Skip to main content
Top
Published in: Odontology 2/2022

01-04-2022 | Aligner | Original Article

The optimal activation of plastic aligner for canine distal movement: a three-dimensional finite element analysis

Authors: Ruohan Li, Wenting She, Yu Luo, Juan Wang, Youjian Peng, Qingsong Ye

Published in: Odontology | Issue 2/2022

Login to get access

Abstract

This study aimed to investigate the optimal activation of plastic aligner for the canine distal movement by combining the stress and strain of periodontal ligament. Computer-aided design models of the upper canine, periodontal ligament, alveolar bone, and plastic aligner were constructed. The stresses and strains of periodontal ligament were acquired by fitting plastic aligner on the canine, which will cause the canine distal-direction movement. The activation of plastic aligner was set into 12 groups, including 0.050, 0.100, 0.125, 0.150, 0.175, 0.200, 0.225, 0.250, 0.275, 0.300, 0.350, and 0.400 mm. Assuming the volume-averaged hydrostatic stress (VAHS) ranging from 4.7 to 16 kPa to be the optimal stress, and an average strain no less than 0.3 to be the optimal strain. The optimal activation of plastic aligner was acquired based on the optimal stress and average strain. As the activation increased, the stress and strain of periodontal ligament increased visibly. The degree of activation of plastic aligner was nonlinearly and positively related to VAHS and average strain. According to the fitted curves, the activation corresponding to the optimal stress was 0.07–0.24 mm and the activation was not less than 0.21 mm based on the optimal strain. The optimal activation of plastic aligner for the canine distal movement was 0.21–0.24 mm in this study. The degree of activation affects the force system of orthodontic tooth movement, and it should be taken into consideration to obtain healthy and efficient tooth movement. The activation with 0.21–0.24 mm seems optimal for orthodontic tooth movement in the plastic aligner system in this study.
Appendix
Available only for authorised users
Literature
1.
go back to reference Elkholy F, Mikhaiel B, Schmidt F, Lapatki BG. Mechanical load exerted by PET-G aligners during mesial and distal derotation of a mandibular canine : an in vitro study. J Orofac Orthop. 2017;78(5):361–70.CrossRef Elkholy F, Mikhaiel B, Schmidt F, Lapatki BG. Mechanical load exerted by PET-G aligners during mesial and distal derotation of a mandibular canine : an in vitro study. J Orofac Orthop. 2017;78(5):361–70.CrossRef
2.
go back to reference Elkholy F, Schmidt F, Jager R, Lapatki BG. Forces and moments applied during derotation of a maxillary central incisor with thinner aligners: an in-vitro study. Am J Orthod Dentofacial Orthop. 2017;151(2):407–15.CrossRef Elkholy F, Schmidt F, Jager R, Lapatki BG. Forces and moments applied during derotation of a maxillary central incisor with thinner aligners: an in-vitro study. Am J Orthod Dentofacial Orthop. 2017;151(2):407–15.CrossRef
3.
go back to reference Nakago-Matsuo C, Matsuo T, Nakago T. Intracellular calcium response to hydraulic pressure in human periodontal ligament fibroblasts. Am J Orthod Dentofacial Orthop. 1996;109(3):244–8.CrossRef Nakago-Matsuo C, Matsuo T, Nakago T. Intracellular calcium response to hydraulic pressure in human periodontal ligament fibroblasts. Am J Orthod Dentofacial Orthop. 1996;109(3):244–8.CrossRef
4.
go back to reference Chen J, Li W, Swain MV, Ali Darendeliler M, Li Q. A periodontal ligament driven remodeling algorithm for orthodontic tooth movement. J Biomech. 2014;47(7):1689–95.CrossRef Chen J, Li W, Swain MV, Ali Darendeliler M, Li Q. A periodontal ligament driven remodeling algorithm for orthodontic tooth movement. J Biomech. 2014;47(7):1689–95.CrossRef
5.
