadmap. Trends Cell Biol 13:131–136PubMedCrossRef
7.
go back to reference Lu P, Sternlicht MD, Werb Z (2006) Comparative mechanisms of branching morphogenesis in diverse systems. J Mammary Gland Biol Neoplasia 11:213–228PubMedCrossRef Lu P, Sternlicht MD, Werb Z (2006) Comparative mechanisms of branching morphogenesis in diverse systems. J Mammary Gland Biol Neoplasia 11:213–228PubMedCrossRef
8.
go back to reference Adams RH, Alitalo K (2007) Molecular regulation of angiogenesis and lymphangiogenesis. Nat Rev Mol Cell Biol 8:464–478PubMedCrossRef Adams RH, Alitalo K (2007) Molecular regulation of angiogenesis and lymphangiogenesis. Nat Rev Mol Cell Biol 8:464–478PubMedCrossRef
10.
11.
12.
go back to reference Amit I, Citri A, Shay T et al (2007) A module of negative feedback regulators defines growth factor signaling. Nat Genet 39:503–512PubMedCrossRef Amit I, Citri A, Shay T et al (2007) A module of negative feedback regulators defines growth factor signaling. Nat Genet 39:503–512PubMedCrossRef
13.
go back to reference Hacohen N, Kramer S, Sutherland D et al (1998) sprouty encodes a novel antagonist of FGF signaling that patterns apical branching of the Drosophila airways. Cell 92:253–263PubMedCrossRef Hacohen N, Kramer S, Sutherland D et al (1998) sprouty encodes a novel antagonist of FGF signaling that patterns apical branching of the Drosophila airways. Cell 92:253–263PubMedCrossRef
14.
go back to reference Bundschu K, Walter U, Schuh K (2006) The VASP-Spred-Sprouty domain puzzle. J Biol Chem 281:36477–36481PubMedCrossRef Bundschu K, Walter U, Schuh K (2006) The VASP-Spred-Sprouty domain puzzle. J Biol Chem 281:36477–36481PubMedCrossRef
15.
go back to reference Cabrita MA, Christofori G (2003) Sprouty proteins: antagonists of endothelial cell signaling and more. Thromb Haemost 90:586–590PubMed Cabrita MA, Christofori G (2003) Sprouty proteins: antagonists of endothelial cell signaling and more. Thromb Haemost 90:586–590PubMed
16.
go back to reference Guy GR, Wong ES, Yusoff P et al (2003) Sprouty: how does the branch manager work? J Cell Sci 16:3061–3068CrossRef Guy GR, Wong ES, Yusoff P et al (2003) Sprouty: how does the branch manager work? J Cell Sci 16:3061–3068CrossRef
17.
go back to reference Kim HJ, Bar-Sagi D (2004) Modulation of signalling by Sprouty: a developing story. Nat Rev Mol Cell Biol 5:441–450PubMedCrossRef Kim HJ, Bar-Sagi D (2004) Modulation of signalling by Sprouty: a developing story. Nat Rev Mol Cell Biol 5:441–450PubMedCrossRef
18.
go back to reference Mason JM, Morrison DJ, Basson MA et al (2006) Sprouty proteins: multifaceted negative-feedback regulators of receptor tyrosine kinase signaling. Trends Cell Biol 16:45–54PubMedCrossRef Mason JM, Morrison DJ, Basson MA et al (2006) Sprouty proteins: multifaceted negative-feedback regulators of receptor tyrosine kinase signaling. Trends Cell Biol 16:45–54PubMedCrossRef
19.
go back to reference Bundschu K, Walter U, Schuh K (2007) Getting a first clue about SPRED functions. Bioessays 29:897–907PubMedCrossRef Bundschu K, Walter U, Schuh K (2007) Getting a first clue about SPRED functions. Bioessays 29:897–907PubMedCrossRef
20.
go back to reference Leeksma OC, Van Achterberg TA, Tsumura Y et al (2002) Human sprouty 4, a new ras antagonist on 5q31, interacts with the dual specificity kinase TESK1. Eur J Biochem 269:2546–2556PubMedCrossRef Leeksma OC, Van Achterberg TA, Tsumura Y et al (2002) Human sprouty 4, a new ras antagonist on 5q31, interacts with the dual specificity kinase TESK1. Eur J Biochem 269:2546–2556PubMedCrossRef
21.
go back to reference Minowada G, Jarvis LA, Chi CL et al (1999) Vertebrate Sprouty genes are induced by FGF signaling and can cause chondrodysplasia when overexpressed. Development 126:4465–4475PubMed Minowada G, Jarvis LA, Chi CL et al (1999) Vertebrate Sprouty genes are induced by FGF signaling and can cause chondrodysplasia when overexpressed. Development 126:4465–4475PubMed
22.
