Skip to main content
Top
Published in: Lasers in Medical Science 1/2012

01-01-2012 | Review Article

Low-level laser therapy: a useful technique for enhancing the proliferation of various cultured cells

Authors: Khalid M. AlGhamdi, Ashok Kumar, Noura A. Moussa

Published in: Lasers in Medical Science | Issue 1/2012

Login to get access

Abstract

The aim of this work is to review the available literature on the details of low-level laser therapy (LLLT) use for the enhancement of the proliferation of various cultured cell lines including stem cells. A cell culture is one of the most useful techniques in science, particularly in the production of viral vaccines and hybrid cell lines. However, the growth rate of some of the much-needed mammalian cells is slow. LLLT can enhance the proliferation rate of various cell lines. Literature review from 1923 to 2010. By investigating the outcome of LLLT on cell cultures, many articles report that it produces higher rates of ATP, RNA, and DNA synthesis in stem cells and other cell lines. Thus, LLLT improves the proliferation of the cells without causing any cytotoxic effects. Mainly, helium neon and gallium-aluminum-arsenide (Ga-Al-As) lasers are used for LLLT on cultured cells. The results of LLLT also vary according to the applied energy density and wavelengths to which the target cells are subjected. This review suggests that an energy density value of 0.5 to 4.0 J/cm2 and a visible spectrum ranging from 600 to 700 nm of LLLT are very helpful in enhancing the proliferation rate of various cell lines. With the appropriate use of LLLT, the proliferation rate of cultured cells, including stem cells, can be increased, which would be very useful in tissue engineering and regenerative medicine.
Literature
1.
go back to reference Freshney RI (1994) Culture of Animal Cells: A Manual of Basic Technique, 3rd edn. Alan R Liss Inc, New York Freshney RI (1994) Culture of Animal Cells: A Manual of Basic Technique, 3rd edn. Alan R Liss Inc, New York
2.
go back to reference Paul J (1975) Cell and Tissue Culture, 5th edn. Churchill Livingstone, Edinburgh Paul J (1975) Cell and Tissue Culture, 5th edn. Churchill Livingstone, Edinburgh
3.
go back to reference Rothblat GH, Cristofalo VJ (1972) Growth. Academic Press, New York Rothblat GH, Cristofalo VJ (1972) Growth. Academic Press, New York
4.
go back to reference Mather J, Barnes D (1998) Animal Cell Culture Methods, Volume 57. Academic Press, San Diego Mather J, Barnes D (1998) Animal Cell Culture Methods, Volume 57. Academic Press, San Diego
5.
go back to reference Mester E, Mester AF, Mester A (1985) The biomedical effects of laser application. Lasers Surg Med 5:31–39PubMedCrossRef Mester E, Mester AF, Mester A (1985) The biomedical effects of laser application. Lasers Surg Med 5:31–39PubMedCrossRef
6.
go back to reference Gasparyan VC (2000) Method of determination of aortic valve parameters for its reconstruction with autopericardium: an experimental study. J Thorac Cardiovasc Surg 119:386–387PubMedCrossRef Gasparyan VC (2000) Method of determination of aortic valve parameters for its reconstruction with autopericardium: an experimental study. J Thorac Cardiovasc Surg 119:386–387PubMedCrossRef
7.
go back to reference Rochkind S, Rousso M, Nissan M, Villarreal M, Barr-Nea L, Rees DG (1989) Systemic effects of low-power laser irradiation on the peripheral and central nervous system, cutaneous wounds and burns. Lasers Surg Med 9:174–182PubMedCrossRef Rochkind S, Rousso M, Nissan M, Villarreal M, Barr-Nea L, Rees DG (1989) Systemic effects of low-power laser irradiation on the peripheral and central nervous system, cutaneous wounds and burns. Lasers Surg Med 9:174–182PubMedCrossRef
8.
go back to reference Kemmotsu O, Sato K, Furomido H, Harada K, Takigawa C, Kaseno S (1991) Efficacy of low reactive-level laser therapy for pain attenuation of postherpetic neuralgia. Laser Therapy 3:1–75 Kemmotsu O, Sato K, Furomido H, Harada K, Takigawa C, Kaseno S (1991) Efficacy of low reactive-level laser therapy for pain attenuation of postherpetic neuralgia. Laser Therapy 3:1–75
9.
go back to reference Lizarelli RFZ, Lamano-Carvalho TL, Brentegani LG (1999) Histometrical evaluation of the healing of the dental alveolus in rats after irradiation with a low-powered GaAlAs laser. SPIE 3593:49–55CrossRef Lizarelli RFZ, Lamano-Carvalho TL, Brentegani LG (1999) Histometrical evaluation of the healing of the dental alveolus in rats after irradiation with a low-powered GaAlAs laser. SPIE 3593:49–55CrossRef
10.
go back to reference Tuby H, Maltz L, Oron U (2007) Low-level laser irradiation (LLLI) promotes proliferation of mesenchymal and cardiac stem cells in culture. Lasers Surg Med 39:373–378PubMedCrossRef Tuby H, Maltz L, Oron U (2007) Low-level laser irradiation (LLLI) promotes proliferation of mesenchymal and cardiac stem cells in culture. Lasers Surg Med 39:373–378PubMedCrossRef
11.
go back to reference Kamali F, Bayat M, Torkaman G, Ebrahimi E, Salavati M (2007) The therapeutic effect of low-level laser on repair of osteochondral defects in rabbit knee. J Photochem Photobiol B 88:11–15PubMedCrossRef Kamali F, Bayat M, Torkaman G, Ebrahimi E, Salavati M (2007) The therapeutic effect of low-level laser on repair of osteochondral defects in rabbit knee. J Photochem Photobiol B 88:11–15PubMedCrossRef
12.
13.
go back to reference Ratkay-Traub I, Hopp B, Bor Z, Dux L, Becker DL, Krenacs T (2001) Regeneration of rabbit cornea following excimer laser photorefractive keratectomy: a study on gap junctions, epithelial junctions and epidermal growth factor receptor expression in correlation with cell proliferation. Exp Eye Res 73:291–302PubMedCrossRef Ratkay-Traub I, Hopp B, Bor Z, Dux L, Becker DL, Krenacs T (2001) Regeneration of rabbit cornea following excimer laser photorefractive keratectomy: a study on gap junctions, epithelial junctions and epidermal growth factor receptor expression in correlation with cell proliferation. Exp Eye Res 73:291–302PubMedCrossRef
14.
go back to reference Ohshiro T, Calderhead RG (1988) Low-level laser therapy: a practical introduction. Wiley, New York, pp 17, 28–30, 33, 34 Ohshiro T, Calderhead RG (1988) Low-level laser therapy: a practical introduction. Wiley, New York, pp 17, 28–30, 33, 34
15.
go back to reference Huang YY, Chen ACH, Carroll JD, Hamblin MR (2009) Biphasic dose response in low-level light therapy. Dose Response 7:358–383PubMedCrossRef Huang YY, Chen ACH, Carroll JD, Hamblin MR (2009) Biphasic dose response in low-level light therapy. Dose Response 7:358–383PubMedCrossRef
16.
go back to reference Bolten P, Young S, Dyson M (1995) The direct effect of 860 nm light on cell proliferation and on succinic dehydrogenase activity of human fibroblasts in vitro. Laser Ther 7:55–60CrossRef Bolten P, Young S, Dyson M (1995) The direct effect of 860 nm light on cell proliferation and on succinic dehydrogenase activity of human fibroblasts in vitro. Laser Ther 7:55–60CrossRef
17.
go back to reference Byrnes KR, Wu X, Waynant RW, Ilev IK, Anders JJ (2005) Low-power laser irradiation alters gene expression of olfactory ensheathing cells in vitro. Lasers Surg Med 37:161–171PubMedCrossRef Byrnes KR, Wu X, Waynant RW, Ilev IK, Anders JJ (2005) Low-power laser irradiation alters gene expression of olfactory ensheathing cells in vitro. Lasers Surg Med 37:161–171PubMedCrossRef
18.
go back to reference Kushibiki T, Awazu K (2009) Blue laser irradiation enhances extracellular calcification of primary mesenchymal stem cells. Photomed Laser Surg 27:493–498PubMedCrossRef Kushibiki T, Awazu K (2009) Blue laser irradiation enhances extracellular calcification of primary mesenchymal stem cells. Photomed Laser Surg 27:493–498PubMedCrossRef
19.