go back to reference Liao Z, Chen J, Li W, Darendeliler MA, Swain M, Li Q. Biomechanical investigation into the role of the periodontal ligament in optimising orthodontic force: a finite element case study. Arch Oral Biol. 2016;66:98–107.CrossRef Liao Z, Chen J, Li W, Darendeliler MA, Swain M, Li Q. Biomechanical investigation into the role of the periodontal ligament in optimising orthodontic force: a finite element case study. Arch Oral Biol. 2016;66:98–107.CrossRef
6.
go back to reference Field C, Ichim I, Swain MV, Chan E, Darendeliler MA, Li W, et al. Mechanical responses to orthodontic loading: a 3-dimensional finite element multi-tooth model. Am J Orthod Dentofacial Orthop. 2009;135(2):174–81.CrossRef Field C, Ichim I, Swain MV, Chan E, Darendeliler MA, Li W, et al. Mechanical responses to orthodontic loading: a 3-dimensional finite element multi-tooth model. Am J Orthod Dentofacial Orthop. 2009;135(2):174–81.CrossRef
7.
go back to reference Elkholy F, Panchaphongsaphak T, Kilic F, Schmidt F, Lapatki BG. Forces and moments delivered by PET-G aligners to an upper central incisor for labial and palatal translation. J Orofac Orthop. 2015;76(6):460–75.CrossRef Elkholy F, Panchaphongsaphak T, Kilic F, Schmidt F, Lapatki BG. Forces and moments delivered by PET-G aligners to an upper central incisor for labial and palatal translation. J Orofac Orthop. 2015;76(6):460–75.CrossRef
8.
go back to reference Kwon JS, Lee YK, Lim BS, Lim YK. Force delivery properties of thermoplastic orthodontic materials. Am J Orthod Dentofacial Orthop. 2008;133(2):228–34 (quiz 328 e1).CrossRef Kwon JS, Lee YK, Lim BS, Lim YK. Force delivery properties of thermoplastic orthodontic materials. Am J Orthod Dentofacial Orthop. 2008;133(2):228–34 (quiz 328 e1).CrossRef
9.
go back to reference Chisari JR, McGorray SP, Nair M, Wheeler TT. Variables affecting orthodontic tooth movement with clear aligners. Am J Orthod Dentofacial Orthop. 2014;145(4 Suppl):S82–91.CrossRef Chisari JR, McGorray SP, Nair M, Wheeler TT. Variables affecting orthodontic tooth movement with clear aligners. Am J Orthod Dentofacial Orthop. 2014;145(4 Suppl):S82–91.CrossRef
10.
go back to reference Rossini G, Parrini S, Castroflorio T, Deregibus A, Debernardi CL. Efficacy of clear aligners in controlling orthodontic tooth movement: a systematic review. Angle Orthod. 2015;85(5):881–9.CrossRef Rossini G, Parrini S, Castroflorio T, Deregibus A, Debernardi CL. Efficacy of clear aligners in controlling orthodontic tooth movement: a systematic review. Angle Orthod. 2015;85(5):881–9.CrossRef
11.
go back to reference Lombardo L, Stefanoni F, Mollica F, Laura A, Scuzzo G, Siciliani G. Three-dimensional finite-element analysis of a central lower incisor under labial and lingual loads. Prog Orthod. 2012;13(2):154–63.CrossRef Lombardo L, Stefanoni F, Mollica F, Laura A, Scuzzo G, Siciliani G. Three-dimensional finite-element analysis of a central lower incisor under labial and lingual loads. Prog Orthod. 2012;13(2):154–63.CrossRef
12.
go back to reference Barone S, Paoli A, Razionale AV, Savignano R. Computational design and engineering of polymeric orthodontic aligners. Int J Numer Method Biomed Eng. 2017;33(8): e2839.CrossRef Barone S, Paoli A, Razionale AV, Savignano R. Computational design and engineering of polymeric orthodontic aligners. Int J Numer Method Biomed Eng. 2017;33(8): e2839.CrossRef
13.
go back to reference Gomez JP, Pena FM, Martinez V, Giraldo DC, Cardona CI. Initial force systems during bodily tooth movement with plastic aligners and composite attachments: a three-dimensional finite element analysis. Angle Orthod. 2015;85(3):454–60.CrossRef Gomez JP, Pena FM, Martinez V, Giraldo DC, Cardona CI. Initial force systems during bodily tooth movement with plastic aligners and composite attachments: a three-dimensional finite element analysis. Angle Orthod. 2015;85(3):454–60.CrossRef
14.