go back to reference Gross I, Bassit B, Benezra M et al (2001) Mammalian sprouty proteins inhibit cell growth and differentiation by preventing ras activation. J Biol Chem 276:46460–46468PubMedCrossRef Gross I, Bassit B, Benezra M et al (2001) Mammalian sprouty proteins inhibit cell growth and differentiation by preventing ras activation. J Biol Chem 276:46460–46468PubMedCrossRef
23.
go back to reference Impagnatiello MA, Weitzer S, Gannon G et al (2001) Mammalian sprouty-1 and -2 are membrane-anchored phosphoprotein inhibitors of growth factor signaling in endothelial cells. J Cell Biol 152:1087–1098PubMedCrossRef Impagnatiello MA, Weitzer S, Gannon G et al (2001) Mammalian sprouty-1 and -2 are membrane-anchored phosphoprotein inhibitors of growth factor signaling in endothelial cells. J Cell Biol 152:1087–1098PubMedCrossRef
24.
go back to reference Sasaki A, Taketomi T, Wakioka T et al (2001) Identification of a dominant negative mutant of Sprouty that potentiates fibroblast growth factor- but not epidermal growth factor-induced ERK activation. J Biol Chem 276:36804–36808PubMedCrossRef Sasaki A, Taketomi T, Wakioka T et al (2001) Identification of a dominant negative mutant of Sprouty that potentiates fibroblast growth factor- but not epidermal growth factor-induced ERK activation. J Biol Chem 276:36804–36808PubMedCrossRef
25.
go back to reference Lim J, Wong ES, Ong SH et al (2000) Sprouty proteins are targeted to membrane ruffles upon growth factor receptor tyrosine kinase activation. Identification of a novel translocation domain. J Biol Chem 275:32837–32845PubMedCrossRef Lim J, Wong ES, Ong SH et al (2000) Sprouty proteins are targeted to membrane ruffles upon growth factor receptor tyrosine kinase activation. Identification of a novel translocation domain. J Biol Chem 275:32837–32845PubMedCrossRef
26.
go back to reference Yigzaw Y, Cartin L, Pierre S et al (2001) The C terminus of sprouty is important for modulation of cellular migration and proliferation. J Biol Chem 276:22742–22747PubMedCrossRef Yigzaw Y, Cartin L, Pierre S et al (2001) The C terminus of sprouty is important for modulation of cellular migration and proliferation. J Biol Chem 276:22742–22747PubMedCrossRef
27.
go back to reference Basson MA, Akbulut S, Watson-Johnson J et al (2005) Sprouty1 is a critical regulator of GDNF/RET-mediated kidney induction. Dev Cell 8:229–239PubMedCrossRef Basson MA, Akbulut S, Watson-Johnson J et al (2005) Sprouty1 is a critical regulator of GDNF/RET-mediated kidney induction. Dev Cell 8:229–239PubMedCrossRef
28.
go back to reference Gross I, Armant O, Benosman S et al (2007) Sprouty2 inhibits BDNF-induced signaling and modulates neuronal differentiation and survival. Cell Death Differ 14:1802–1812PubMedCrossRef Gross I, Armant O, Benosman S et al (2007) Sprouty2 inhibits BDNF-induced signaling and modulates neuronal differentiation and survival. Cell Death Differ 14:1802–1812PubMedCrossRef
29.
go back to reference Lee CC, Putnam AJ, Miranti CK et al (2004) Overexpression of sprouty 2 inhibits HGF/SF-mediated cell growth, invasion, migration, and cytokinesis. Oncogene 23:5193–5202PubMedCrossRef Lee CC, Putnam AJ, Miranti CK et al (2004) Overexpression of sprouty 2 inhibits HGF/SF-mediated cell growth, invasion, migration, and cytokinesis. Oncogene 23:5193–5202PubMedCrossRef
30.
go back to reference Choi H, Cho SY, Schwartz RH et al (2006) Dual effects of Sprouty1 on TCR signaling depending on the differentiation state of the T cell. J Immunol 176:6034–6045PubMed Choi H, Cho SY, Schwartz RH et al (2006) Dual effects of Sprouty1 on TCR signaling depending on the differentiation state of the T cell. J Immunol 176:6034–6045PubMed
31.
go back to reference Glienke J, Schmitt AO, Pilarsky C et al (2000) Differential gene expression by endothelial cells in distinct angiogenic states. Eur J Biochem 267:2820–2830PubMedCrossRef Glienke J, Schmitt AO, Pilarsky C et al (2000) Differential gene expression by endothelial cells in distinct angiogenic states. Eur J Biochem 267:2820–2830PubMedCrossRef
32.
go back to reference Bell SE, Mavila A, Salazar R et al (2001) Differential gene expression during capillary morphogenesis in 3D collagen matrices: regulated expression of genes involved in basement membrane matrix assembly, cell cycle progression, cellular differentiation and G-protein signaling. J Cell Sci 114:2755–2773PubMed Bell SE, Mavila A, Salazar R et al (2001) Differential gene expression during capillary morphogenesis in 3D collagen matrices: regulated expression of genes involved in basement membrane matrix assembly, cell cycle progression, cellular differentiation and G-protein signaling. J Cell Sci 114:2755–2773PubMed
33.