go back to reference Hrnjak M, Kuljic-Kapulica N, Budisin A, Giser A (1995) Stimulatory effect of low-power density He-Ne laser radiation on human fibroblasts in vitro. Vojnosanit Pregl 52:539–546PubMed Hrnjak M, Kuljic-Kapulica N, Budisin A, Giser A (1995) Stimulatory effect of low-power density He-Ne laser radiation on human fibroblasts in vitro. Vojnosanit Pregl 52:539–546PubMed
20.
go back to reference Boulton M, Marshall J (1986) He-Ne laser stimulation of human fibroblast proliferation and attachment in vitro. Lasers Life Sci 1:125–134 Boulton M, Marshall J (1986) He-Ne laser stimulation of human fibroblast proliferation and attachment in vitro. Lasers Life Sci 1:125–134
21.
go back to reference Quickenden T, Daniels L (1993) Attempted biostimulation of division in Saccharomyces cerevisiae using red coherent light. Photochem Photobiol 57:272–278PubMedCrossRef Quickenden T, Daniels L (1993) Attempted biostimulation of division in Saccharomyces cerevisiae using red coherent light. Photochem Photobiol 57:272–278PubMedCrossRef
22.
go back to reference Schneede P, Jelkmann W, Schramm U, Fricke H, Steinmetz M, Hofstetter A (1988) Effects of the helium-neon laser on rat kidney epithelial cells in culture. Lasers Med Sci 3:249–257CrossRef Schneede P, Jelkmann W, Schramm U, Fricke H, Steinmetz M, Hofstetter A (1988) Effects of the helium-neon laser on rat kidney epithelial cells in culture. Lasers Med Sci 3:249–257CrossRef
23.
go back to reference Pogrel MA (1991) Application of laser and cryosurgery in oral and maxillofacial surgery. Curr Opin Dentistry 1:263–270 Pogrel MA (1991) Application of laser and cryosurgery in oral and maxillofacial surgery. Curr Opin Dentistry 1:263–270
24.
go back to reference Yu HS, Chang KL, Yu CL, Chen JW, Chen GS (1996) Low-energy helium-neon laser irradiation stimulates interleukin-1 alpha and interleukin-8 release from cultured human keratinocytes. J Invest Dermatol 107:593–596PubMedCrossRef Yu HS, Chang KL, Yu CL, Chen JW, Chen GS (1996) Low-energy helium-neon laser irradiation stimulates interleukin-1 alpha and interleukin-8 release from cultured human keratinocytes. J Invest Dermatol 107:593–596PubMedCrossRef
25.
go back to reference Bibikova A, Oron U (1993) Promotion of muscle regeneration in the toad (Bufo viridis) gastrocnemius muscle by low-energy laser irradiation. Anat Rec 235:374–380PubMedCrossRef Bibikova A, Oron U (1993) Promotion of muscle regeneration in the toad (Bufo viridis) gastrocnemius muscle by low-energy laser irradiation. Anat Rec 235:374–380PubMedCrossRef
26.
go back to reference Conlan MJ, Rapley JW, Cobb CM (1996) Biostimulation of wound healing by low-energy laser irradiation. A review. J Clin Periodontol 23:492–496PubMedCrossRef Conlan MJ, Rapley JW, Cobb CM (1996) Biostimulation of wound healing by low-energy laser irradiation. A review. J Clin Periodontol 23:492–496PubMedCrossRef
27.
go back to reference Stadler I, Evans R, Kolb B et al (2000) In vitro effects of low-level laser irradiation at 660 nm on peripheral blood lymphocytes. Lasers Surg Med 27:255–261PubMedCrossRef Stadler I, Evans R, Kolb B et al (2000) In vitro effects of low-level laser irradiation at 660 nm on peripheral blood lymphocytes. Lasers Surg Med 27:255–261PubMedCrossRef
28.
go back to reference Shefer G, Partridge TA, Heslop L, Gross JG, Oron U, Halevy O (2002) Low-energy laser irradiation promotes the survival and cell cycle entry of skeletal muscle satellite cells. J Cell Sci 115:1461–1469PubMed Shefer G, Partridge TA, Heslop L, Gross JG, Oron U, Halevy O (2002) Low-energy laser irradiation promotes the survival and cell cycle entry of skeletal muscle satellite cells. J Cell Sci 115:1461–1469PubMed
29.
go back to reference Jia YL, Guo ZY (2004) Effect of low-power He-Ne laser irradiation on rabbit articular chondrocytes in vitro. Lasers Surg Med 34:323–328PubMedCrossRef Jia YL, Guo ZY (2004) Effect of low-power He-Ne laser irradiation on rabbit articular chondrocytes in vitro. Lasers Surg Med 34:323–328PubMedCrossRef
30.
go back to reference Stein A, Benayahu D, Maltz L, Oron U (2005) Low-level laser irradiation promotes proliferation and differentiation of human osteoblasts in vitro. Photomed Laser Surg 23:161–166PubMedCrossRef Stein A, Benayahu D, Maltz L, Oron U (2005) Low-level laser irradiation promotes proliferation and differentiation of human osteoblasts in vitro. Photomed Laser Surg 23:161–166PubMedCrossRef
31.
go back to reference Zhang L, Xing D, Gao X, Wu S (2009) Low-power laser irradiation promotes cell proliferation by activating PI3K/Akt pathway. J Cell Physiol 219:553–562PubMedCrossRef Zhang L, Xing D, Gao X, Wu S (2009) Low-power laser irradiation promotes cell proliferation by activating PI3K/Akt pathway. J Cell Physiol 219:553–562PubMedCrossRef
32.
go back to reference Karu T, Pyatibrat L, Kalendo G (1995) Irradiation with He-Ne laser increases ATP level in cells cultivated in vitro. J Photochem Photobiol B 27:219–223PubMedCrossRef Karu T, Pyatibrat L, Kalendo G (1995) Irradiation with He-Ne laser increases ATP level in cells cultivated in vitro. J Photochem Photobiol B 27:219–223PubMedCrossRef
33.
go back to reference Corr L, Burnstock G (1994) Analysis of P2-purinoceptor subtypes on the smooth muscle and endothelium of rabbit coronary artery. J Cardiovasc Pharmacol 23:709–715PubMedCrossRef Corr L, Burnstock G (1994) Analysis of P2-purinoceptor subtypes on the smooth muscle and endothelium of rabbit coronary artery. J Cardiovasc Pharmacol 23:709–715PubMedCrossRef
34.
go back to reference Kalthof B, Bechem M, Flocke K, Pott L, Schramm M (1996) Kinetics of ATP-induced Ca21 transients in cultured pig aortic smooth muscle cells depend on ATP concentration and stored Ca2+. J Physiol (Lond) 466:245–262 Kalthof B, Bechem M, Flocke K, Pott L, Schramm M (1996) Kinetics of ATP-induced Ca21 transients in cultured pig aortic smooth muscle cells depend on ATP concentration and stored Ca2+. J Physiol (Lond) 466:245–262
35.
go back to reference Kitajima S, Ozaki H, Karaki H (1994) Role of different subtypes of P2 purinoceptor on cytosolic Ca2+ levels in rat aortic smooth muscle. Eur J Pharmacol 266:263–267PubMedCrossRef Kitajima S, Ozaki H, Karaki H (1994) Role of different subtypes of P2 purinoceptor on cytosolic Ca2+ levels in rat aortic smooth muscle. Eur J Pharmacol 266:263–267PubMedCrossRef
36.
go back to reference Malam-Souley R, Seye C, Gadeau AP et al (1996) Nucleotide receptor P2u partially mediates ATP-induced cell cycle progression of aortic smooth muscle cells. J Cell Physiol 166:57–65PubMedCrossRef Malam-Souley R, Seye C, Gadeau AP et al (1996) Nucleotide receptor P2u partially mediates ATP-induced cell cycle progression of aortic smooth muscle cells. J Cell Physiol 166:57–65PubMedCrossRef
37.
go back to reference Wilden P, Agazie Y, Kaufman R, Halenda S (1998) ATP-stimulated smooth muscle cell proliferation requires independent ERK and PI3K signaling pathways. Am J Physiol Heart Circ Physiol 275:1209–1215 Wilden P, Agazie Y, Kaufman R, Halenda S (1998) ATP-stimulated smooth muscle cell proliferation requires independent ERK and PI3K signaling pathways. Am J Physiol Heart Circ Physiol 275:1209–1215
38.