go back to reference Yokoi Y, Arai A, Kawamura J, Uozumi T, Usui Y, Okafuji N. Effects of Attachment of plastic aligner in closing of diastema of maxillary dentition by finite element method. J Healthcare Eng. 2019;2019:1075097.CrossRef Yokoi Y, Arai A, Kawamura J, Uozumi T, Usui Y, Okafuji N. Effects of Attachment of plastic aligner in closing of diastema of maxillary dentition by finite element method. J Healthcare Eng. 2019;2019:1075097.CrossRef
15.
go back to reference Lombardo L, Martines E, Mazzanti V, Arreghini A, Mollica F, Siciliani G. Stress relaxation properties of four orthodontic aligner materials: a 24-hour in vitro study. Angle Orthod. 2017;87(1):11–8.CrossRef Lombardo L, Martines E, Mazzanti V, Arreghini A, Mollica F, Siciliani G. Stress relaxation properties of four orthodontic aligner materials: a 24-hour in vitro study. Angle Orthod. 2017;87(1):11–8.CrossRef
16.
go back to reference Cattaneo PM, Dalstra M, Melsen B. The finite element method: a tool to study orthodontic tooth movement. J Dent Res. 2005;84(5):428–33.CrossRef Cattaneo PM, Dalstra M, Melsen B. The finite element method: a tool to study orthodontic tooth movement. J Dent Res. 2005;84(5):428–33.CrossRef
17.
go back to reference Hohmann A, Wolfram U, Geiger M, Boryor A, Kober C, Sander C, et al. Correspondences of hydrostatic pressure in periodontal ligament with regions of root resorption: a clinical and a finite element study of the same human teeth. Comput Methods Program Biomed. 2009;93(2):155–61.CrossRef Hohmann A, Wolfram U, Geiger M, Boryor A, Kober C, Sander C, et al. Correspondences of hydrostatic pressure in periodontal ligament with regions of root resorption: a clinical and a finite element study of the same human teeth. Comput Methods Program Biomed. 2009;93(2):155–61.CrossRef
18.
go back to reference Dorow C, Sander FG. Development of a model for the simulation of orthodontic load on lower first premolars using the finite element method. J Orofac Orthop. 2005;66(3):208–18.CrossRef Dorow C, Sander FG. Development of a model for the simulation of orthodontic load on lower first premolars using the finite element method. J Orofac Orthop. 2005;66(3):208–18.CrossRef
19.
go back to reference Choy K, Pae EK, Park Y, Kim KH, Burstone CJ. Effect of root and bone morphology on the stress distribution in the periodontal ligament. Am J Orthod Dentofacial Orthop. 2000;117(1):98–105.CrossRef Choy K, Pae EK, Park Y, Kim KH, Burstone CJ. Effect of root and bone morphology on the stress distribution in the periodontal ligament. Am J Orthod Dentofacial Orthop. 2000;117(1):98–105.CrossRef
20.
go back to reference Sarrafpour B, Swain M, Li Q, Zoellner H. Tooth eruption results from bone remodelling driven by bite forces sensed by soft tissue dental follicles: a finite element analysis. PLoS One. 2013;8(3): e58803.CrossRef Sarrafpour B, Swain M, Li Q, Zoellner H. Tooth eruption results from bone remodelling driven by bite forces sensed by soft tissue dental follicles: a finite element analysis. PLoS One. 2013;8(3): e58803.CrossRef
21.
go back to reference Qian Y, Fan Y, Liu Z, Zhang M. Numerical simulation of tooth movement in a therapy period. Clin Biomech (Bristol, Avon). 2008;23(Suppl 1):S48–52.CrossRef Qian Y, Fan Y, Liu Z, Zhang M. Numerical simulation of tooth movement in a therapy period. Clin Biomech (Bristol, Avon). 2008;23(Suppl 1):S48–52.CrossRef
22.
go back to reference Bourauel C, Vollmer D, Jager A. Application of bone remodeling theories in the simulation of orthodontic tooth movements. J Orofac Orthop. 2000;61(4):266–79.CrossRef Bourauel C, Vollmer D, Jager A. Application of bone remodeling theories in the simulation of orthodontic tooth movements. J Orofac Orthop. 2000;61(4):266–79.CrossRef
23.
go back to reference Align Technology, Inc. The Invisalign reference guide. Santa Clara, CA, 2002. Align Technology, Inc. The Invisalign reference guide. Santa Clara, CA, 2002.
24.
