Skip to main content
Top
Published in: Journal of the Association for Research in Otolaryngology 6/2022

Open Access 01-09-2022 | Research Article

Computer Simulation of the Electrical Stimulation of the Human Vestibular System: Effects of the Reactive Component of Impedance on Voltage Waveform and Nerve Selectivity

Authors: Simone D’Alessandro, Michael Handler, Rami Saba, Carolyn Garnham, Daniel Baumgarten

Published in: Journal of the Association for Research in Otolaryngology | Issue 6/2022

Login to get access

Abstract

The vestibular system is responsible for our sense of balance and spatial orientation. Recent studies have shown the possibility of partially restoring the function of this system using vestibular implants. Electrical modeling is a valuable tool in assisting the development of these implants by analyzing stimulation effects. However, previous modeling approaches of the vestibular system assumed quasi-static conditions. In this work, an extended modeling approach is presented that considers the reactive component of impedance and the electrode-tissue interface and their effects are investigated in a 3D human vestibular computer model. The Fourier finite element method was employed considering the frequency-dependent electrical properties of the different tissues. The electrode-tissue interface was integrated by an instrumental electrode model. A neuron model of myelinated fibers was employed to predict the nerve responses to the electrical stimulus. Morphological changes of the predicted voltage waveforms considering the dielectric tissue properties were found compared to quasi-static simulations, particularly during monopolar electrode configuration. Introducing the polarization capacitance and the scar tissue around the electrode in combination with a power limitation leads to a considerable current reduction applied through the active electrode and, consequently, to reduced voltage amplitudes of the stimulus waveforms. The reactive component of impedance resulted in better selectivity for the excitation of target nerves compared to the quasi-static simulation at the expense of slightly increased stimulus current amplitudes. We conclude that tissue permittivity and effects of the electrode-tissue interface should be considered to improve the accuracy of the simulations.
Appendix
Available only for authorised users
Literature
2.
go back to reference Nguyen T, DiGiovanna J, Cavuscens S, Ranieri M, Guinand N, Van De Berg R, Carpaneto J, Kingma H, Guyot JP, Micera S, Perez Fornos A (2016) Characterization of pulse amplitude and pulse rate modulation for a human vestibular implant during acute electrical stimulation. J Neural Eng 13(4):046023. https://doi.org/10.1088/1741-2560/13/4/046023 Nguyen T, DiGiovanna J, Cavuscens S, Ranieri M, Guinand N, Van De Berg R, Carpaneto J, Kingma H, Guyot JP, Micera S, Perez Fornos A (2016) Characterization of pulse amplitude and pulse rate modulation for a human vestibular implant during acute electrical stimulation. J Neural Eng 13(4):046023. https://​doi.​org/​10.​1088/​1741-2560/​13/​4/​046023
9.
go back to reference Rubinstein JT, Bierer S, Kaneko C, Ling L, Nie K, Oxford T, Newlands S, Santos F, Risi F, Abbas PJ et al (2012) Implantation of the semicircular canals with preservation of hearing and rotational sensitivity: a vestibular neurostimulator suitable for clinical research. Otology & neurotology: official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology 33(5):789. https://doi.org/10.1097/MAO.0b013e318254ec24 Rubinstein JT, Bierer S, Kaneko C, Ling L, Nie K, Oxford T, Newlands S, Santos F, Risi F, Abbas PJ et al (2012) Implantation of the semicircular canals with preservation of hearing and rotational sensitivity: a vestibular neurostimulator suitable for clinical research. Otology & neurotology: official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology 33(5):789. https://​doi.​org/​10.​1097/​MAO.​0b013e318254ec24​
12.
go back to reference Hayden R, Sawyer S, Frey E, Mori S, Migliaccio AA, Della Santina CC (2011) Virtual labyrinth model of vestibular afferent excitation via implanted electrodes: validation and application to design of a multichannel vestibular prosthesis. Exp Brain Res 210(3–4):623–640. https://doi.org/10.1007/s00221-011-2599-xCrossRef Hayden R, Sawyer S, Frey E, Mori S, Migliaccio AA, Della Santina CC (2011) Virtual labyrinth model of vestibular afferent excitation via implanted electrodes: validation and application to design of a multichannel vestibular prosthesis. Exp Brain Res 210(3–4):623–640. https://​doi.​org/​10.​1007/​s00221-011-2599-xCrossRef
15.
go back to reference Handler M, Schier PP, Fritscher KD, Raudaschl P, Johnson Chacko L, Glueckert R, Saba R, Schubert R, Baumgarten D, Baumgartner C (2017) Model-based vestibular afferent stimulation: Modular workflow for analyzing stimulation scenarios in patient specific and statistical vestibular anatomy. Front Neurosci 11:713. https://doi.org/10.3389/fnins.2017.00713CrossRef Handler M, Schier PP, Fritscher KD, Raudaschl P, Johnson Chacko L, Glueckert R, Saba R, Schubert R, Baumgarten D, Baumgartner C (2017) Model-based vestibular afferent stimulation: Modular workflow for analyzing stimulation scenarios in patient specific and statistical vestibular anatomy. Front Neurosci 11:713. https://​doi.​org/​10.​3389/​fnins.​2017.​00713CrossRef
16.
go back to reference Schier P, Handler M, Chacko LJ, Schrott-Fischer A, Fritscher K, Saba R, Baumgartner C, Baumgarten D (2018) Model-based vestibular afferent stimulation: Evaluating selective electrode locations and stimulation waveform shapes. Front Neurosci 12. https://doi.org/10.3389/fnins.2018.00588 Schier P, Handler M, Chacko LJ, Schrott-Fischer A, Fritscher K, Saba R, Baumgartner C, Baumgarten D (2018) Model-based vestibular afferent stimulation: Evaluating selective electrode locations and stimulation waveform shapes. Front Neurosci 12. https://​doi.​org/​10.​3389/​fnins.​2018.​00588
17.
go back to reference Spelman FA, Clopton BM, Pfingst BE (1982) Tissue impedance and current flow in the implanted ear. implications for the cochlear prosthesis. Ann Otol Rhinol Laryngol Supplement 98:3 Spelman FA, Clopton BM, Pfingst BE (1982) Tissue impedance and current flow in the implanted ear. implications for the cochlear prosthesis. Ann Otol Rhinol Laryngol Supplement 98:3
18.
go back to reference Inguva C, Wong P, Sue A, McEwan A, Carter P (2015) Frequency-dependent simulation of volume conduction in a linear model of the implanted cochlea. In: 2015 7th International IEEE/EMBS Conference on Neural Engineering (NER), IEEE, pp 426–429 Inguva C, Wong P, Sue A, McEwan A, Carter P (2015) Frequency-dependent simulation of volume conduction in a linear model of the implanted cochlea. In: 2015 7th International IEEE/EMBS Conference on Neural Engineering (NER), IEEE, pp 426–429
23.
go back to reference Pleshkov M, D’Alessandro S, Svetlik MV, Starkov DN, Zaytsev VA, Handler M, Baumgarten D, Saba R, van de Berg R, Demkin VP, Kingma H (2022) Fitting the determined impedance in the guinea pig inner ear to randles circuit using square error minimization in the range of 100 hz to 50 khz. Biomed Phys Eng Express 8(2):025005 Pleshkov M, D’Alessandro S, Svetlik MV, Starkov DN, Zaytsev VA, Handler M, Baumgarten D, Saba R, van de Berg R, Demkin VP, Kingma H (2022) Fitting the determined impedance in the guinea pig inner ear to randles circuit using square error minimization in the range of 100 hz to 50 khz. Biomed Phys Eng Express 8(2):025005
28.
go back to reference Finley CC, Wilson BS, White MW (1990) Models of neural responsiveness to electrical stimulation. In: Cochlear implants, Springer, pp 55–96 Finley CC, Wilson BS, White MW (1990) Models of neural responsiveness to electrical stimulation. In: Cochlear implants, Springer, pp 55–96
29.
go back to reference Saba R (2012) Cochlear implant modelling: stimulation and power consumption. PhD thesis, University of Southampton Saba R (2012) Cochlear implant modelling: stimulation and power consumption. PhD thesis, University of Southampton
31.
go back to reference Raspopovic S, Capogrosso M, Micera S (2011) A computational model for the stimulation of rat sciatic nerve using a transverse intrafascicular multichannel electrode. IEEE Trans Neural Syst Rehabil Eng 19(4):333–344CrossRef Raspopovic S, Capogrosso M, Micera S (2011) A computational model for the stimulation of rat sciatic nerve using a transverse intrafascicular multichannel electrode. IEEE Trans Neural Syst Rehabil Eng 19(4):333–344CrossRef
32.
go back to reference Schiefer MA, Polasek KH, Triolo RJ, Pinault G, Tyler DJ (2010) Selective stimulation of the human femoral nerve with a flat interface nerve electrode. J Neural Eng 7(2):026006 Schiefer MA, Polasek KH, Triolo RJ, Pinault G, Tyler DJ (2010) Selective stimulation of the human femoral nerve with a flat interface nerve electrode. J Neural Eng 7(2):026006
37.
go back to reference Amestoy P, Duff IS, Koster J, L’Excellent JY (2001) A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J Matrix Anal Appl 23(1):15–41CrossRef Amestoy P, Duff IS, Koster J, L’Excellent JY (2001) A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J Matrix Anal Appl 23(1):15–41CrossRef
38.
go back to reference Saoji AA, Adkins WJ, Olund AP, Nelson-Bakkum ER, Koka K (2021) Effect of exceeding compliance voltage on speech perception in cochlear implants. Hear Res 400:108112 Saoji AA, Adkins WJ, Olund AP, Nelson-Bakkum ER, Koka K (2021) Effect of exceeding compliance voltage on speech perception in cochlear implants. Hear Res 400:108112
40.
go back to reference Nguyen T, Cavuscens S, Ranieri M, Schwarz K, Guinand N, Van De Berg R, Van Den Boogert T, Lucieer F, Van Hoof M, Guyot JP, Kingma H, Micera S, Perez Fornos A (2017) Characterization of cochlear, vestibular and cochlear-vestibular electrically evoked compound action potentials in patients with a vestibulo-cochlear implant. Front Neurosci 11:645. https://doi.org/10.3389/fnins.2017.00645CrossRef Nguyen T, Cavuscens S, Ranieri M, Schwarz K, Guinand N, Van De Berg R, Van Den Boogert T, Lucieer F, Van Hoof M, Guyot JP, Kingma H, Micera S, Perez Fornos A (2017) Characterization of cochlear, vestibular and cochlear-vestibular electrically evoked compound action potentials in patients with a vestibulo-cochlear implant. Front Neurosci 11:645. https://​doi.​org/​10.​3389/​fnins.​2017.​00645CrossRef
41.
go back to reference Iacono MI, Neufeld E, Akinnagbe E, Bower K, Wolf J, Vogiatzis Oikonomidis I, Sharma D, Lloyd B, Wilm BJ, Wyss M et al (2015) Mida: a multimodal imaging-based detailed anatomical model of the human head and neck. PloS one 10(4):e0124126 Iacono MI, Neufeld E, Akinnagbe E, Bower K, Wolf J, Vogiatzis Oikonomidis I, Sharma D, Lloyd B, Wilm BJ, Wyss M et al (2015) Mida: a multimodal imaging-based detailed anatomical model of the human head and neck. PloS one 10(4):e0124126
Metadata
Title
Computer Simulation of the Electrical Stimulation of the Human Vestibular System: Effects of the Reactive Component of Impedance on Voltage Waveform and Nerve Selectivity
Authors
Simone D’Alessandro
Michael Handler
Rami Saba
Carolyn Garnham
Daniel Baumgarten
Publication date
01-09-2022
Publisher
Springer US
Published in
Journal of the Association for Research in Otolaryngology / Issue 6/2022
Print ISSN: 1525-3961
Electronic ISSN: 1438-7573
DOI
https://doi.org/10.1007/s10162-022-00868-w

Other articles of this Issue 6/2022

Journal of the Association for Research in Otolaryngology 6/2022 Go to the issue