go back to reference Jones N, Iljin K, Dumont DJ et al (2001) Tie receptors: new modulators of angiogenic and lymphangiogenic responses. Nat Rev Mol Cell Biol 2:257–267PubMedCrossRef Jones N, Iljin K, Dumont DJ et al (2001) Tie receptors: new modulators of angiogenic and lymphangiogenic responses. Nat Rev Mol Cell Biol 2:257–267PubMedCrossRef
34.
go back to reference Chi JT, Chang HY, Haraldsen G et al (2003) Endothelial cell diversity revealed by global expression profiling. Proc Natl Acad Sci U S A 100:10623–10628PubMedCrossRef Chi JT, Chang HY, Haraldsen G et al (2003) Endothelial cell diversity revealed by global expression profiling. Proc Natl Acad Sci U S A 100:10623–10628PubMedCrossRef
35.
go back to reference Antoine M, Wirz W, Tag CG et al (2005) Expression pattern of fibroblast growth factors (FGFs), their receptors and antagonists in primary endothelial cells and vascular smooth muscle cells. Growth Factors 23:87–95PubMedCrossRef Antoine M, Wirz W, Tag CG et al (2005) Expression pattern of fibroblast growth factors (FGFs), their receptors and antagonists in primary endothelial cells and vascular smooth muscle cells. Growth Factors 23:87–95PubMedCrossRef
36.
go back to reference Paik JH, Kollipara R, Chu G et al (2007) FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis. Cell 128:309–323PubMedCrossRef Paik JH, Kollipara R, Chu G et al (2007) FoxOs are lineage-restricted redundant tumor suppressors and regulate endothelial cell homeostasis. Cell 128:309–323PubMedCrossRef
37.
go back to reference Dejana E, Taddei A, Randi AM (2007) Foxs and Ets in the transcriptional regulation of endothelial cell differentiation and angiogenesis. Biochim Biophys Acta 1775:298–312PubMed Dejana E, Taddei A, Randi AM (2007) Foxs and Ets in the transcriptional regulation of endothelial cell differentiation and angiogenesis. Biochim Biophys Acta 1775:298–312PubMed
38.
go back to reference Ding W, Bellusci S, Shi W et al (2003) Functional analysis of the human Sprouty2 gene promoter. Gene 322:175–185PubMedCrossRef Ding W, Bellusci S, Shi W et al (2003) Functional analysis of the human Sprouty2 gene promoter. Gene 322:175–185PubMedCrossRef
39.
go back to reference Lee SH, Schloss DJ, Jarvis L et al (2001) Inhibition of angiogenesis by a mouse sprouty protein. J Biol Chem 276:4128–4133PubMedCrossRef Lee SH, Schloss DJ, Jarvis L et al (2001) Inhibition of angiogenesis by a mouse sprouty protein. J Biol Chem 276:4128–4133PubMedCrossRef
40.
go back to reference Christofori G (2003) Split personalities: the agonistic antagonist Sprouty. Nat Cell Biol 5:377–379PubMedCrossRef Christofori G (2003) Split personalities: the agonistic antagonist Sprouty. Nat Cell Biol 5:377–379PubMedCrossRef
41.
go back to reference Cabrita MA, Jaggi F, Widjaja SP et al (2006) A functional interaction between sprouty proteins and caveolin-1. J Biol Chem 281:29201–2912PubMedCrossRef Cabrita MA, Jaggi F, Widjaja SP et al (2006) A functional interaction between sprouty proteins and caveolin-1. J Biol Chem 281:29201–2912PubMedCrossRef
42.
go back to reference Lao DH, Chandramouli S, Yusoff P et al (2006) A Src homology 3-binding sequence on the C terminus of Sprouty2 is necessary for inhibition of the Ras/ERK pathway downstream of fibroblast growth factor receptor stimulation. J Biol Chem 281:29993–30000PubMedCrossRef Lao DH, Chandramouli S, Yusoff P et al (2006) A Src homology 3-binding sequence on the C terminus of Sprouty2 is necessary for inhibition of the Ras/ERK pathway downstream of fibroblast growth factor receptor stimulation. J Biol Chem 281:29993–30000PubMedCrossRef
43.
go back to reference Ozaki K, Miyazaki S, Tanimura S et al (2005) Efficient suppression of FGF-2-induced ERK activation by the cooperative interaction among mammalian Sprouty isoforms. J Cell Sci 118:5861–5871PubMedCrossRef Ozaki K, Miyazaki S, Tanimura S et al (2005) Efficient suppression of FGF-2-induced ERK activation by the cooperative interaction among mammalian Sprouty isoforms. J Cell Sci 118:5861–5871PubMedCrossRef
44.
go back to reference Egan JE, Hall AB, Yatsula BA et al (2002) The bimodal regulation of epidermal growth factor signaling by human Sprouty proteins. Proc Natl Acad Sci U S A 99:6041–6046PubMedCrossRef Egan JE, Hall AB, Yatsula BA et al (2002) The bimodal regulation of epidermal growth factor signaling by human Sprouty proteins. Proc Natl Acad Sci U S A 99:6041–6046PubMedCrossRef
45.
go back to reference Fong CW, Leong HF, Wong ES et al (2003) Tyrosine phosphorylation of Sprouty2 enhances its interaction with c-Cbl and is crucial for its function. J Biol Chem 278:33456–33464PubMedCrossRef Fong CW, Leong HF, Wong ES et al (2003) Tyrosine phosphorylation of Sprouty2 enhances its interaction with c-Cbl and is crucial for its function. J Biol Chem 278:33456–33464PubMedCrossRef
46.
go back to reference Rubin C, Litvak V, Medvedovsky H et al (2003) Sprouty fine-tunes EGF signaling through interlinked positive and negative feedback loops. Curr Biol 13:297–307PubMedCrossRef Rubin C, Litvak V, Medvedovsky H et al (2003) Sprouty fine-tunes EGF signaling through interlinked positive and negative feedback loops. Curr Biol 13:297–307PubMedCrossRef
47.
go back to reference Schmelzle K, Kane S, Gridley S et al (2006) Temporal dynamics of tyrosine phosphorylation in insulin signaling. Diabetes 55:2171–2179PubMedCrossRef Schmelzle K, Kane S, Gridley S et al (2006) Temporal dynamics of tyrosine phosphorylation in insulin signaling. Diabetes 55:2171–2179PubMedCrossRef
48.
go back to reference Mason JM, Morrison DJ, Bassit B et al (2004) Tyrosine phosphorylation of Sprouty proteins regulates their ability to inhibit growth factor signaling: a dual feedback loop. Mol Biol Cell 15:2176–2188PubMedCrossRef Mason JM, Morrison DJ, Bassit B et al (2004) Tyrosine phosphorylation of Sprouty proteins regulates their ability to inhibit growth factor signaling: a dual feedback loop. Mol Biol Cell 15:2176–2188PubMedCrossRef
49.
go back to reference Hanafusa H, Torii S, Yasunaga T et al (2002) Sprouty1 and Sprouty2 provide a control mechanism for the Ras/MAPK signalling pathway. Nat Cell Biol 4:850–858PubMedCrossRef Hanafusa H, Torii S, Yasunaga T et al (2002) Sprouty1 and Sprouty2 provide a control mechanism for the Ras/MAPK signalling pathway. Nat Cell Biol 4:850–858PubMedCrossRef
50.
go back to reference Hanafusa H, Torii S, Yasunaga T et al (2004) Shp2, an SH2-containing protein-tyrosine phosphatase, positively regulates receptor tyrosine kinase signaling by dephosphorylating and inactivating the inhibitor Sprouty. J Biol Chem 279:22992–22995PubMedCrossRef Hanafusa H, Torii S, Yasunaga T et al (2004) Shp2, an SH2-containing protein-tyrosine phosphatase, positively regulates receptor tyrosine kinase signaling by dephosphorylating and inactivating the inhibitor Sprouty. J Biol Chem 279:22992–22995PubMedCrossRef
51.
go back to reference Jarvis LA, Toering SJ, Simon MA et al (2006) Sprouty proteins are in vivo targets of Corkscrew/SHP-2 tyrosine phosphatases. Development 133:1133–1142PubMedCrossRef Jarvis LA, Toering SJ, Simon MA et al (2006) Sprouty proteins are in vivo targets of Corkscrew/SHP-2 tyrosine phosphatases. Development 133:1133–1142PubMedCrossRef
52.
go back to reference Li X, Brunton VG, Burgar HR et al (2004) FRS2-dependent SRC activation is required for fibroblast growth factor receptor-induced phosphorylation of Sprouty and suppression of ERK activity. J Cell Sci 117:6007–6017PubMedCrossRef Li X, Brunton VG, Burgar HR et al (2004) FRS2-dependent SRC activation is required for fibroblast growth factor receptor-induced phosphorylation of Sprouty and suppression of ERK activity. J Cell Sci 117:6007–6017PubMedCrossRef
53.
go back to reference Presta M, Dell’Era P, Mitola S et al (2005) Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev 16:159–178PubMedCrossRef Presta M, Dell’Era P, Mitola S et al (2005) Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev 16:159–178PubMedCrossRef
54.
go back to reference Casci T, Vinos J, Freeman M (1999) Sprouty, an intracellular inhibitor of Ras signaling. Cell 96:655–665PubMedCrossRef Casci T, Vinos J, Freeman M (1999) Sprouty, an intracellular inhibitor of Ras signaling. Cell 96:655–665PubMedCrossRef
55.
go back to reference Martinez N, Garcia-Dominguez CA, Domingo B et al (2007) Sprouty2 binds Grb2 at two different proline-rich regions, and the mechanism of ERK inhibition is independent of this interaction. Cell Signal 19:2277–2285PubMedCrossRef Martinez N, Garcia-Dominguez CA, Domingo B et al (2007) Sprouty2 binds Grb2 at two different proline-rich regions, and the mechanism of ERK inhibition is independent of this interaction. Cell Signal 19:2277–2285PubMedCrossRef
56.
go back to reference Rubin C, Zwang Y, Vaisman N et al (2005) Phosphorylation of carboxyl-terminal tyrosines modulates the specificity of Sprouty-2 inhibition of different signaling pathways. J Biol Chem 280:9735–9744PubMedCrossRef Rubin C, Zwang Y, Vaisman N et al (2005) Phosphorylation of carboxyl-terminal tyrosines modulates the specificity of Sprouty-2 inhibition of different signaling pathways. J Biol Chem 280:9735–9744PubMedCrossRef
57.
go back to reference Lao DH, Yusoff P, Chandramouli S et al (2007) Direct binding of PP2A to Sprouty2 and phosphorylation changes are a prerequisite for ERK inhibition downstream of fibroblast growth factor receptor stimulation. J Biol Chem 282:9117–9126PubMedCrossRef Lao DH, Yusoff P, Chandramouli S et al (2007) Direct binding of PP2A to Sprouty2 and phosphorylation changes are a prerequisite for ERK inhibition downstream of fibroblast growth factor receptor stimulation. J Biol Chem 282:9117–9126PubMedCrossRef
58.
go back to reference Amin DN, Hida K, Bielenberg DR et al (2006) Tumor endothelial cells express epidermal growth factor receptor (EGFR) but not ErbB3 and are responsive to EGF and to EGFR kinase inhibitors. Cancer Res 66:2173–2180PubMedCrossRef Amin DN, Hida K, Bielenberg DR et al (2006) Tumor endothelial cells express epidermal growth factor receptor (EGFR) but not ErbB3 and are responsive to EGF and to EGFR kinase inhibitors. Cancer Res 66:2173–2180PubMedCrossRef
59.
go back to reference Sini P, Wyder L, Schnell C et al (2005) The antitumor and antiangiogenic activity of vascular endothelial growth factor receptor inhibition is potentiated by ErbB1 blockade. Clin Cancer Res 11:4521–4532PubMedCrossRef Sini P, Wyder L, Schnell C et al (2005) The antitumor and antiangiogenic activity of vascular endothelial growth factor receptor inhibition is potentiated by ErbB1 blockade. Clin Cancer Res 11:4521–4532PubMedCrossRef
60.
go back to reference van Cruijsen H, Giaccone G, Hoekman K (2005) Epidermal growth factor receptor and angiogenesis: Opportunities for combined anticancer strategies. Int J Cancer 117:883–888PubMedCrossRef van Cruijsen H, Giaccone G, Hoekman K (2005) Epidermal growth factor receptor and angiogenesis: Opportunities for combined anticancer strategies. Int J Cancer 117:883–888PubMedCrossRef
61.
go back to reference Wong ES, Fong CW, Lim J et al (2002) Sprouty2 attenuates epidermal growth factor receptor ubiquitylation and endocytosis, and consequently enhances Ras/ERK signalling. EMBO J 21:4796–4808PubMedCrossRef Wong ES, Fong CW, Lim J et al (2002) Sprouty2 attenuates epidermal growth factor receptor ubiquitylation and endocytosis, and consequently enhances Ras/ERK signalling. EMBO J 21:4796–4808PubMedCrossRef
62.
go back to reference Wong ES, Lim J, Low BC et al (2001) Evidence for direct interaction between Sprouty and Cbl. J Biol Chem 276:5866–5875PubMedCrossRef Wong ES, Lim J, Low BC et al (2001) Evidence for direct interaction between Sprouty and Cbl. J Biol Chem 276:5866–5875PubMedCrossRef
63.
go back to reference Haglund K, Schmidt MH, Wong ES et al (2005) Sprouty2 acts at the Cbl/CIN85 interface to inhibit epidermal growth factor receptor downregulation. EMBO Rep 6:635–641PubMedCrossRef Haglund K, Schmidt MH, Wong ES et al (2005) Sprouty2 acts at the Cbl/CIN85 interface to inhibit epidermal growth factor receptor downregulation. EMBO Rep 6:635–641PubMedCrossRef
64.
go back to reference Kim HJ, Taylor LJ, Bar-Sagi D (2007) Spatial regulation of EGFR signaling by Sprouty2. Curr Biol 17:455–461PubMedCrossRef Kim HJ, Taylor LJ, Bar-Sagi D (2007) Spatial regulation of EGFR signaling by Sprouty2. Curr Biol 17:455–461PubMedCrossRef
65.
go back to reference Coultas L, Chawengsaksophak K, Rossant J (2005) Endothelial cells and VEGF in vascular development. Nature 438:937–945PubMedCrossRef Coultas L, Chawengsaksophak K, Rossant J (2005) Endothelial cells and VEGF in vascular development. Nature 438:937–945PubMedCrossRef
66.
go back to reference Takahashi T, Yamaguchi S, Chida K et al (2001) A single autophosphorylation site on KDR/Flk-1 is essential for VEGF-A-dependent activation of PLC-gamma and DNA synthesis in vascular endothelial cells. EMBO J 20:2768–2778PubMedCrossRef Takahashi T, Yamaguchi S, Chida K et al (2001) A single autophosphorylation site on KDR/Flk-1 is essential for VEGF-A-dependent activation of PLC-gamma and DNA synthesis in vascular endothelial cells. EMBO J 20:2768–2778PubMedCrossRef
67.
go back to reference Sasaki A, Taketomi T, Kato R et al (2003) Mammalian Sprouty4 suppresses Ras-independent ERK activation by binding to Raf1. Nat Cell Biol 5:427–432PubMedCrossRef Sasaki A, Taketomi T, Kato R et al (2003) Mammalian Sprouty4 suppresses Ras-independent ERK activation by binding to Raf1. Nat Cell Biol 5:427–432PubMedCrossRef
68.
69.
go back to reference Bauer PM, Yu J, Chen Y et al (2005) Endothelial-specific expression of caveolin-1 impairs microvascular permeability and angiogenesis. Proc Natl Acad Sci U S A 102:204–209PubMedCrossRef Bauer PM, Yu J, Chen Y et al (2005) Endothelial-specific expression of caveolin-1 impairs microvascular permeability and angiogenesis. Proc Natl Acad Sci U S A 102:204–209PubMedCrossRef
70.
go back to reference Lin MI, Yu J, Murata T et al (2007) Caveolin-1-deficient mice have increased tumor microvascular permeability, angiogenesis, and growth. Cancer Res 67:2849–2856PubMedCrossRef Lin MI, Yu J, Murata T et al (2007) Caveolin-1-deficient mice have increased tumor microvascular permeability, angiogenesis, and growth. Cancer Res 67:2849–2856PubMedCrossRef
71.
go back to reference Liu J, Wang XB, Park DS et al (2002) Caveolin-1 expression enhances endothelial capillary tubule formation. J Biol Chem 277:10661–10668PubMedCrossRef Liu J, Wang XB, Park DS et al (2002) Caveolin-1 expression enhances endothelial capillary tubule formation. J Biol Chem 277:10661–10668PubMedCrossRef
72.
go back to reference Woodman SE, Ashton AW, Schubert W et al (2003) Caveolin-1 knockout mice show an impaired angiogenic response to exogenous stimuli. Am J Pathol 162:2059–2068PubMed Woodman SE, Ashton AW, Schubert W et al (2003) Caveolin-1 knockout mice show an impaired angiogenic response to exogenous stimuli. Am J Pathol 162:2059–2068PubMed
73.
go back to reference Galbiati F, Volonte D, Engelman JA et al (1998) Targeted downregulation of caveolin-1 is sufficient to drive cell transformation and hyperactivate the p42/44 MAP kinase cascade. EMBO J 17:6633–6648PubMedCrossRef Galbiati F, Volonte D, Engelman JA et al (1998) Targeted downregulation of caveolin-1 is sufficient to drive cell transformation and hyperactivate the p42/44 MAP kinase cascade. EMBO J 17:6633–6648PubMedCrossRef
74.
go back to reference Kajita M, Ikeda W, Tamaru Y et al (2007) Regulation of platelet-derived growth factor-induced Ras signaling by poliovirus receptor Necl-5 and negative growth regulator Sprouty2. Genes Cells 12:345–357PubMedCrossRef Kajita M, Ikeda W, Tamaru Y et al (2007) Regulation of platelet-derived growth factor-induced Ras signaling by poliovirus receptor Necl-5 and negative growth regulator Sprouty2. Genes Cells 12:345–357PubMedCrossRef
75.
go back to reference Sakisaka T, Ikeda W, Ogita H et al (2007) The roles of nectins in cell adhesions: cooperation with other cell adhesion molecules and growth factor receptors. Curr Opin Cell Biol 19:593–602PubMedCrossRef Sakisaka T, Ikeda W, Ogita H et al (2007) The roles of nectins in cell adhesions: cooperation with other cell adhesion molecules and growth factor receptors. Curr Opin Cell Biol 19:593–602PubMedCrossRef
76.
go back to reference Couderc T, Barzu T, Horaud F et al (1990) Poliovirus permissivity and specific receptor expression on human endothelial cells. Virology 174:95–102PubMedCrossRef Couderc T, Barzu T, Horaud F et al (1990) Poliovirus permissivity and specific receptor expression on human endothelial cells. Virology 174:95–102PubMedCrossRef
77.
go back to reference Chandramouli S, Yu CY, Yusoff P et al (2008) Tesk1 interacts with sprouty2 to abrogate its inhibition of ERK phosphorylation downstream of receptor tyrosine kinase signaling. J Biol Chem 283:1679–1691PubMedCrossRef Chandramouli S, Yu CY, Yusoff P et al (2008) Tesk1 interacts with sprouty2 to abrogate its inhibition of ERK phosphorylation downstream of receptor tyrosine kinase signaling. J Biol Chem 283:1679–1691PubMedCrossRef
78.
go back to reference Tsumura Y, Toshima J, Leeksma OC et al (2005) Sprouty-4 negatively regulates cell spreading by inhibiting the kinase activity of testicular protein kinase. Biochem J 387:627–637PubMedCrossRef Tsumura Y, Toshima J, Leeksma OC et al (2005) Sprouty-4 negatively regulates cell spreading by inhibiting the kinase activity of testicular protein kinase. Biochem J 387:627–637PubMedCrossRef
79.
go back to reference Ozaki K, Kadomoto R, Asato K et al (2001) ERK pathway positively regulates the expression of Sprouty genes. Biochem Biophys Res Commun 285:1084–1088PubMedCrossRef Ozaki K, Kadomoto R, Asato K et al (2001) ERK pathway positively regulates the expression of Sprouty genes. Biochem Biophys Res Commun 285:1084–1088PubMedCrossRef
80.
go back to reference Hall AB, Jura N, DaSilva J et al (2003) hSpry2 is targeted to the ubiquitin-dependent proteasome pathway by c-Cbl. Curr Biol 13:308–314PubMedCrossRef Hall AB, Jura N, DaSilva J et al (2003) hSpry2 is targeted to the ubiquitin-dependent proteasome pathway by c-Cbl. Curr Biol 13:308–314PubMedCrossRef
81.
go back to reference Rubin C, Gur G, Yarden Y (2005) Negative regulation of receptor tyrosine kinases: unexpected links to c-Cbl and receptor ubiquitylation. Cell Res 15:66–71PubMedCrossRef Rubin C, Gur G, Yarden Y (2005) Negative regulation of receptor tyrosine kinases: unexpected links to c-Cbl and receptor ubiquitylation. Cell Res 15:66–71PubMedCrossRef
82.
go back to reference DaSilva J, Xu L, Kim HJ et al (2006) Regulation of sprouty stability by Mnk1-dependent phosphorylation. Mol Cell Biol 26:1898–1907PubMedCrossRef DaSilva J, Xu L, Kim HJ et al (2006) Regulation of sprouty stability by Mnk1-dependent phosphorylation. Mol Cell Biol 26:1898–1907PubMedCrossRef
83.
go back to reference Ding W, Shi W, Bellusci S et al (2007) Sprouty2 downregulation plays a pivotal role in mediating crosstalk between TGF-beta1 signaling and EGF as well as FGF receptor tyrosine kinase-ERK pathways in mesenchymal cells. J Cell Physiol 212:796–806PubMedCrossRef Ding W, Shi W, Bellusci S et al (2007) Sprouty2 downregulation plays a pivotal role in mediating crosstalk between TGF-beta1 signaling and EGF as well as FGF receptor tyrosine kinase-ERK pathways in mesenchymal cells. J Cell Physiol 212:796–806PubMedCrossRef
84.
go back to reference Nadeau RJ, Toher JL, Yang X et al (2007) Regulation of Sprouty2 stability by mammalian Seven-in-Absentia homolog 2. J Cell Biochem 100:151–160PubMedCrossRef Nadeau RJ, Toher JL, Yang X et al (2007) Regulation of Sprouty2 stability by mammalian Seven-in-Absentia homolog 2. J Cell Biochem 100:151–160PubMedCrossRef
86.
go back to reference Wu X, Alexander PB, He Y et al (2005) Mammalian sprouty proteins assemble into large monodisperse particles having the properties of intracellular nanobatteries. Proc Natl Acad Sci U S A 102:14058–14062PubMedCrossRef Wu X, Alexander PB, He Y et al (2005) Mammalian sprouty proteins assemble into large monodisperse particles having the properties of intracellular nanobatteries. Proc Natl Acad Sci U S A 102:14058–14062PubMedCrossRef
87.
go back to reference Wingrove JA, O’Farrell PH (1999) Nitric oxide contributes to behavioral, cellular, and developmental responses to low oxygen in Drosophila. Cell 98:105–114PubMedCrossRef Wingrove JA, O’Farrell PH (1999) Nitric oxide contributes to behavioral, cellular, and developmental responses to low oxygen in Drosophila. Cell 98:105–114PubMedCrossRef
88.
go back to reference Ying L, Hofseth LJ (2007) An emerging role for endothelial nitric oxide synthase in chronic inflammation and cancer. Cancer Res 67:1407–1410PubMedCrossRef Ying L, Hofseth LJ (2007) An emerging role for endothelial nitric oxide synthase in chronic inflammation and cancer. Cancer Res 67:1407–1410PubMedCrossRef
89.
go back to reference Minshall RD, Sessa WC, Stan RV et al (2003) Caveolin regulation of endothelial function. Am J Physiol Lung Cell Mol Physiol 285:L1179–L1183PubMed Minshall RD, Sessa WC, Stan RV et al (2003) Caveolin regulation of endothelial function. Am J Physiol Lung Cell Mol Physiol 285:L1179–L1183PubMed
90.
go back to reference Basson MA, Watson-Johnson J, Shakya R et al (2006) Branching morphogenesis of the ureteric epithelium during kidney development is coordinated by the opposing functions of GDNF and Sprouty1. Dev Biol 299:466–477PubMedCrossRef Basson MA, Watson-Johnson J, Shakya R et al (2006) Branching morphogenesis of the ureteric epithelium during kidney development is coordinated by the opposing functions of GDNF and Sprouty1. Dev Biol 299:466–477PubMedCrossRef
91.
go back to reference Shim K, Minowada G, Coling DE et al (2005) Sprouty2, a mouse deafness gene, regulates cell fate decisions in the auditory sensory epithelium by antagonizing FGF signaling. Dev Cell 8:553–564PubMedCrossRef Shim K, Minowada G, Coling DE et al (2005) Sprouty2, a mouse deafness gene, regulates cell fate decisions in the auditory sensory epithelium by antagonizing FGF signaling. Dev Cell 8:553–564PubMedCrossRef
92.
go back to reference Taketomi T, Yoshiga D, Taniguchi K et al (2005) Loss of mammalian Sprouty2 leads to enteric neuronal hyperplasia and esophageal achalasia. Nat Neurosci 8:855–857PubMed Taketomi T, Yoshiga D, Taniguchi K et al (2005) Loss of mammalian Sprouty2 leads to enteric neuronal hyperplasia and esophageal achalasia. Nat Neurosci 8:855–857PubMed
93.
go back to reference Klein OD, Minowada G, Peterkova R et al (2006) Sprouty genes control diastema tooth development via bidirectional antagonism of epithelial-mesenchymal FGF signaling. Dev Cell 11:181–190PubMedCrossRef Klein OD, Minowada G, Peterkova R et al (2006) Sprouty genes control diastema tooth development via bidirectional antagonism of epithelial-mesenchymal FGF signaling. Dev Cell 11:181–190PubMedCrossRef
94.
go back to reference Taniguchi K, Ayada T, Ichiyama K et al (2007) Sprouty2 and Sprouty4 are essential for embryonic morphogenesis and regulation of FGF signaling. Biochem Biophys Res Commun 352:896–902PubMedCrossRef Taniguchi K, Ayada T, Ichiyama K et al (2007) Sprouty2 and Sprouty4 are essential for embryonic morphogenesis and regulation of FGF signaling. Biochem Biophys Res Commun 352:896–902PubMedCrossRef
95.
go back to reference Sivak JM, Petersen LF, Amaya E (2005) FGF signal interpretation is directed by Sprouty and Spred proteins during mesoderm formation. Dev Cell 8:689–701PubMedCrossRef Sivak JM, Petersen LF, Amaya E (2005) FGF signal interpretation is directed by Sprouty and Spred proteins during mesoderm formation. Dev Cell 8:689–701PubMedCrossRef
96.
go back to reference Taniguchi K, Kohno R, Ayada T et al (2007) Spreds are essential for embryonic lymphangiogenesis by regulating vascular endothelial growth factor receptor 3 signaling. Mol Cell Biol 27:4541–4550PubMedCrossRef Taniguchi K, Kohno R, Ayada T et al (2007) Spreds are essential for embryonic lymphangiogenesis by regulating vascular endothelial growth factor receptor 3 signaling. Mol Cell Biol 27:4541–4550PubMedCrossRef
Metadata
Title
Sprouty proteins, masterminds of receptor tyrosine kinase signaling
Authors
Miguel A. Cabrita
Gerhard Christofori
Publication date
01-03-2008
Publisher
Springer Netherlands
Published in
Angiogenesis / Issue 1/2008
Print ISSN: 0969-6970
Electronic ISSN: 1573-7209
DOI
https://doi.org/10.1007/s10456-008-9089-1

Other articles of this Issue 1/2008

Angiogenesis 1/2008 Go to the issue

Editorial notes

From the editor

Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.