go back to reference Simon M, Keilig L, Schwarze J, Jung BA, Bourauel C. Treatment outcome and efficacy of an aligner technique–regarding incisor torque, premolar derotation and molar distalization. BMC Oral Health. 2014;14:68.CrossRef Simon M, Keilig L, Schwarze J, Jung BA, Bourauel C. Treatment outcome and efficacy of an aligner technique–regarding incisor torque, premolar derotation and molar distalization. BMC Oral Health. 2014;14:68.CrossRef
25.
go back to reference Barbagallo LJ, Shen G, Jones AS, Swain MV, Petocz P, Darendeliler MA. A novel pressure film approach for determining the force imparted by clear removable thermoplastic appliances. Ann Biomed Eng. 2008;36(2):335–41.CrossRef Barbagallo LJ, Shen G, Jones AS, Swain MV, Petocz P, Darendeliler MA. A novel pressure film approach for determining the force imparted by clear removable thermoplastic appliances. Ann Biomed Eng. 2008;36(2):335–41.CrossRef
26.
go back to reference Kohda N, Iijima M, Muguruma T, Brantley WA, Ahluwalia KS, Mizoguchi I. Effects of mechanical properties of thermoplastic materials on the initial force of thermoplastic appliances. Angle Orthod. 2013;83(3):476–83.CrossRef Kohda N, Iijima M, Muguruma T, Brantley WA, Ahluwalia KS, Mizoguchi I. Effects of mechanical properties of thermoplastic materials on the initial force of thermoplastic appliances. Angle Orthod. 2013;83(3):476–83.CrossRef
27.
go back to reference Gerard Bradley T, Teske L, Eliades G, Zinelis S, Eliades T. Do the mechanical and chemical properties of InvisalignTM appliances change after use? A retrieval analysis. Eur J Orthod. 2016;38(1):27–31.CrossRef Gerard Bradley T, Teske L, Eliades G, Zinelis S, Eliades T. Do the mechanical and chemical properties of InvisalignTM appliances change after use? A retrieval analysis. Eur J Orthod. 2016;38(1):27–31.CrossRef
28.
go back to reference Mencattelli M, Donati E, Cultrone M, Stefanini C. Novel universal system for 3-dimensional orthodontic force-moment measurements and its clinical use. Am J Orthod Dentofacial Orthop. 2015;148(1):174–83.CrossRef Mencattelli M, Donati E, Cultrone M, Stefanini C. Novel universal system for 3-dimensional orthodontic force-moment measurements and its clinical use. Am J Orthod Dentofacial Orthop. 2015;148(1):174–83.CrossRef
29.
go back to reference Xia Z, Chen J. Biomechanical validation of an artificial tooth-periodontal ligament-bone complex for in vitro orthodontic load measurement. Angle Orthod. 2013;83(3):410–7.CrossRef Xia Z, Chen J. Biomechanical validation of an artificial tooth-periodontal ligament-bone complex for in vitro orthodontic load measurement. Angle Orthod. 2013;83(3):410–7.CrossRef
30.
go back to reference Middleton J, Jones M, Wilson A. The role of the periodontal ligament in bone modeling: the initial development of a time-dependent finite element model. Am J Orthod Dentofacial Orthop. 1996;109(2):155–62.CrossRef Middleton J, Jones M, Wilson A. The role of the periodontal ligament in bone modeling: the initial development of a time-dependent finite element model. Am J Orthod Dentofacial Orthop. 1996;109(2):155–62.CrossRef
31.
go back to reference van Driel WD, van Leeuwen EJ, Von den Hoff JW, Maltha JC, Kuijpers-Jagtman AM. Time-dependent mechanical behaviour of the periodontal ligament. Proc Inst Mech Eng H. 2000;214(5):497–504.CrossRef van Driel WD, van Leeuwen EJ, Von den Hoff JW, Maltha JC, Kuijpers-Jagtman AM. Time-dependent mechanical behaviour of the periodontal ligament. Proc Inst Mech Eng H. 2000;214(5):497–504.CrossRef
Metadata
Title
The optimal activation of plastic aligner for canine distal movement: a three-dimensional finite element analysis
Authors
Ruohan Li
Wenting She
Yu Luo
Juan Wang
Youjian Peng
Qingsong Ye
Publication date
01-04-2022
Publisher
Springer Singapore
Published in
Odontology / Issue 2/2022
Print ISSN: 1618-1247
Electronic ISSN: 1618-1255
DOI
https://doi.org/10.1007/s10266-021-00663-8

Other articles of this Issue 2/2022

Odontology 2/2022 Go to the issue