go back to reference Shefer G, Barash I, Oron U, Halevy O (2003) Low-energy laser irradiation enhances de novo protein synthesis via its effects on translation-regulatory proteins in skeletal muscle myoblasts. Biochim Biophys Acta 1593:131–139PubMedCrossRef Shefer G, Barash I, Oron U, Halevy O (2003) Low-energy laser irradiation enhances de novo protein synthesis via its effects on translation-regulatory proteins in skeletal muscle myoblasts. Biochim Biophys Acta 1593:131–139PubMedCrossRef
40.
go back to reference Kohno M, Pouyssegur J (2006) Targeting the ERK signaling pathway in cancer therapy. Ann Med 38:200–211PubMedCrossRef Kohno M, Pouyssegur J (2006) Targeting the ERK signaling pathway in cancer therapy. Ann Med 38:200–211PubMedCrossRef
41.
go back to reference Ben-Dov N, Shefer G, Irintchev A, Wernig A, Oron U, Halevy O (1999) Low-energy laser irradiation affects satellite cell proliferation and differentiation in vitro. Biochim Biophys Acta 1448:372–380PubMedCrossRef Ben-Dov N, Shefer G, Irintchev A, Wernig A, Oron U, Halevy O (1999) Low-energy laser irradiation affects satellite cell proliferation and differentiation in vitro. Biochim Biophys Acta 1448:372–380PubMedCrossRef
42.
go back to reference Shefer G, Oron U, Irintchev A, Wernig A, Halevy O (2001) Skeletal muscle cell activation by low-energy laser irradiation: A role for the MAPK/ERK pathway. J Cell Physiol 187:73–80PubMedCrossRef Shefer G, Oron U, Irintchev A, Wernig A, Halevy O (2001) Skeletal muscle cell activation by low-energy laser irradiation: A role for the MAPK/ERK pathway. J Cell Physiol 187:73–80PubMedCrossRef
43.
go back to reference Gao X, Chen T, Xing D, Wang F, Pei Y, Wei X (2006) Single cell analysis of PKC activation during proliferation and apoptosis induced by laser irradiation. J Cell Physiol 206:441–448PubMedCrossRef Gao X, Chen T, Xing D, Wang F, Pei Y, Wei X (2006) Single cell analysis of PKC activation during proliferation and apoptosis induced by laser irradiation. J Cell Physiol 206:441–448PubMedCrossRef
44.
go back to reference Zhang J, Xing D, Gao X (2008) Low-power laser irradiation activates Src tyrosine kinase through reactive oxygen species-mediated signaling pathway. J Cell Physiol 217:518–528PubMedCrossRef Zhang J, Xing D, Gao X (2008) Low-power laser irradiation activates Src tyrosine kinase through reactive oxygen species-mediated signaling pathway. J Cell Physiol 217:518–528PubMedCrossRef
45.
go back to reference Kassenbrock CK, Hunter S, Garl P, Johnson GL, Anderson SM (2002) Inhibition of Src family kinases blocks epidermal growth factor (EGF)-induced activation of Akt, phosphorylation of c-Cbl, and ubiquitination of the EGF receptor. J Biol Chem 277:24967–24975PubMedCrossRef Kassenbrock CK, Hunter S, Garl P, Johnson GL, Anderson SM (2002) Inhibition of Src family kinases blocks epidermal growth factor (EGF)-induced activation of Akt, phosphorylation of c-Cbl, and ubiquitination of the EGF receptor. J Biol Chem 277:24967–24975PubMedCrossRef
46.
go back to reference Kawakami Y, Nishimoto H, Kitaura J et al (2004) Protein kinase C betaII regulates Akt phosphorylation on Ser-473 in a cell type- and stimulus-specific fashion. J Biol Chem 279:47720–47725PubMedCrossRef Kawakami Y, Nishimoto H, Kitaura J et al (2004) Protein kinase C betaII regulates Akt phosphorylation on Ser-473 in a cell type- and stimulus-specific fashion. J Biol Chem 279:47720–47725PubMedCrossRef
47.
go back to reference Partovian C, Simons M (2004) Regulation of protein kinase B/Akt activity and Ser473 phosphorylation by protein kinase C alpha in endothelial cells. Cell Signal 16:951–957PubMedCrossRef Partovian C, Simons M (2004) Regulation of protein kinase B/Akt activity and Ser473 phosphorylation by protein kinase C alpha in endothelial cells. Cell Signal 16:951–957PubMedCrossRef
48.
go back to reference Bentley JK, Newcomb DC, Goldsmith AM, Jia Y, Sajjan US, Hershenson MB (2007) Rhinovirus activates interleukin-8 expression via a Src/p110beta phosphatidylinositol 3-kinase/Akt pathway in human airway epithelial cells. J Virol 81:1186–1194PubMedCrossRef Bentley JK, Newcomb DC, Goldsmith AM, Jia Y, Sajjan US, Hershenson MB (2007) Rhinovirus activates interleukin-8 expression via a Src/p110beta phosphatidylinositol 3-kinase/Akt pathway in human airway epithelial cells. J Virol 81:1186–1194PubMedCrossRef
49.
go back to reference Karu T (1999) Primary and secondary mechanisms of action of visible to near-IR radiation on cells. J Photochem Photobiol B 49:1–17PubMedCrossRef Karu T (1999) Primary and secondary mechanisms of action of visible to near-IR radiation on cells. J Photochem Photobiol B 49:1–17PubMedCrossRef
50.
go back to reference Alexandratou E, Yova D, Handris P, Kletsas D, Loukas S (2002) Human fibroblast alterations induced by low-power laser irradiation at the single cell level using confocal microscopy. Photochem Photobiol Sci 1:547–552PubMedCrossRef Alexandratou E, Yova D, Handris P, Kletsas D, Loukas S (2002) Human fibroblast alterations induced by low-power laser irradiation at the single cell level using confocal microscopy. Photochem Photobiol Sci 1:547–552PubMedCrossRef
51.
go back to reference Jou MJ, Jou SB, Chen HM, Lin CH, Peng TI (2002) Critical role of mitochondrial reactive oxygen species formation in visible laser irradiation-induced apoptosis in rat brain astrocytes (RBA-1). J Biomed Sci 9:507–516PubMedCrossRef Jou MJ, Jou SB, Chen HM, Lin CH, Peng TI (2002) Critical role of mitochondrial reactive oxygen species formation in visible laser irradiation-induced apoptosis in rat brain astrocytes (RBA-1). J Biomed Sci 9:507–516PubMedCrossRef
52.
go back to reference Ushio-Fukai M, Alexander RW, Akers M, Yin Q, Fujio Y, Walsh K, Griendling KK (1999) Reactive oxygen species mediate the activation of Akt/protein kinase B by angiotensin II in vascular smooth muscle cells. J Biol Chem 274:22699–22704PubMedCrossRef Ushio-Fukai M, Alexander RW, Akers M, Yin Q, Fujio Y, Walsh K, Griendling KK (1999) Reactive oxygen species mediate the activation of Akt/protein kinase B by angiotensin II in vascular smooth muscle cells. J Biol Chem 274:22699–22704PubMedCrossRef
53.
go back to reference Wang X, McCullough KD, Franke TF, Holbrook NJ (2000) Epidermal growth factor receptor dependent Akt activation by oxidative stress enhances cell survival. J Biol Chem 275:14624–14631PubMedCrossRef Wang X, McCullough KD, Franke TF, Holbrook NJ (2000) Epidermal growth factor receptor dependent Akt activation by oxidative stress enhances cell survival. J Biol Chem 275:14624–14631PubMedCrossRef
54.
go back to reference Gao X, Xing D (2009) Molecular mechanisms of cell proliferation induced by low-power laser irradiation. J Biomedical Sci 16:4CrossRef Gao X, Xing D (2009) Molecular mechanisms of cell proliferation induced by low-power laser irradiation. J Biomedical Sci 16:4CrossRef
55.
go back to reference Xu X, Zhao X, Liu TCY, Pan H (2008) Low-intensity laser irradiation improves the mitochondrial dysfunction of C2C12 induced by electrical stimulation. Photomed Laser Surg 26:197–202PubMedCrossRef Xu X, Zhao X, Liu TCY, Pan H (2008) Low-intensity laser irradiation improves the mitochondrial dysfunction of C2C12 induced by electrical stimulation. Photomed Laser Surg 26:197–202PubMedCrossRef
56.
go back to reference Karu T (2003) Low-Power Laser Therapy. In: Vo-Dinh T (ed) Biomedical Photonics Handbook Volume 48. CRC Press, Boca Raton, pp 1–25 Karu T (2003) Low-Power Laser Therapy. In: Vo-Dinh T (ed) Biomedical Photonics Handbook Volume 48. CRC Press, Boca Raton, pp 1–25
57.
go back to reference Karu TI (2008) Mitochondrial signaling in mammalian cells activated by red and near-IR radiation. Photochem Photobiol 84:1091–1099PubMedCrossRef Karu TI (2008) Mitochondrial signaling in mammalian cells activated by red and near-IR radiation. Photochem Photobiol 84:1091–1099PubMedCrossRef
58.
go back to reference Cohen N, Lubart R, Rubinstein S, Breitbart H (1998) Light irradiation of mouse spermatozoa: stimulation of in vitro fertilization and calcium signals. Photochem Photobiol 68:407–413PubMedCrossRef Cohen N, Lubart R, Rubinstein S, Breitbart H (1998) Light irradiation of mouse spermatozoa: stimulation of in vitro fertilization and calcium signals. Photochem Photobiol 68:407–413PubMedCrossRef
59.
go back to reference Kokoska ER, Wolff AB, Smith GS, Miller TA (2000) Epidermal growth factor-induced cytoprotection in human intestinal cells involves intracellular calcium signaling. J Surg Res 88:97–103PubMedCrossRef Kokoska ER, Wolff AB, Smith GS, Miller TA (2000) Epidermal growth factor-induced cytoprotection in human intestinal cells involves intracellular calcium signaling. J Surg Res 88:97–103PubMedCrossRef
60.
go back to reference Duan R, Liu TCY, Li Y, Guo H, Yao LB (2001) Signal transduction pathways involved in low-intensity He-Ne laser-induced respiratory burst in bovine neutrophils: a potential mechanism of low-intensity laser biostimulation. Lasers Surg Med 29:174–178PubMedCrossRef Duan R, Liu TCY, Li Y, Guo H, Yao LB (2001) Signal transduction pathways involved in low-intensity He-Ne laser-induced respiratory burst in bovine neutrophils: a potential mechanism of low-intensity laser biostimulation. Lasers Surg Med 29:174–178PubMedCrossRef
61.
62.
go back to reference Lavi R, Shainberg A, Friedmann H et al (2003) Low-energy visible light induces reactive oxygen species generation and stimulates an increase of intracellular calcium concentration in cardiac cells. J Biol Chem 278:40917–40922PubMedCrossRef Lavi R, Shainberg A, Friedmann H et al (2003) Low-energy visible light induces reactive oxygen species generation and stimulates an increase of intracellular calcium concentration in cardiac cells. J Biol Chem 278:40917–40922PubMedCrossRef
63.
go back to reference Grossman N, Schneid N, Reuveni H, Halevy S, Lubart R (1998) 780-nm low-power diode laser irradiation stimulates proliferation of keratinocyte cultures: involvement of reactive oxygen species. Lasers Surg Med 22:212–218PubMedCrossRef Grossman N, Schneid N, Reuveni H, Halevy S, Lubart R (1998) 780-nm low-power diode laser irradiation stimulates proliferation of keratinocyte cultures: involvement of reactive oxygen species. Lasers Surg Med 22:212–218PubMedCrossRef
64.
go back to reference Nemoto S, Takeda K, Yu ZX, Ferrans VJ, Finkel T (2000) Role for mitochondrial oxidants as regulators of cellular metabolism. Mol Cell Biol 20:7311–7318PubMedCrossRef Nemoto S, Takeda K, Yu ZX, Ferrans VJ, Finkel T (2000) Role for mitochondrial oxidants as regulators of cellular metabolism. Mol Cell Biol 20:7311–7318PubMedCrossRef
65.
go back to reference Oren DA, Charney D, Lavie R, Sinyakov M, Lubart R (2001) Stimulation of reactive oxygen species production by an antidepressant visible light source. Biol Psychiatry 49:464–467PubMedCrossRef Oren DA, Charney D, Lavie R, Sinyakov M, Lubart R (2001) Stimulation of reactive oxygen species production by an antidepressant visible light source. Biol Psychiatry 49:464–467PubMedCrossRef
66.
go back to reference Sauer H, Wartenberg M, Hescheler J (2001) Reactive oxygen species as intracellular messengers during cell growth and differentiation. Cell Physiol Biochem 11:173–186PubMedCrossRef Sauer H, Wartenberg M, Hescheler J (2001) Reactive oxygen species as intracellular messengers during cell growth and differentiation. Cell Physiol Biochem 11:173–186PubMedCrossRef
67.
go back to reference Gavish L, Asher Y, Becker Y, Kleinman Y (2004) Low-level laser irradiation stimulates mitochondrial membrane potential and disperses subnuclear promyelocytic leukemia protein. Lasers Surg Med 35:369–376PubMedCrossRef Gavish L, Asher Y, Becker Y, Kleinman Y (2004) Low-level laser irradiation stimulates mitochondrial membrane potential and disperses subnuclear promyelocytic leukemia protein. Lasers Surg Med 35:369–376PubMedCrossRef
68.
go back to reference Hawkins D, Abrahamse H (2006) Effect of multiple exposures of low-level laser therapy on the cellular responses of wounded human skin fibroblasts. Photomed Laser Surg 24:705–714PubMedCrossRef Hawkins D, Abrahamse H (2006) Effect of multiple exposures of low-level laser therapy on the cellular responses of wounded human skin fibroblasts. Photomed Laser Surg 24:705–714PubMedCrossRef
69.
go back to reference Hu WP, Wang JJ, Yu CL, Lan CCE, Chen GS, Yu HS (2007) Helium-Neon laser irradiation stimulates cell proliferation through photostimulatory effects in mitochondria. J Investigat Dermatol 127:2048–2057CrossRef Hu WP, Wang JJ, Yu CL, Lan CCE, Chen GS, Yu HS (2007) Helium-Neon laser irradiation stimulates cell proliferation through photostimulatory effects in mitochondria. J Investigat Dermatol 127:2048–2057CrossRef
70.
go back to reference Karu TI (1998) Primary and secondary mechanisms of the action of monochromatic visible and near infrared radiation on cells. In: The science of low-power laser therapy. Gordon and Breach Science, Amsterdam Karu TI (1998) Primary and secondary mechanisms of the action of monochromatic visible and near infrared radiation on cells. In: The science of low-power laser therapy. Gordon and Breach Science, Amsterdam
71.
go back to reference Simunovic Z (2000) Lasers in Medicine and Dentistry. Rijeka, Vitagraf, Zagreb, Croatia Simunovic Z (2000) Lasers in Medicine and Dentistry. Rijeka, Vitagraf, Zagreb, Croatia
72.
go back to reference Ailioaie LM, Chiran DA, Ailioaie CC (2005) Biophysical and physiological mechanisms of low-energy lasers interactions with living cells and their implications in pain treatment. ANALELE ŞTIINŢIFICE ALE UNIVERSITĂŢII “AL. I. CUZA” IAŞI, Tomul I, s. Biofizică, Fizică medicală şi Fizica mediului Ailioaie LM, Chiran DA, Ailioaie CC (2005) Biophysical and physiological mechanisms of low-energy lasers interactions with living cells and their implications in pain treatment. ANALELE ŞTIINŢIFICE ALE UNIVERSITĂŢII “AL. I. CUZA” IAŞI, Tomul I, s. Biofizică, Fizică medicală şi Fizica mediului
73.
go back to reference Lam TS, Abergel RP, Meeker CA, Castel JC, Dwyer RM, Uitto J (1986) Laser stimulation of collagen synthesis in human skin fibroblast cultures. Lasers Life Sci 1:61–77 Lam TS, Abergel RP, Meeker CA, Castel JC, Dwyer RM, Uitto J (1986) Laser stimulation of collagen synthesis in human skin fibroblast cultures. Lasers Life Sci 1:61–77
74.
go back to reference Anders JJ, Borke RC, Woolery SK, Merwe WP (1993) Low-power laser irradiation alters the rate of regeneration of the rat facial nerve. Lasers Surg Med 13:72–82PubMedCrossRef Anders JJ, Borke RC, Woolery SK, Merwe WP (1993) Low-power laser irradiation alters the rate of regeneration of the rat facial nerve. Lasers Surg Med 13:72–82PubMedCrossRef
75.
go back to reference Ohshiro T, Fujino T (1993) Laser applications in plastic and reconstructive surgery. Keio J Med 42:191–195PubMedCrossRef Ohshiro T, Fujino T (1993) Laser applications in plastic and reconstructive surgery. Keio J Med 42:191–195PubMedCrossRef
76.
go back to reference Nanami T, Shiba H, Ikeuchi S, Nagai T, Asanami S, Shibata T (1993) Clinical applications and basic studies of laser in dentistry and oral surgery. Keio J Med 42:199–201PubMed Nanami T, Shiba H, Ikeuchi S, Nagai T, Asanami S, Shibata T (1993) Clinical applications and basic studies of laser in dentistry and oral surgery. Keio J Med 42:199–201PubMed
77.
go back to reference Luger EL, Rochkind S, Wollman Y, Kogan G, Dekel S (1998) Effect of low-power laser irradiation on the mechanical properties of bone fracture healing in rats. Lasers Surg Med 22:97–102PubMedCrossRef Luger EL, Rochkind S, Wollman Y, Kogan G, Dekel S (1998) Effect of low-power laser irradiation on the mechanical properties of bone fracture healing in rats. Lasers Surg Med 22:97–102PubMedCrossRef
78.
go back to reference Zeischegg DC (2003) Low-level laser therapy (LLLT) [On-line] Zeischegg DC (2003) Low-level laser therapy (LLLT) [On-line]
79.
go back to reference Hawkins D, Abrakamse H (2005) Biological effects of helium-neon laser irradiation on normal and wounded human skin fibroblasts. Photomed Laser Sur 23:251–259CrossRef Hawkins D, Abrakamse H (2005) Biological effects of helium-neon laser irradiation on normal and wounded human skin fibroblasts. Photomed Laser Sur 23:251–259CrossRef
81.
go back to reference Loevshall H, Renholt-Bindslev D (1994) Effect of low-level diode laser irradiation of human oral mucosa fibroblasts in vitro. Lasers Surg Med 14:347–354CrossRef Loevshall H, Renholt-Bindslev D (1994) Effect of low-level diode laser irradiation of human oral mucosa fibroblasts in vitro. Lasers Surg Med 14:347–354CrossRef
82.
83.
go back to reference Berglundh T, Lindhe J, Ericsson I, Marinello CP, Liljenberg B (1992) Soft tissue reactions to de novo plaque formation at implants and teeth: An experimental study in the dog. Clin Oral Implants Res 3:1–8PubMedCrossRef Berglundh T, Lindhe J, Ericsson I, Marinello CP, Liljenberg B (1992) Soft tissue reactions to de novo plaque formation at implants and teeth: An experimental study in the dog. Clin Oral Implants Res 3:1–8PubMedCrossRef
84.
go back to reference Lubart R, Wollman Y, Friedmann H, Rochkind S, Laulicht I (1992) Effects of visible and near-infrared lasers on cell cultures. J Photochem Photobiol B 12:305–310PubMedCrossRef Lubart R, Wollman Y, Friedmann H, Rochkind S, Laulicht I (1992) Effects of visible and near-infrared lasers on cell cultures. J Photochem Photobiol B 12:305–310PubMedCrossRef
85.
go back to reference Yu W, Naim JO, McGowan M, Ippolito K, Lanzafame RJ (1997) Photomodulation of oxidative metabolism and electron chain enzymes in rat liver mitochondria. Photochem Photobiol 66:866–871PubMedCrossRef Yu W, Naim JO, McGowan M, Ippolito K, Lanzafame RJ (1997) Photomodulation of oxidative metabolism and electron chain enzymes in rat liver mitochondria. Photochem Photobiol 66:866–871PubMedCrossRef
86.
go back to reference Takac S, Stojanovic S (1998) Diagnostic and biostimulating lasers. Med Preg 51:245–249 Takac S, Stojanovic S (1998) Diagnostic and biostimulating lasers. Med Preg 51:245–249
87.
go back to reference Pinheiro AL, Carneiro NS, Vieira AL et al (2002) Effects of low-level laser therapy on malignant cells: in vitro study. J Clin Laser Med Surg 20:23–26PubMedCrossRef Pinheiro AL, Carneiro NS, Vieira AL et al (2002) Effects of low-level laser therapy on malignant cells: in vitro study. J Clin Laser Med Surg 20:23–26PubMedCrossRef
88.
go back to reference Smith K (1991) Light and life: the photobiological basis of the therapeutic use of radiation from lasers. In: Progress in laser therapy: Selected papers from the October 1990 ILTA Congress. Wiley, New York Smith K (1991) Light and life: the photobiological basis of the therapeutic use of radiation from lasers. In: Progress in laser therapy: Selected papers from the October 1990 ILTA Congress. Wiley, New York
89.
go back to reference Schindl A, Schindl M, Pernerstorfer-Schon H, Schindl L (2000) Low-intensity laser therapy: a review. J Invest Med 48:312–326 Schindl A, Schindl M, Pernerstorfer-Schon H, Schindl L (2000) Low-intensity laser therapy: a review. J Invest Med 48:312–326
90.
go back to reference Wilden L, Karthein R (1998) Import of radiation phenomena of electrons and therapeutic low-level laser in regard to mitochondrial energy transfer. J Clin Laser Med Surg 16:159–165PubMed Wilden L, Karthein R (1998) Import of radiation phenomena of electrons and therapeutic low-level laser in regard to mitochondrial energy transfer. J Clin Laser Med Surg 16:159–165PubMed
91.
go back to reference Yu W, Naim JO, Lanzafame RJ (1994) The effect of laser irradiation on the release of bFGF from 3T3 fibroblasts. Photochem Photobiol 59(2):167–170PubMedCrossRef Yu W, Naim JO, Lanzafame RJ (1994) The effect of laser irradiation on the release of bFGF from 3T3 fibroblasts. Photochem Photobiol 59(2):167–170PubMedCrossRef
92.
go back to reference Pourreau-Schneider N, Ahmed A, Soudry A et al (1990) Helium-neon laser treatment transforms fibroblasts into myofibroblasts. Am J Pathol 137(1):171–178PubMed Pourreau-Schneider N, Ahmed A, Soudry A et al (1990) Helium-neon laser treatment transforms fibroblasts into myofibroblasts. Am J Pathol 137(1):171–178PubMed
93.
go back to reference Steinlechner C, Dysonm M (1993) The effects of low-level laser therapy on the proliferation of keratinocytes. Laser Ther 5:65–73 Steinlechner C, Dysonm M (1993) The effects of low-level laser therapy on the proliferation of keratinocytes. Laser Ther 5:65–73
94.
go back to reference Haas AF, Isseroff RR, Wheeland RG, Rood PA, Graves PJ (1990) Low-energy helium-neon laser irradiation increases the motility of cultured human keratinocytes. J Invest Dermatol 94(6):822–826PubMedCrossRef Haas AF, Isseroff RR, Wheeland RG, Rood PA, Graves PJ (1990) Low-energy helium-neon laser irradiation increases the motility of cultured human keratinocytes. J Invest Dermatol 94(6):822–826PubMedCrossRef
95.
go back to reference Young S, Bolton P, Dyson M, Harvey W, Diamantopoulos C (1989) Macrophage responsiveness to light therapy. Lasers Surg Med 9(5):497–505PubMedCrossRef Young S, Bolton P, Dyson M, Harvey W, Diamantopoulos C (1989) Macrophage responsiveness to light therapy. Lasers Surg Med 9(5):497–505PubMedCrossRef
96.
go back to reference Zheng H, Qin JZ, Xin H, Xin SY (1992) The activating actions of low-level helium neon laser radiation on macrophages in the mouse model. Laser Ther 4:55–59 Zheng H, Qin JZ, Xin H, Xin SY (1992) The activating actions of low-level helium neon laser radiation on macrophages in the mouse model. Laser Ther 4:55–59
97.
go back to reference Schindl A, Merwald H, Schindl L, Kaun C, Wojta J (2003) Direct stimulatory effect of low-intensity 670-nm laser irradiation on human endothelial cell proliferation. Br J Dermatol 148(2):334–336PubMedCrossRef Schindl A, Merwald H, Schindl L, Kaun C, Wojta J (2003) Direct stimulatory effect of low-intensity 670-nm laser irradiation on human endothelial cell proliferation. Br J Dermatol 148(2):334–336PubMedCrossRef
98.
go back to reference Moore P, Ridgway TD, Higbee RG, Howard EW, Lucroy MD (2005) Effect of wavelength on low-intensity laser irradiation-stimulated cell proliferation in vitro. Lasers Surg Med 36:8–12PubMedCrossRef Moore P, Ridgway TD, Higbee RG, Howard EW, Lucroy MD (2005) Effect of wavelength on low-intensity laser irradiation-stimulated cell proliferation in vitro. Lasers Surg Med 36:8–12PubMedCrossRef
99.
go back to reference Pogrel MA, Chen JW, Zhang K (1997) Effects of low-energy gallium-aluminum-arsenide laser irradiation on cultured fibroblasts and keratinocytes. Laser Surg Med 20(4):426–432CrossRef Pogrel MA, Chen JW, Zhang K (1997) Effects of low-energy gallium-aluminum-arsenide laser irradiation on cultured fibroblasts and keratinocytes. Laser Surg Med 20(4):426–432CrossRef
100.
go back to reference Almeida-Lopes L, Rigau J, Zângaro RA, Guiduli-Neto J, Jaeger MMM (2001) Comparison of the low-level therapy effects on cultured human gingival fibroblasts proliferation using different irradiance and same fluence. Lasers Surg Med 29:179–184PubMedCrossRef Almeida-Lopes L, Rigau J, Zângaro RA, Guiduli-Neto J, Jaeger MMM (2001) Comparison of the low-level therapy effects on cultured human gingival fibroblasts proliferation using different irradiance and same fluence. Lasers Surg Med 29:179–184PubMedCrossRef
101.
go back to reference Pereira AN, Eduardo CP, Matson E, Marques MM (2002) Effect of low-power laser irradiation on cell growth and procollagen synthesis of cultured fibroblasts. Lasers Surg Med 31:263–267PubMedCrossRef Pereira AN, Eduardo CP, Matson E, Marques MM (2002) Effect of low-power laser irradiation on cell growth and procollagen synthesis of cultured fibroblasts. Lasers Surg Med 31:263–267PubMedCrossRef
102.
go back to reference Kreisler M, Christoffers AB, Al-Haj H, Willershausen B, d’Hoedt B (2003) Low-level 809-nm diode laser-induced in vitro stimulation of the proliferation of human gingival fibroblasts. Lasers Surg Med 30:365–369CrossRef Kreisler M, Christoffers AB, Al-Haj H, Willershausen B, d’Hoedt B (2003) Low-level 809-nm diode laser-induced in vitro stimulation of the proliferation of human gingival fibroblasts. Lasers Surg Med 30:365–369CrossRef
103.
go back to reference Marques MM, Pereira AN, Fujihara NA, Nogueira FN, Eduardo CP (2004) Effect of low-power laser irradiation on protein synthesis and ultra structure of human gingival fibroblasts. Lasers Surg Med 34:260–265PubMedCrossRef Marques MM, Pereira AN, Fujihara NA, Nogueira FN, Eduardo CP (2004) Effect of low-power laser irradiation on protein synthesis and ultra structure of human gingival fibroblasts. Lasers Surg Med 34:260–265PubMedCrossRef
104.
go back to reference Karu TI (1991) Low-intensity laser light action upon fibroblasts and lymphocytes. In: Progress in laser therapy: Selected papers from the October 1990 ILTA Congress. Wiley, New York Karu TI (1991) Low-intensity laser light action upon fibroblasts and lymphocytes. In: Progress in laser therapy: Selected papers from the October 1990 ILTA Congress. Wiley, New York
105.
go back to reference Calabrese EJ (2001) The future of hormesis: where do we go from here? Crit Rev Toxicol 31:637–648PubMedCrossRef Calabrese EJ (2001) The future of hormesis: where do we go from here? Crit Rev Toxicol 31:637–648PubMedCrossRef
106.
go back to reference Stebbing AR (1982) Hormesis; the stimulation of growth by low-levels of inhibitors. Sci Tot Environ 22:213–234CrossRef Stebbing AR (1982) Hormesis; the stimulation of growth by low-levels of inhibitors. Sci Tot Environ 22:213–234CrossRef
107.
go back to reference Calabrese EJ (2005) Hormetic dose-response relationships in immunology: occurrence, quantitative features of the dose response, mechanistic foundations, and clinical implications. Crit Rev Toxicol 35:289–295 Calabrese EJ (2005) Hormetic dose-response relationships in immunology: occurrence, quantitative features of the dose response, mechanistic foundations, and clinical implications. Crit Rev Toxicol 35:289–295
108.
go back to reference Lanzafame RJ, Stadler I, Kurtz AF, Connelly R, Peter TA Sr, Brondon P, Olson D (2007) Reciprocity of exposure time and irradiance on energy density during photoradiation on wound healing in a murine pressure ulcer model. Lasers Surg Med 39:534–542PubMedCrossRef Lanzafame RJ, Stadler I, Kurtz AF, Connelly R, Peter TA Sr, Brondon P, Olson D (2007) Reciprocity of exposure time and irradiance on energy density during photoradiation on wound healing in a murine pressure ulcer model. Lasers Surg Med 39:534–542PubMedCrossRef
109.
go back to reference Oron U, Yaakobi T, Oron A, Hayam G, Gepstein L, Rubin O, Wolf T, Ben HS (2001) Attenuation of infarct size in rats and dogs after myocardial infarction by low-energy laser irradiation. Lasers Surg Med 28:204–211PubMedCrossRef Oron U, Yaakobi T, Oron A, Hayam G, Gepstein L, Rubin O, Wolf T, Ben HS (2001) Attenuation of infarct size in rats and dogs after myocardial infarction by low-energy laser irradiation. Lasers Surg Med 28:204–211PubMedCrossRef
110.
go back to reference Chow RT, Heller GZ, Barnsley L (2006) The effect of 300-mW, 830-nm laser on chronic neck pain: a double-blind, randomized, placebo-controlled study. Pain 124:201–210PubMedCrossRef Chow RT, Heller GZ, Barnsley L (2006) The effect of 300-mW, 830-nm laser on chronic neck pain: a double-blind, randomized, placebo-controlled study. Pain 124:201–210PubMedCrossRef
111.
go back to reference Lubart R, Lavi R, Friedmann H, Rochkind S (2006) Photochemistry and photobiology of light absorption by living cells. Photomed Laser Surg 24:179–185PubMedCrossRef Lubart R, Lavi R, Friedmann H, Rochkind S (2006) Photochemistry and photobiology of light absorption by living cells. Photomed Laser Surg 24:179–185PubMedCrossRef
112.
go back to reference Sommer AP, Pinheiro AL, Mester AR, Franke RP, Whelan HT (2001) Biostimulatory windows in low-intensity laser activation: lasers, scanners, and NASA's light-emitting diode array system. J Clin Laser Med Surg 19:29–33PubMedCrossRef Sommer AP, Pinheiro AL, Mester AR, Franke RP, Whelan HT (2001) Biostimulatory windows in low-intensity laser activation: lasers, scanners, and NASA's light-emitting diode array system. J Clin Laser Med Surg 19:29–33PubMedCrossRef
113.
go back to reference Martius F (1923) Das Amdt-Schulz Grandgesetz. Munch Med Wschr 70:1005–1006 Martius F (1923) Das Amdt-Schulz Grandgesetz. Munch Med Wschr 70:1005–1006
114.
go back to reference Koc ON, Day J, Nieder M, Gerson SL, Lazarus HM, Krivit W (2002) Allogeneic mesenchymal stem cell infusion for treatment of metachromatic leukodystrophy (MLD) and Hurler syndrome (MPS-IH). Bone Marrow Transp 30(4):215–222CrossRef Koc ON, Day J, Nieder M, Gerson SL, Lazarus HM, Krivit W (2002) Allogeneic mesenchymal stem cell infusion for treatment of metachromatic leukodystrophy (MLD) and Hurler syndrome (MPS-IH). Bone Marrow Transp 30(4):215–222CrossRef
115.
go back to reference Le Blanc K, Rasmusson I, Sundberg B et al (2004) Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 363(9419):1439–1441PubMedCrossRef Le Blanc K, Rasmusson I, Sundberg B et al (2004) Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 363(9419):1439–1441PubMedCrossRef
116.
go back to reference Schachinger V, Erbs S, Elsasser A et al (2006) Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Engl J Med 355(12):1210–1221PubMedCrossRef Schachinger V, Erbs S, Elsasser A et al (2006) Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Engl J Med 355(12):1210–1221PubMedCrossRef
117.
go back to reference Prockop DJ, Olson SD (2007) Clinical trials with adult stem/progenitor cells for tissue repair: Let’s not overlook some essential precautions. Blood 109(8):3147–3151PubMedCrossRef Prockop DJ, Olson SD (2007) Clinical trials with adult stem/progenitor cells for tissue repair: Let’s not overlook some essential precautions. Blood 109(8):3147–3151PubMedCrossRef
118.
go back to reference Caplan AI (2005) Review: Mesenchymal stem cells: Cell-based reconstructive therapy in orthopedics. Tissue Eng 11(7–8):1198–1211PubMedCrossRef Caplan AI (2005) Review: Mesenchymal stem cells: Cell-based reconstructive therapy in orthopedics. Tissue Eng 11(7–8):1198–1211PubMedCrossRef
119.
go back to reference Tang YL, Tang Y, Zhang YC, Qian K, Shen L, Phillips MI (2005) Improved graft mesenchymal stem cell survival in ischemic heart with a hypoxia-regulated heme oxygenase-1 vector. J Am Coll Cardiol 46(7):1339–1350PubMedCrossRef Tang YL, Tang Y, Zhang YC, Qian K, Shen L, Phillips MI (2005) Improved graft mesenchymal stem cell survival in ischemic heart with a hypoxia-regulated heme oxygenase-1 vector. J Am Coll Cardiol 46(7):1339–1350PubMedCrossRef
120.
go back to reference Yau TM, Kim C, Li G, Zhang Y, Weisel RD, Li RK (2005) Maximizing ventricular function with multimodal cell-based gene therapy. Circulation 112(9 Suppl):I123–I128PubMed Yau TM, Kim C, Li G, Zhang Y, Weisel RD, Li RK (2005) Maximizing ventricular function with multimodal cell-based gene therapy. Circulation 112(9 Suppl):I123–I128PubMed
121.
go back to reference Kutschka I, Kofidis T, Chen IY et al (2006) Adenoviral human BCL-2 transgene expression attenuates early donor cell death after cardiomyoblast transplantation into ischemic rat hearts. Circulation 114(1 Suppl):I174–I180PubMed Kutschka I, Kofidis T, Chen IY et al (2006) Adenoviral human BCL-2 transgene expression attenuates early donor cell death after cardiomyoblast transplantation into ischemic rat hearts. Circulation 114(1 Suppl):I174–I180PubMed
122.
go back to reference Hou JF, Zhang H, Yuan X, Li J, Wei YJ, Hu SS (2008) In vitro effects of low-level laser irradiation for bone marrow mesenchymal stem cells: proliferation, growth factors secretion and myogenic differentiation. Lasers Surg Med 40(10):726–733PubMedCrossRef Hou JF, Zhang H, Yuan X, Li J, Wei YJ, Hu SS (2008) In vitro effects of low-level laser irradiation for bone marrow mesenchymal stem cells: proliferation, growth factors secretion and myogenic differentiation. Lasers Surg Med 40(10):726–733PubMedCrossRef
123.
go back to reference Prockop DJ (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276:71–74PubMedCrossRef Prockop DJ (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276:71–74PubMedCrossRef
124.
go back to reference Pittenger MF, Mackay AM, Beck SC et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147PubMedCrossRef Pittenger MF, Mackay AM, Beck SC et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147PubMedCrossRef
125.
go back to reference Long MW (2001) Osteogenesis and bone-marrow-derived cells. Blood Cell Mol Dis 27:677–690CrossRef Long MW (2001) Osteogenesis and bone-marrow-derived cells. Blood Cell Mol Dis 27:677–690CrossRef
126.
go back to reference Dennis JE, Charbord P (2002) Origin and differentiation of human and murine stroma. Stem Cells 20:205–214PubMedCrossRef Dennis JE, Charbord P (2002) Origin and differentiation of human and murine stroma. Stem Cells 20:205–214PubMedCrossRef
127.
go back to reference Dennis JE, Caplan AI (2004) Bone marrow mesenchymal stem cells. In: Sell S (ed) Stem cells handbook. Humana Press Inc, Totowa, NJ, pp 107–117 Dennis JE, Caplan AI (2004) Bone marrow mesenchymal stem cells. In: Sell S (ed) Stem cells handbook. Humana Press Inc, Totowa, NJ, pp 107–117
128.
go back to reference Ozawa Y, Shimizu N, Kariya G, Abiko Y (1998) Low-energy laser irradiation stimulates bone nodule formation at early stages of cell culture in rat calvarial cells. Bone 22:347–354PubMedCrossRef Ozawa Y, Shimizu N, Kariya G, Abiko Y (1998) Low-energy laser irradiation stimulates bone nodule formation at early stages of cell culture in rat calvarial cells. Bone 22:347–354PubMedCrossRef
129.
go back to reference Lunger EJ, Rochkind S, Wollman Y, Kogan G, Dekel S (1998) Effect of low-power laser irradiation on the mechanical properties of bone fracture healing in rats. Lasers Surg Med 22:97–102CrossRef Lunger EJ, Rochkind S, Wollman Y, Kogan G, Dekel S (1998) Effect of low-power laser irradiation on the mechanical properties of bone fracture healing in rats. Lasers Surg Med 22:97–102CrossRef
130.
go back to reference Kawasaki K, Shimizu N (2000) Effects of low-energy laser irradiation on bone remodeling during experimental tooth movement in rats. Lasers Surg Med 26:282–291PubMedCrossRef Kawasaki K, Shimizu N (2000) Effects of low-energy laser irradiation on bone remodeling during experimental tooth movement in rats. Lasers Surg Med 26:282–291PubMedCrossRef
131.
go back to reference Abramovitch-Gottlib L, Gross T, Naveh D et al (2005) Low-level laser irradiation stimulates osteogenic phenotype of mesenchymal stem cells seeded on a three-dimensional biomatrix. Lasers Med Sci 20(3–4):138–146PubMedCrossRef Abramovitch-Gottlib L, Gross T, Naveh D et al (2005) Low-level laser irradiation stimulates osteogenic phenotype of mesenchymal stem cells seeded on a three-dimensional biomatrix. Lasers Med Sci 20(3–4):138–146PubMedCrossRef
132.
go back to reference Kim HK, Kim JH, Abbas AA et al (2009) Red light of 647 nm enhances osteogenic differentiation in mesenchymal stem cells. Lasers Med Sci 24(2):214–222PubMedCrossRef Kim HK, Kim JH, Abbas AA et al (2009) Red light of 647 nm enhances osteogenic differentiation in mesenchymal stem cells. Lasers Med Sci 24(2):214–222PubMedCrossRef
133.
go back to reference Eduardo Fde P, Bueno DF, de Freitas PM et al (2008) Stem cell proliferation under low-intensity laser irradiation: a preliminary study. Lasers Surg Med 40(6):433–438PubMedCrossRef Eduardo Fde P, Bueno DF, de Freitas PM et al (2008) Stem cell proliferation under low-intensity laser irradiation: a preliminary study. Lasers Surg Med 40(6):433–438PubMedCrossRef
134.
go back to reference Mvula B, Mathope T, Moore T, Abrahamse H (2008) The effect of low-level laser irradiation on adult human adipose-derived stem cells. Lasers Med Sci 23(3):277–282PubMedCrossRef Mvula B, Mathope T, Moore T, Abrahamse H (2008) The effect of low-level laser irradiation on adult human adipose-derived stem cells. Lasers Med Sci 23(3):277–282PubMedCrossRef
135.
go back to reference Abergel RP, Lam TS, Meker CA (1984) Biostimulation of procollagen production by low-energy lasers in human skin fibroblast cultures. J Invest Dermatol 82:395–402 Abergel RP, Lam TS, Meker CA (1984) Biostimulation of procollagen production by low-energy lasers in human skin fibroblast cultures. J Invest Dermatol 82:395–402
136.
go back to reference Fava G, Marchesini R, Melloni E, Milani M, Schiroli A (1986) Effect of low-energy irradiation by He-Ne laser on mitosis rate of HT-29 tumor cells in culture. Lasers Life Sci 1:135–141 Fava G, Marchesini R, Melloni E, Milani M, Schiroli A (1986) Effect of low-energy irradiation by He-Ne laser on mitosis rate of HT-29 tumor cells in culture. Lasers Life Sci 1:135–141
137.
go back to reference Karu TI, Pyatibrat LV, Kalendo GS, Esenalie RO (1996) Effects of monochromatic low-intensity light and laser irradiation on adhesion of HeLa cells in vitro. Lasers Surg Med 18:171–177PubMedCrossRef Karu TI, Pyatibrat LV, Kalendo GS, Esenalie RO (1996) Effects of monochromatic low-intensity light and laser irradiation on adhesion of HeLa cells in vitro. Lasers Surg Med 18:171–177PubMedCrossRef
138.
go back to reference Kipshidze N, Nikolaychik V, Keelan MH et al (2001) Low-power helium: neon laser irradiation enhances production of vascular endothelial growth factor and promotes growth of endothelial cells in vitro. Lasers Surg Med 28:355–364PubMedCrossRef Kipshidze N, Nikolaychik V, Keelan MH et al (2001) Low-power helium: neon laser irradiation enhances production of vascular endothelial growth factor and promotes growth of endothelial cells in vitro. Lasers Surg Med 28:355–364PubMedCrossRef
139.
go back to reference Kreisler M, Christoffers AB, Al-Haj H, Willershausen B, Hoedt B (2002) Low-level 809-nm diode laser-induced in vitro stimulation of the proliferation of human gingival fibroblasts. Lasers Surg Med 30:365–369PubMedCrossRef Kreisler M, Christoffers AB, Al-Haj H, Willershausen B, Hoedt B (2002) Low-level 809-nm diode laser-induced in vitro stimulation of the proliferation of human gingival fibroblasts. Lasers Surg Med 30:365–369PubMedCrossRef
140.
go back to reference Fujihara NA, Hiraki KRN, Marque MM (2006) Irradiation at 780 nm increases proliferation rate of osteoblasts independently of dexamethasone presence. Lasers Surg Med 38:332–336PubMedCrossRef Fujihara NA, Hiraki KRN, Marque MM (2006) Irradiation at 780 nm increases proliferation rate of osteoblasts independently of dexamethasone presence. Lasers Surg Med 38:332–336PubMedCrossRef
141.
go back to reference Gavish L, Perez L, Gertz SD (2006) Low-level laser irradiation modulates matrix metalloproteinase activity and gene expression in porcine aortic smooth muscle cells. Lasers Surg Med 38:779–786PubMedCrossRef Gavish L, Perez L, Gertz SD (2006) Low-level laser irradiation modulates matrix metalloproteinase activity and gene expression in porcine aortic smooth muscle cells. Lasers Surg Med 38:779–786PubMedCrossRef
142.
go back to reference Nascimento RX, Callera F (2006) Low-level laser therapy at different energy densities (0.1–2.0 J/cm2) and its effects on the capacity of human long-term cryopreserved peripheral blood progenitor cells for the growth of colony-forming units. Photomed Laser Surg 24(5):601–604PubMedCrossRef Nascimento RX, Callera F (2006) Low-level laser therapy at different energy densities (0.1–2.0 J/cm2) and its effects on the capacity of human long-term cryopreserved peripheral blood progenitor cells for the growth of colony-forming units. Photomed Laser Surg 24(5):601–604PubMedCrossRef
143.
go back to reference Eduardo FP, Mehnert DU, Monezi TA et al (2007) Cultured epithelial cells response to phototherapy with low-intensity laser. Lasers Surg Med 39:365–372PubMedCrossRef Eduardo FP, Mehnert DU, Monezi TA et al (2007) Cultured epithelial cells response to phototherapy with low-intensity laser. Lasers Surg Med 39:365–372PubMedCrossRef
144.
go back to reference Hawkins D, Abrahamse H (2007) Influence of broad-spectrum and infrared light in combination with laser irradiation on the proliferation of wounded skin fibroblasts. Photomed Laser Surg 25(3):159–169PubMedCrossRef Hawkins D, Abrahamse H (2007) Influence of broad-spectrum and infrared light in combination with laser irradiation on the proliferation of wounded skin fibroblasts. Photomed Laser Surg 25(3):159–169PubMedCrossRef
145.
go back to reference Oron U, Ilic S, Taboada LD, Streeter J (2007) Ga-As (808 nm) laser irradiation enhances ATP production in human neuronal cells in culture. Photomed Laser Surg 25(3):180–182PubMedCrossRef Oron U, Ilic S, Taboada LD, Streeter J (2007) Ga-As (808 nm) laser irradiation enhances ATP production in human neuronal cells in culture. Photomed Laser Surg 25(3):180–182PubMedCrossRef
146.
go back to reference Benedicenti S, Mario Pepe I, Angiero F, Benedicenti A (2008) Intracellular ATP Level increases in lymphocytes irradiated with infrared laser light of wavelength 904 nm. Photomed Laser Surg 26(5):451–453PubMedCrossRef Benedicenti S, Mario Pepe I, Angiero F, Benedicenti A (2008) Intracellular ATP Level increases in lymphocytes irradiated with infrared laser light of wavelength 904 nm. Photomed Laser Surg 26(5):451–453PubMedCrossRef
147.
go back to reference Horvát-Karajz K, Balogh Z, Kovács V, Drrernat AH, Sréter L, Uher F (2009) In vitro effect of carboplatin, cytarabine, paclitaxel, vincristine, and low-power laser irradiation on murine mesenchymal stem cells. Lasers Surg Med 41(6):463–469PubMedCrossRef Horvát-Karajz K, Balogh Z, Kovács V, Drrernat AH, Sréter L, Uher F (2009) In vitro effect of carboplatin, cytarabine, paclitaxel, vincristine, and low-power laser irradiation on murine mesenchymal stem cells. Lasers Surg Med 41(6):463–469PubMedCrossRef
148.
go back to reference Taniguchi D, Dai P, Hojo T, Yamaoka Y, Kubo T, Takamatsu T (2009) Low-energy laser irradiation promotes synovial fibroblast proliferation by modulating p15 subcellular localization. Lasers Surg Med 41(3):232–239PubMedCrossRef Taniguchi D, Dai P, Hojo T, Yamaoka Y, Kubo T, Takamatsu T (2009) Low-energy laser irradiation promotes synovial fibroblast proliferation by modulating p15 subcellular localization. Lasers Surg Med 41(3):232–239PubMedCrossRef
149.
go back to reference Mvula B, Moore TJ, Abrahamse H (2010) Effect of low-level laser irradiation and epidermal growth factor on adult human adipose-derived stem cells. Lasers Med Sci 25(1):33–39PubMedCrossRef Mvula B, Moore TJ, Abrahamse H (2010) Effect of low-level laser irradiation and epidermal growth factor on adult human adipose-derived stem cells. Lasers Med Sci 25(1):33–39PubMedCrossRef
150.
go back to reference Saygun I, Karacay S, Serdar M, Ural AU, Sencimen M, Kurtis B (2008) Effects of laser irradiation on the release of basic fibroblast growth factor (bFGF), insulin like growth factor-1 (IGF-1), and receptor of IGF-1 (IGFBP3) from gingival fibroblasts. Lasers Med Sci 23(2):211–215PubMedCrossRef Saygun I, Karacay S, Serdar M, Ural AU, Sencimen M, Kurtis B (2008) Effects of laser irradiation on the release of basic fibroblast growth factor (bFGF), insulin like growth factor-1 (IGF-1), and receptor of IGF-1 (IGFBP3) from gingival fibroblasts. Lasers Med Sci 23(2):211–215PubMedCrossRef
151.
go back to reference Azevedo LH, de Paula EF, Moreira MS, de Paula EC, Marques MM (2006) Influence of different power densities of LILT on cultured human fibroblast growth: a pilot study. Lasers Med Sci 21(2):86–89PubMedCrossRef Azevedo LH, de Paula EF, