Skip to main content
Top
Published in: Angiogenesis 4/2007

01-12-2007 | Review Article

Thymosin β4 and angiogenesis: modes of action and therapeutic potential

Authors: Nicola Smart, Alex Rossdeutsch, Paul R. Riley

Published in: Angiogenesis | Issue 4/2007

Login to get access

Abstract

Here we review the mechanisms by which Thymosin β4 (Tβ4) regulates angiogenesis, its role in processes, such as wound healing and tumour progression and we discuss in more detail the role of Tβ4 in the cardiovascular system and significant recent findings implicating Tβ4 as a potential therapeutic agent for ischaemic heart disease.
Literature
1.
go back to reference Goldstein AL, Slater FD, White A (1966) Preparation, assay, and partial purification of a thymic lymphocytopoietic factor (thymosin). Proc Natl Acad Sci USA 56:1010–1017PubMedCrossRef Goldstein AL, Slater FD, White A (1966) Preparation, assay, and partial purification of a thymic lymphocytopoietic factor (thymosin). Proc Natl Acad Sci USA 56:1010–1017PubMedCrossRef
2.
go back to reference Huff T, Muller C, Otto A, Netzker R, Hannappel E (2001) β-thymosins, small acidic peptides with multiple functions. Int J Biochem Cell Biol 33:205–220PubMedCrossRef Huff T, Muller C, Otto A, Netzker R, Hannappel E (2001) β-thymosins, small acidic peptides with multiple functions. Int J Biochem Cell Biol 33:205–220PubMedCrossRef
3.
go back to reference Sanders MC, Goldstein AL, Wang Y (1992) Thymosin {beta}4 (Fx Peptide) is a potent regulator of actin polymerization in living cells. PNAS 89:4678–4682PubMedCrossRef Sanders MC, Goldstein AL, Wang Y (1992) Thymosin {beta}4 (Fx Peptide) is a potent regulator of actin polymerization in living cells. PNAS 89:4678–4682PubMedCrossRef
4.
go back to reference Stanka Stoeva SHWV (1997) A novel β-thymosin from the sea urchin: extending the phylogenetic distribution of β-thymosins from mammals to echinoderms. J Pept Sci 3:282–290CrossRef Stanka Stoeva SHWV (1997) A novel β-thymosin from the sea urchin: extending the phylogenetic distribution of β-thymosins from mammals to echinoderms. J Pept Sci 3:282–290CrossRef
5.
go back to reference Low TL, Hu SK, Goldstein AL (1981) Complete amino acid sequence of bovine thymosin β4: a thymic hormone that induces terminal deoxynucleotidyl transferase activity in thymocyte populations. Proc Natl Acad Sci USA 78:1162–1166PubMedCrossRef Low TL, Hu SK, Goldstein AL (1981) Complete amino acid sequence of bovine thymosin β4: a thymic hormone that induces terminal deoxynucleotidyl transferase activity in thymocyte populations. Proc Natl Acad Sci USA 78:1162–1166PubMedCrossRef
6.
go back to reference Low TL, Goldstein AL (1982) Chemical characterization of thymosin beta 4. J Biol Chem 257:1000–1006PubMed Low TL, Goldstein AL (1982) Chemical characterization of thymosin beta 4. J Biol Chem 257:1000–1006PubMed
7.
go back to reference Goldstein AL, Hannappel E, Kleinman HK (2005) Thymosin β4: actin-sequestering protein moonlights to repair injured tissues. Trends Mol Med 11:421–429PubMedCrossRef Goldstein AL, Hannappel E, Kleinman HK (2005) Thymosin β4: actin-sequestering protein moonlights to repair injured tissues. Trends Mol Med 11:421–429PubMedCrossRef
8.
go back to reference Lere B, Massimo L, Bruce RZ (1998) Thymosin β15 expression in tumor cell lines with varying metastatic potential. Clin Exp Metastasis 16:227–233CrossRef Lere B, Massimo L, Bruce RZ (1998) Thymosin β15 expression in tumor cell lines with varying metastatic potential. Clin Exp Metastasis 16:227–233CrossRef
9.
go back to reference Bao L, Loda M, Janmey PA, Stewart R, nand-Apte B, Zetter BR (1996) Thymosin β 15: a novel regulator of tumor cell motility upregulated in metastatic prostate cancer. Nat Med 2:1322–1328PubMedCrossRef Bao L, Loda M, Janmey PA, Stewart R, nand-Apte B, Zetter BR (1996) Thymosin β 15: a novel regulator of tumor cell motility upregulated in metastatic prostate cancer. Nat Med 2:1322–1328PubMedCrossRef
10.
go back to reference Sun HQ, Kwiatkowska K, Yin HL (1995) Actin monomer binding proteins. Curr Opin Cell Biol 7:102–110PubMedCrossRef Sun HQ, Kwiatkowska K, Yin HL (1995) Actin monomer binding proteins. Curr Opin Cell Biol 7:102–110PubMedCrossRef
11.
go back to reference Ghosh M, Song X, Mouneimne G, Sidani M, Lawrence DS, Condeelis JS (2004) Cofilin promotes actin polymerization and defines the direction of cell motility. Science 304:743–746PubMedCrossRef Ghosh M, Song X, Mouneimne G, Sidani M, Lawrence DS, Condeelis JS (2004) Cofilin promotes actin polymerization and defines the direction of cell motility. Science 304:743–746PubMedCrossRef
12.
go back to reference Lappalainen P, Drubin D (1997) Cofilin promotes rapid actin filament turnover in vivo. Nature 388:78–82PubMedCrossRef Lappalainen P, Drubin D (1997) Cofilin promotes rapid actin filament turnover in vivo. Nature 388:78–82PubMedCrossRef
14.
go back to reference Chen H, Bernstein B, Bamburg J (2000) Regulating actin-filament dynamics in vivo. Trends Biol Sci 25:19–23CrossRef Chen H, Bernstein B, Bamburg J (2000) Regulating actin-filament dynamics in vivo. Trends Biol Sci 25:19–23CrossRef
15.
go back to reference Van Troys M, Dewitte D, Goethals M, Carlier MF, Vandekerckhove J, AMpe C (1996) The actin binding site of thymosin beta 4 mapped by mutational analysis. EMBO J 15:201–210PubMed Van Troys M, Dewitte D, Goethals M, Carlier MF, Vandekerckhove J, AMpe C (1996) The actin binding site of thymosin beta 4 mapped by mutational analysis. EMBO J 15:201–210PubMed
16.
go back to reference Malinda KM, Sidhu GS, Banaudha KK, Gaddipati JP, Maheshwari RK, Goldstein AL, Kleinman HK (1998) Thymosin {alpha}1 stimulates endothelial cell migration, angiogenesis, and wound healing. J Immunol 160:1001–1006PubMed Malinda KM, Sidhu GS, Banaudha KK, Gaddipati JP, Maheshwari RK, Goldstein AL, Kleinman HK (1998) Thymosin {alpha}1 stimulates endothelial cell migration, angiogenesis, and wound healing. J Immunol 160:1001–1006PubMed
17.
go back to reference Mu H, Ohashi R, Yang H, Wang X, Li M, Lin P, Yao Q, Chen C (2006) Thymosin beta10 inhibits cell migration and capillary-like tube formation of human coronary artery endothelial cells. Cell Motil Cytoskeleton 63(4):222–230PubMedCrossRef Mu H, Ohashi R, Yang H, Wang X, Li M, Lin P, Yao Q, Chen C (2006) Thymosin beta10 inhibits cell migration and capillary-like tube formation of human coronary artery endothelial cells. Cell Motil Cytoskeleton 63(4):222–230PubMedCrossRef
18.
go back to reference Koutrafouri V, Leoniadis L, Avgoustakis K, Livianou E, Czarnecki J, Ithakissios D, Evangelatos G (2001) Effect of thymosin peptides on the chick chorioallantoic membrane angiogenesis model. Biochim Biophys Acta 1568:60–66PubMed Koutrafouri V, Leoniadis L, Avgoustakis K, Livianou E, Czarnecki J, Ithakissios D, Evangelatos G (2001) Effect of thymosin peptides on the chick chorioallantoic membrane angiogenesis model. Biochim Biophys Acta 1568:60–66PubMed
19.
go back to reference Koutrafouri V, Leondiadis L, Ferderigos N, Avgoustakis K, Livaniou E, Evangelatos GP, Ithakissios DS (2003) Synthesis and angiogenetic activity in the chick chorioallantoic membrane model of thymosin β15. Peptides 24:107–115PubMedCrossRef Koutrafouri V, Leondiadis L, Ferderigos N, Avgoustakis K, Livaniou E, Evangelatos GP, Ithakissios DS (2003) Synthesis and angiogenetic activity in the chick chorioallantoic membrane model of thymosin β15. Peptides 24:107–115PubMedCrossRef
20.
go back to reference Lee SH, Son MJ, Oh SH, Rho SB, Park K, Kim YJ, Park MS, Lee JH (2005) Thymosin β10 inhibits angiogenesis and tumor growth by interfering with Ras function. Cancer Res 65:137–148PubMed Lee SH, Son MJ, Oh SH, Rho SB, Park K, Kim YJ, Park MS, Lee JH (2005) Thymosin β10 inhibits angiogenesis and tumor growth by interfering with Ras function. Cancer Res 65:137–148PubMed
21.
go back to reference Philp D, Huff T, Gho YS, Hannappel E, Kleinman HK (2003) The actin binding site on thymosin β4 promotes angiogenesis. FASEB J 17:2103–2105PubMed Philp D, Huff T, Gho YS, Hannappel E, Kleinman HK (2003) The actin binding site on thymosin β4 promotes angiogenesis. FASEB J 17:2103–2105PubMed
22.
go back to reference Gomez-Marquez J, del Amo F, Carpintero P, Anadon R (1996) High levels of mouse thymosin β4 mRNA in differentiating P19 embryonic cells and during development of cardiovascular tissues. Biochim Biophys Acta 1306:187–193PubMed Gomez-Marquez J, del Amo F, Carpintero P, Anadon R (1996) High levels of mouse thymosin β4 mRNA in differentiating P19 embryonic cells and during development of cardiovascular tissues. Biochim Biophys Acta 1306:187–193PubMed
23.
go back to reference Carpintero P, Franco dA, Anadon R, Gomez-Marquez J (1996) Thymosin β10 mRNA expression during early postimplantation mouse development. FEBS Lett 394:103–106PubMedCrossRef Carpintero P, Franco dA, Anadon R, Gomez-Marquez J (1996) Thymosin β10 mRNA expression during early postimplantation mouse development. FEBS Lett 394:103–106PubMedCrossRef
24.
go back to reference Hall AK (1991) Differential expression of thymosin genes in human tumors and in the developing human kidney. Int J Cancer 48:672–677PubMedCrossRef Hall AK (1991) Differential expression of thymosin genes in human tumors and in the developing human kidney. Int J Cancer 48:672–677PubMedCrossRef
25.
go back to reference Grant D, Kinsella J, Kibbey M, LaFlamme S, Burbelo P, Goldstein A, Leinman H (1995) Matrigel induces thymosin(β4 gene in differentiating endothelial cells. J Cell Sci 108:3685–3694PubMed Grant D, Kinsella J, Kibbey M, LaFlamme S, Burbelo P, Goldstein A, Leinman H (1995) Matrigel induces thymosin(β4 gene in differentiating endothelial cells. J Cell Sci 108:3685–3694PubMed
26.
go back to reference Malinda K, Goldstein A, Kleinman H (1997) Thymosin β4 stimulates directional migration of human umbilical vein endothelial cells. FASEB J 11:474–481PubMed Malinda K, Goldstein A, Kleinman H (1997) Thymosin β4 stimulates directional migration of human umbilical vein endothelial cells. FASEB J 11:474–481PubMed
27.
go back to reference Grant DS, Rose W, Yaen C, Goldstein A, Martinez J, Kleinman H (1999) Thymosin β4 enhances endothelial cell differentiation and angiogenesis. Angiogenesis 3:125–135PubMedCrossRef Grant DS, Rose W, Yaen C, Goldstein A, Martinez J, Kleinman H (1999) Thymosin β4 enhances endothelial cell differentiation and angiogenesis. Angiogenesis 3:125–135PubMedCrossRef
28.
go back to reference Malinda K, Sidhu G, Mani H, Banaudha K, Mashewari R, Goldstein A, Kleinman H (1999) Thymosin β4 accelerates wound healing. J Invest Dermatol 113:364–368PubMedCrossRef Malinda K, Sidhu G, Mani H, Banaudha K, Mashewari R, Goldstein A, Kleinman H (1999) Thymosin β4 accelerates wound healing. J Invest Dermatol 113:364–368PubMedCrossRef
29.
go back to reference Cha HJ, Jeong MJ, Kleinman HK (2003) Role of thymosin β4 in tumor metastasis and angiogenesis. J Natl Cancer Inst 95:1674–1680PubMed Cha HJ, Jeong MJ, Kleinman HK (2003) Role of thymosin β4 in tumor metastasis and angiogenesis. J Natl Cancer Inst 95:1674–1680PubMed
30.
go back to reference Grillon C, Rieger K, Bakala J, Schott D, Morgat JL, Hannappel E, Voelter W, Lenfant M (1990) Involvement of thymosin β4 and endoproteinase Asp-N in the biosynthesis of the tetrapeptide AcSerAspLysPro a regulator of the hematopoietic system. FEBS Lett 274:30–34PubMedCrossRef Grillon C, Rieger K, Bakala J, Schott D, Morgat JL, Hannappel E, Voelter W, Lenfant M (1990) Involvement of thymosin β4 and endoproteinase Asp-N in the biosynthesis of the tetrapeptide AcSerAspLysPro a regulator of the hematopoietic system. FEBS Lett 274:30–34PubMedCrossRef
31.
go back to reference Rieger KJ, Saez-Servent N, Papet MP, Wdzieczak-Bakala J, Morgat JL, Thierry J, Voelter W, Lenfant M (1993) Involvement of human plasma angiotensin I-converting enzyme in the degradation of the haemoregulatory peptide N-acetyl-seryl-aspartyl-lysyl-proline. Biochem J 296(Pt 2):373–378PubMed Rieger KJ, Saez-Servent N, Papet MP, Wdzieczak-Bakala J, Morgat JL, Thierry J, Voelter W, Lenfant M (1993) Involvement of human plasma angiotensin I-converting enzyme in the degradation of the haemoregulatory peptide N-acetyl-seryl-aspartyl-lysyl-proline. Biochem J 296(Pt 2):373–378PubMed
32.
go back to reference Cavasin MA, Rhaleb NE, Yang XP, Carretero OA (2004) Prolyl oligopeptidase is involved in release of the antifibrotic peptide Ac-SDKP. Hypertension 43:1140–1145PubMedCrossRef Cavasin MA, Rhaleb NE, Yang XP, Carretero OA (2004) Prolyl oligopeptidase is involved in release of the antifibrotic peptide Ac-SDKP. Hypertension 43:1140–1145PubMedCrossRef
33.
go back to reference Liu JM, Lawrence F, Kovacevic M, Bignon J, Papadimitriou E, Lallemand JY, Katsoris P, Potier P, Fromes Y, Wdzieczak-Bakala J (2003) The tetrapeptide AcSDKP, an inhibitor of primitive hematopoietic cell proliferation, induces angiogenesis in vitro and in vivo. Blood 101:3014–3020PubMedCrossRef Liu JM, Lawrence F, Kovacevic M, Bignon J, Papadimitriou E, Lallemand JY, Katsoris P, Potier P, Fromes Y, Wdzieczak-Bakala J (2003) The tetrapeptide AcSDKP, an inhibitor of primitive hematopoietic cell proliferation, induces angiogenesis in vitro and in vivo. Blood 101:3014–3020PubMedCrossRef
34.
go back to reference Bonnet D, Lemoine FM, Frobert Y, Bonnet ML, Baillou C, Najman A, Guigon M (1996) Thymosin(β4, inhibitor for normal hematopoietic progenitor cells. Exp Hematol 24:776–782PubMed Bonnet D, Lemoine FM, Frobert Y, Bonnet ML, Baillou C, Najman A, Guigon M (1996) Thymosin(β4, inhibitor for normal hematopoietic progenitor cells. Exp Hematol 24:776–782PubMed
35.
go back to reference Frohm M, Gunne H, Bergman AC, Agerberth B, Bergman T, Boman A, Liden S, Jornvall H, Boman HG (1996) Biochemical and antibacterial analysis of human wound and blister fluid. Eur J Biochem 237:86–92PubMedCrossRef Frohm M, Gunne H, Bergman AC, Agerberth B, Bergman T, Boman A, Liden S, Jornvall H, Boman HG (1996) Biochemical and antibacterial analysis of human wound and blister fluid. Eur J Biochem 237:86–92PubMedCrossRef
36.
go back to reference Philp D, Badamchian M, Scheremeta B, Nguyen M, Goldstein A, Kleinman H (2003) Thymosin β4 and a synthetic peptide containing its actin-binding domain promote dermal wound repair in db/db diabetic mice and in aged mice. Wound Repair Regen 11:19–24PubMedCrossRef Philp D, Badamchian M, Scheremeta B, Nguyen M, Goldstein A, Kleinman H (2003) Thymosin β4 and a synthetic peptide containing its actin-binding domain promote dermal wound repair in db/db diabetic mice and in aged mice. Wound Repair Regen 11:19–24PubMedCrossRef
37.
go back to reference Philp D, Goldstein AL, Kleinman HK (2004) Thymosin [beta]4 promotes angiogenesis, wound healing, and hair follicle development. Mech Ageing Dev 125:113–115PubMedCrossRef Philp D, Goldstein AL, Kleinman HK (2004) Thymosin [beta]4 promotes angiogenesis, wound healing, and hair follicle development. Mech Ageing Dev 125:113–115PubMedCrossRef
38.
go back to reference Sosne G, Chan C, Thai K, Kennedy M, Szliter E, Hazlett L, Kleinman H (2001) Thymosin beta 4 promotes corneal wound healing and modulates inflammatory mediators in vivo. Exp Eye Res 72:605–608PubMedCrossRef Sosne G, Chan C, Thai K, Kennedy M, Szliter E, Hazlett L, Kleinman H (2001) Thymosin beta 4 promotes corneal wound healing and modulates inflammatory mediators in vivo. Exp Eye Res 72:605–608PubMedCrossRef
39.
go back to reference Sosne G, Hafeez S, Greenberry AL, Kurpakus-Wheater M (2002) Thymosin beta4 promotes human conjunctival epithelial cell migration. Curr Eye Res 24:268–273PubMedCrossRef Sosne G, Hafeez S, Greenberry AL, Kurpakus-Wheater M (2002) Thymosin beta4 promotes human conjunctival epithelial cell migration. Curr Eye Res 24:268–273PubMedCrossRef
40.
go back to reference Sosne G, Siddiqi A, Kurpakus-Wheater M (2004) Thymosin-{beta}4 Inhibits Corneal Epithelial Cell Apoptosis after Ethanol Exposure In vitro. Invest Ophthalmol Vis Sci 45:1095–1100PubMedCrossRef Sosne G, Siddiqi A, Kurpakus-Wheater M (2004) Thymosin-{beta}4 Inhibits Corneal Epithelial Cell Apoptosis after Ethanol Exposure In vitro. Invest Ophthalmol Vis Sci 45:1095–1100PubMedCrossRef
41.
go back to reference Sosne G, Christopherson PL, Barrett RP, Fridman R (2005) Thymosin-{beta}4 modulates corneal matrix metalloproteinase levels and polymorphonuclear cell infiltration after alkali injury. Invest Ophthalmol Vis Sci 46:2388–2395PubMedCrossRef Sosne G, Christopherson PL, Barrett RP, Fridman R (2005) Thymosin-{beta}4 modulates corneal matrix metalloproteinase levels and polymorphonuclear cell infiltration after alkali injury. Invest Ophthalmol Vis Sci 46:2388–2395PubMedCrossRef
42.
go back to reference Sosne G, Qiu P, Christopherson PL, Wheater MK (2007) Thymosin beta 4 suppression of corneal NF[kappa]B: a potential anti-inflammatory pathway. Exp Eye Res 84:663–669PubMedCrossRef Sosne G, Qiu P, Christopherson PL, Wheater MK (2007) Thymosin beta 4 suppression of corneal NF[kappa]B: a potential anti-inflammatory pathway. Exp Eye Res 84:663–669PubMedCrossRef
43.
go back to reference Clark E, Golub T, Lander E, Hynes R (2000) Genomic analysis of metastasis reveals an essential role for RhoC. Nature 406:532–535PubMedCrossRef Clark E, Golub T, Lander E, Hynes R (2000) Genomic analysis of metastasis reveals an essential role for RhoC. Nature 406:532–535PubMedCrossRef
45.
go back to reference Kobayashi T, Okada F, Fujii N, Tomita N, Ito S, Tazawa H, Ayoama T, Choi S, Shibita T, Fujita H, Hosokawa M (2002) Thymosin-β4 regulates motility and metastasis of malignant mouse fibrosarcoma cells. Am J Pathol 160:869–882PubMed Kobayashi T, Okada F, Fujii N, Tomita N, Ito S, Tazawa H, Ayoama T, Choi S, Shibita T, Fujita H, Hosokawa M (2002) Thymosin-β4 regulates motility and metastasis of malignant mouse fibrosarcoma cells. Am J Pathol 160:869–882PubMed
46.
go back to reference Diamond DL, Zhang Y, Gaiger A, Smithgall M, Vedvick TS, Carter D (2003) Use of proteinchip(TM) array surface enhanced laser desorption/ionization time-of-flight mass spectrometry (seldi-tof ms) to identify thymosin [beta]-4, a differentially secreted protein from lymphoblastoid cell lines. J Am Soc Mass Spectrom 14:760–765PubMedCrossRef Diamond DL, Zhang Y, Gaiger A, Smithgall M, Vedvick TS, Carter D (2003) Use of proteinchip(TM) array surface enhanced laser desorption/ionization time-of-flight mass spectrometry (seldi-tof ms) to identify thymosin [beta]-4, a differentially secreted protein from lymphoblastoid cell lines. J Am Soc Mass Spectrom 14:760–765PubMedCrossRef
47.
go back to reference Wang W-S, Chen P-M, Hsiao H-L, Ju S-Y, Su Y (2003) Overexpression of the thymosin b-4 gene is associated with malignant progression of SW480 colon cancer cells. Oncogene 22:3297–3306PubMedCrossRef Wang W-S, Chen P-M, Hsiao H-L, Ju S-Y, Su Y (2003) Overexpression of the thymosin b-4 gene is associated with malignant progression of SW480 colon cancer cells. Oncogene 22:3297–3306PubMedCrossRef
48.
go back to reference Yamamoto T, Gotoh M, Kitajima M, Hirohashi S (1993) Thymosin [beta]-4 expression is correlated with metastatic capacity of colorectal carcinomas. Biochem Biophys Res Commun 193:706–710PubMedCrossRef Yamamoto T, Gotoh M, Kitajima M, Hirohashi S (1993) Thymosin [beta]-4 expression is correlated with metastatic capacity of colorectal carcinomas. Biochem Biophys Res Commun 193:706–710PubMedCrossRef
49.
go back to reference Verghese-Nikolakaki S, Apostolikas N, Livaniou E, Ithakissios DS, Evangelatos GP (1996) Preliminary findings on the expression of thymosin beta-10 in human breast cancer. Br J Cancer 74:1441–1444PubMed Verghese-Nikolakaki S, Apostolikas N, Livaniou E, Ithakissios DS, Evangelatos GP (1996) Preliminary findings on the expression of thymosin beta-10 in human breast cancer. Br J Cancer 74:1441–1444PubMed
50.
go back to reference Santelli G, Califano D, Chiappetta G, Vento MT, Bartoli PC, Zullo F, Trapasso F, Viglietto G, Fusco A (1999) Thymosin beta-10 gene overexpression is a general event in human carcinogenesis. Am J Pathol 155:799–804PubMed Santelli G, Califano D, Chiappetta G, Vento MT, Bartoli PC, Zullo F, Trapasso F, Viglietto G, Fusco A (1999) Thymosin beta-10 gene overexpression is a general event in human carcinogenesis. Am J Pathol 155:799–804PubMed
51.
go back to reference Viglietto G, Califano D, Bruni P, Baldassarre G, Vento MT, Belletti B, Fedele M, Santelli G, Boccia A, Manzo G, Santoro M, Fusco A (1999) Regulation of thymosin beta10 expression by TSH and other mitogenic signals in the thyroid gland and in cultured thyrocytes. Eur J Endocrinol 140:597–607PubMedCrossRef Viglietto G, Califano D, Bruni P, Baldassarre G, Vento MT, Belletti B, Fedele M, Santelli G, Boccia A, Manzo G, Santoro M, Fusco A (1999) Regulation of thymosin beta10 expression by TSH and other mitogenic signals in the thyroid gland and in cultured thyrocytes. Eur J Endocrinol 140:597–607PubMedCrossRef
52.
go back to reference Lee S-H, Zhang W, Choi J-J, Cho Y-S, Lee S-H, Kim J-W, Hu L, Xu J, Liu J, Lee J-H (2001) Overexpression of the thymosin β-10 gene in human ovarian cancer cells disrupts F-actin stress fiber and leads to apoptosis. Oncogene 20:6700–6706PubMedCrossRef Lee S-H, Zhang W, Choi J-J, Cho Y-S, Lee S-H, Kim J-W, Hu L, Xu J, Liu J, Lee J-H (2001) Overexpression of the thymosin β-10 gene in human ovarian cancer cells disrupts F-actin stress fiber and leads to apoptosis. Oncogene 20:6700–6706PubMedCrossRef
53.
go back to reference Kusinski M, Wdzieczak-Bakala J, Liu JM, Bignon J, Kuzdak K (2006) AcSDKP: a new potential marker of malignancy of the thyroid gland. Langenbecks Arch Surg 391:9–12PubMedCrossRef Kusinski M, Wdzieczak-Bakala J, Liu JM, Bignon J, Kuzdak K (2006) AcSDKP: a new potential marker of malignancy of the thyroid gland. Langenbecks Arch Surg 391:9–12PubMedCrossRef
54.
go back to reference Smart N, Hill AA, Cross JC, Riley PR (2002) A differential screen for putative targets of the bHLH transcription factor Hand1 in cardiac morphogenesis. Mech Dev 119:S65–S71PubMedCrossRef Smart N, Hill AA, Cross JC, Riley PR (2002) A differential screen for putative targets of the bHLH transcription factor Hand1 in cardiac morphogenesis. Mech Dev 119:S65–S71PubMedCrossRef
55.
go back to reference Bock-Marquette I, Saxena A, White MD, Dimaio JM, Srivastava D (2004) Thymosin β4 activates integrin-linked kinase and promotes cardiac cell migration, survival and cardiac repair. Nature 432:466–472PubMedCrossRef Bock-Marquette I, Saxena A, White MD, Dimaio JM, Srivastava D (2004) Thymosin β4 activates integrin-linked kinase and promotes cardiac cell migration, survival and cardiac repair. Nature 432:466–472PubMedCrossRef
56.
go back to reference Smart N, Risebro CA, Melville AAD, Moses K, Schwartz RJ, Chien KR, Riley PR (2007) Thymosin β4 induces adult epicardial progenitor mobilization and neovascularization. Nature 445:177–182PubMedCrossRef Smart N, Risebro CA, Melville AAD, Moses K, Schwartz RJ, Chien KR, Riley PR (2007) Thymosin β4 induces adult epicardial progenitor mobilization and neovascularization. Nature 445:177–182PubMedCrossRef
57.
go back to reference Dathe V, Brand-Saberi B (2004) Expression of thymosin beta4 during chick development. Anat Embryol (Berl) 208:27–32CrossRef Dathe V, Brand-Saberi B (2004) Expression of thymosin beta4 during chick development. Anat Embryol (Berl) 208:27–32CrossRef
58.
go back to reference Schultheiss TM, Xydas S, Lassar AB (1995) Induction of avian cardiac myogenesis by anterior endoderm. Development 121:4203–4214PubMed Schultheiss TM, Xydas S, Lassar AB (1995) Induction of avian cardiac myogenesis by anterior endoderm. Development 121:4203–4214PubMed
61.
go back to reference von Kodolitsch Y, Franzen O, Lund GK, Koschyk DH, Ito WD, Meinertz T (2004) Coronary artery anomalies Part I: recent insights from molecular embryology. Z Kardiol 93:929–937CrossRef von Kodolitsch Y, Franzen O, Lund GK, Koschyk DH, Ito WD, Meinertz T (2004) Coronary artery anomalies Part I: recent insights from molecular embryology. Z Kardiol 93:929–937CrossRef
62.
go back to reference Poelmann RE, Lie-Venema H, Gittenberger-de Groot AC (2002) The role of the epicardium and neural crest as extracardiac contributors to coronary vascular development. Tex Heart Inst J 29:255–261PubMed Poelmann RE, Lie-Venema H, Gittenberger-de Groot AC (2002) The role of the epicardium and neural crest as extracardiac contributors to coronary vascular development. Tex Heart Inst J 29:255–261PubMed
63.
go back to reference Manasek FJ (1969) Embryonic development of the heart. II. Formation of the epicardium. J Embryol Exp Morphol 22:333–348PubMed Manasek FJ (1969) Embryonic development of the heart. II. Formation of the epicardium. J Embryol Exp Morphol 22:333–348PubMed
64.
go back to reference Viragh S, Challice CE (1981) The origin of the epicardium and the embryonic myocardial circulation in the mouse. Anat Rec 201:157–168PubMedCrossRef Viragh S, Challice CE (1981) The origin of the epicardium and the embryonic myocardial circulation in the mouse. Anat Rec 201:157–168PubMedCrossRef
65.
go back to reference Munoz-Chapuli R, Gonzalez-Iriarte M, Carmona R, Atencia G, Macias D, Perez-Pomares JM (2002) Cellular precursors of the coronary arteries. Tex Heart Inst J 29:243–249PubMed Munoz-Chapuli R, Gonzalez-Iriarte M, Carmona R, Atencia G, Macias D, Perez-Pomares JM (2002) Cellular precursors of the coronary arteries. Tex Heart Inst J 29:243–249PubMed
66.
go back to reference Wessels A, Perez-Pomares JM (2004) The epicardium and epicardially derived cells (EPDCs) as cardiac stem cells. Anat Rec A Discov Mol Cell Evol Biol 276:43–57PubMedCrossRef Wessels A, Perez-Pomares JM (2004) The epicardium and epicardially derived cells (EPDCs) as cardiac stem cells. Anat Rec A Discov Mol Cell Evol Biol 276:43–57PubMedCrossRef
67.
go back to reference Ward NL, Dumont DJ (2002) The angiopoietins and Tie2/Tek: adding to the complexity of cardiovascular development. Semin Cell Dev Biol 13:19–27PubMedCrossRef Ward NL, Dumont DJ (2002) The angiopoietins and Tie2/Tek: adding to the complexity of cardiovascular development. Semin Cell Dev Biol 13:19–27PubMedCrossRef
68.
go back to reference Chen TH, Chang TC, Kang JO, Choudhary B, Makita T, Tran CM, Burch JBE, Eid H, Sucov HM (2002) Epicardial induction of fetal cardiomyocyte proliferation via a retinoic acid-inducible trophic factor. Dev Biol 250:198–207PubMedCrossRef Chen TH, Chang TC, Kang JO, Choudhary B, Makita T, Tran CM, Burch JBE, Eid H, Sucov HM (2002) Epicardial induction of fetal cardiomyocyte proliferation via a retinoic acid-inducible trophic factor. Dev Biol 250:198–207PubMedCrossRef
69.
go back to reference van Tuyn J, Atsma DE, Winter EM, van der Velde-van Dijke I, Pijnappels DA, Bax NAM, Knaan-Shanzer S, Gittenberger-de Groot AC, Poelmann RE, van der Laarse A, van der Wall EE, Schalij MJ, de Vries AAF (2006) Epicardial cells of human adults can undergo an epithelial-to-mesenchymal transition and obtain characteristics of smooth muscle cells in vitro. Stem Cells 25:271–278, DOI:10.1634/stemcells.2006–0366 van Tuyn J, Atsma DE, Winter EM, van der Velde-van Dijke I, Pijnappels DA, Bax NAM, Knaan-Shanzer S, Gittenberger-de Groot AC, Poelmann RE, van der Laarse A, van der Wall EE, Schalij MJ, de Vries AAF (2006) Epicardial cells of human adults can undergo an epithelial-to-mesenchymal transition and obtain characteristics of smooth muscle cells in vitro. Stem Cells 25:271–278, DOI:10.1634/stemcells.2006–0366
70.
go back to reference Lepilina A, Coon AN, Kikuchi K, Holdway JE, Roberts RW, Burns C, Poss KD (2006) A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration. Cell 127:607–619PubMedCrossRef Lepilina A, Coon AN, Kikuchi K, Holdway JE, Roberts RW, Burns C, Poss KD (2006) A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration. Cell 127:607–619PubMedCrossRef
71.
go back to reference Lien CL, Schebesta M, Makino S, Weber GJ, Keating MT (2006) Gene expression analysis of zebrafish heart regeneration. PLoS Biol 4(8):e260PubMedCrossRef Lien CL, Schebesta M, Makino S, Weber GJ, Keating MT (2006) Gene expression analysis of zebrafish heart regeneration. PLoS Biol 4(8):e260PubMedCrossRef
72.
go back to reference Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, Pickel J, McKay R, Nadal-Ginard B, Bodine DM, Leri A, Anversa P (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410:701–705PubMedCrossRef Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B, Pickel J, McKay R, Nadal-Ginard B, Bodine DM, Leri A, Anversa P (2001) Bone marrow cells regenerate infarcted myocardium. Nature 410:701–705PubMedCrossRef
73.
go back to reference Murry CE, Soonpaa MH, Reinecke H, Nakajima H, Nakajima HO, Rubart M, Pasumarthi KB, Virag JI, Bartelmez SH, Poppa V, Bradford G, Dowell JD, Williams DA, Field LJ (2004) Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428:664–668PubMedCrossRef Murry CE, Soonpaa MH, Reinecke H, Nakajima H, Nakajima HO, Rubart M, Pasumarthi KB, Virag JI, Bartelmez SH, Poppa V, Bradford G, Dowell JD, Williams DA, Field LJ (2004) Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428:664–668PubMedCrossRef
74.
go back to reference Gnecchi M, He H, Noiseux N, Liang OD, Zhang L, Morello F, Mu H, Melo LG, Pratt RE, Ingwall JS, Dzau VJ (2006) Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J 20:661–669PubMedCrossRef Gnecchi M, He H, Noiseux N, Liang OD, Zhang L, Morello F, Mu H, Melo LG, Pratt RE, Ingwall JS, Dzau VJ (2006) Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J 20:661–669PubMedCrossRef
75.
go back to reference Isner JM, Asahara T (1999) Angiogenesis and vasculogenesis as therapeutic strategies for postnatal neovascularization. J Clin Invest 103:1231–1236PubMedCrossRef Isner JM, Asahara T (1999) Angiogenesis and vasculogenesis as therapeutic strategies for postnatal neovascularization. J Clin Invest 103:1231–1236PubMedCrossRef
76.
go back to reference Rafii S, Lyden D, Benezra R, Hattori K, Heissig B (2002) Vascular and haematopoietic stem cells: novel targets for anti-angiogenesis therapy? Nat Rev Cancer 2:826–835PubMedCrossRef Rafii S, Lyden D, Benezra R, Hattori K, Heissig B (2002) Vascular and haematopoietic stem cells: novel targets for anti-angiogenesis therapy? Nat Rev Cancer 2:826–835PubMedCrossRef
77.
go back to reference Takahashi T, Kalka C, Masuda H, Chen D, Silver M, Kearney M, Magner M, Isner JM, Asahara T (1999) Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med 5:434–438PubMedCrossRef Takahashi T, Kalka C, Masuda H, Chen D, Silver M, Kearney M, Magner M, Isner JM, Asahara T (1999) Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med 5:434–438PubMedCrossRef
78.
go back to reference Kalka C, Isner JM (2002) [Cardiac and vascular gene therapy in cardiology. Current status and future prospects]. Internist (Berl) 43(Suppl 1):S66–S75CrossRef Kalka C, Isner JM (2002) [Cardiac and vascular gene therapy in cardiology. Current status and future prospects]. Internist (Berl) 43(Suppl 1):S66–S75CrossRef
79.
go back to reference Reyes M, Dudek A, Jahagirdar B, Koodie L, Marker PH, Verfaillie CM (2002) Origin of endothelial progenitors in human postnatal bone marrow. J Clin Invest 109:337–346PubMedCrossRef Reyes M, Dudek A, Jahagirdar B, Koodie L, Marker PH, Verfaillie CM (2002) Origin of endothelial progenitors in human postnatal bone marrow. J Clin Invest 109:337–346PubMedCrossRef
80.
go back to reference Wei J, Blum S, Unger M, Jarmy G, Lamparter M, Geishauser A, Vlastos GA, Chan G, Fischer KD, Rattat D, Debatin KM, Hatzopoulos AK, Beltinger C (2004) Embryonic endothelial progenitor cells armed with a suicide gene target hypoxic lung metastases after intravenous delivery. Cancer Cell 5:477–488PubMedCrossRef Wei J, Blum S, Unger M, Jarmy G, Lamparter M, Geishauser A, Vlastos GA, Chan G, Fischer KD, Rattat D, Debatin KM, Hatzopoulos AK, Beltinger C (2004) Embryonic endothelial progenitor cells armed with a suicide gene target hypoxic lung metastases after intravenous delivery. Cancer Cell 5:477–488PubMedCrossRef
81.
go back to reference Vajkoczy P, Blum S, Lamparter M, Mailhammer R, Erber R, Engelhardt B, Vestweber D, Hatzopoulos AK (2003) Multistep nature of microvascular recruitment of ex vivo-expanded embryonic endothelial progenitor cells during tumor angiogenesis. J Exp Med 197:1755–1765PubMedCrossRef Vajkoczy P, Blum S, Lamparter M, Mailhammer R, Erber R, Engelhardt B, Vestweber D, Hatzopoulos AK (2003) Multistep nature of microvascular recruitment of ex vivo-expanded embryonic endothelial progenitor cells during tumor angiogenesis. J Exp Med 197:1755–1765PubMedCrossRef
82.
go back to reference Kupatt C, Horstkotte J, Vlastos GA, Pfosser A, Lebherz C, Semisch M, Thalgott M, Buttner K, Browarzyk C, Mages J, Hoffmann R, Deten A, Lamparter M, Muller F, Beck H, Buning H, Boekstegers P, Hatzopoulos AK (2005) Embryonic endothelial progenitor cells expressing a broad range of proangiogenic and remodeling factors enhance vascularization and tissue recovery in acute and chronic ischemia. FASEB J 19:1576–1578PubMed Kupatt C, Horstkotte J, Vlastos GA, Pfosser A, Lebherz C, Semisch M, Thalgott M, Buttner K, Browarzyk C, Mages J, Hoffmann R, Deten A, Lamparter M, Muller F, Beck H, Buning H, Boekstegers P, Hatzopoulos AK (2005) Embryonic endothelial progenitor cells expressing a broad range of proangiogenic and remodeling factors enhance vascularization and tissue recovery in acute and chronic ischemia. FASEB J 19:1576–1578PubMed
83.
go back to reference Huff T, Rosorius O, Otto AM, Muller CSG, Ballweber E, Hannappel E, Mannherz HG (2004) Nuclear localisation of the G-actin sequestering peptide thymosin β4. J Cell Sci 117:5333–5341PubMedCrossRef Huff T, Rosorius O, Otto AM, Muller CSG, Ballweber E, Hannappel E, Mannherz HG (2004) Nuclear localisation of the G-actin sequestering peptide thymosin β4. J Cell Sci 117:5333–5341PubMedCrossRef
84.
go back to reference Golla R, Philp N, Chintipalli J, Hoffmann R, Collins L, Nachmias V (1997) Co-ordinate regulation of the cytoskeleton in 3T3 cells overexpressing thymosin-β4. Cell Motil Cytoskeleton 38:187–200PubMedCrossRef Golla R, Philp N, Chintipalli J, Hoffmann R, Collins L, Nachmias V (1997) Co-ordinate regulation of the cytoskeleton in 3T3 cells overexpressing thymosin-β4. Cell Motil Cytoskeleton 38:187–200PubMedCrossRef
85.
go back to reference Moon HS, Even-Ram S, Kleinman HK, Cha HJ (2006) Zyxin is upregulated in the nucleus by thymosin beta4 in SiHa cells. Exp Cell Res 312:3425–3431PubMedCrossRef Moon HS, Even-Ram S, Kleinman HK, Cha HJ (2006) Zyxin is upregulated in the nucleus by thymosin beta4 in SiHa cells. Exp Cell Res 312:3425–3431PubMedCrossRef
86.
go back to reference Sosne G, Xu L, Prach L, Mrock LK, Kleinman HK, Letterio JJ, Hazlett LD, Kurpakus-Wheater M (2004) Thymosin beta 4 stimulates laminin-5 production independent of TGF-beta. Exp Cell Res 293:175–183PubMedCrossRef Sosne G, Xu L, Prach L, Mrock LK, Kleinman HK, Letterio JJ, Hazlett LD, Kurpakus-Wheater M (2004) Thymosin beta 4 stimulates laminin-5 production independent of TGF-beta. Exp Cell Res 293:175–183PubMedCrossRef
87.
go back to reference Chang C, Werb Z (2001) The many faces of metalloproteases: cell growth, invasion, angiogenesis and metastasis. Trends Cell Biol 11:S37–S43PubMed Chang C, Werb Z (2001) The many faces of metalloproteases: cell growth, invasion, angiogenesis and metastasis. Trends Cell Biol 11:S37–S43PubMed
88.
go back to reference Hannappel E, Leibold W (1985) Biosynthesis rates and content of thymosin β4 in cell lines. Arch Biochem Biophys 240:236–241PubMedCrossRef Hannappel E, Leibold W (1985) Biosynthesis rates and content of thymosin β4 in cell lines. Arch Biochem Biophys 240:236–241PubMedCrossRef
89.
go back to reference Huang WQ, Wang QR (2001) Bone marrow endothelial cells secrete thymosin β4 and AcSDKP. Exp Hematol 29:12–18PubMedCrossRef Huang WQ, Wang QR (2001) Bone marrow endothelial cells secrete thymosin β4 and AcSDKP. Exp Hematol 29:12–18PubMedCrossRef
90.
go back to reference Huang HC, Hu CH, Tang MC, Wang WS, Chen PM, Su Y (2006) Thymosin β4 triggers an epithelial-mesenchymal transition in colorectal carcinoma by upregulating integrin-linked kinase. Oncogene 26(19):2781–2790PubMedCrossRef Huang HC, Hu CH, Tang MC, Wang WS, Chen PM, Su Y (2006) Thymosin β4 triggers an epithelial-mesenchymal transition in colorectal carcinoma by upregulating integrin-linked kinase. Oncogene 26(19):2781–2790PubMedCrossRef
Metadata
Title
Thymosin β4 and angiogenesis: modes of action and therapeutic potential
Authors
Nicola Smart
Alex Rossdeutsch
Paul R. Riley
Publication date
01-12-2007
Publisher
Springer Netherlands
Published in
Angiogenesis / Issue 4/2007
Print ISSN: 0969-6970
Electronic ISSN: 1573-7209
DOI
https://doi.org/10.1007/s10456-007-9077-x

Other articles of this Issue 4/2007

Angiogenesis 4/2007 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.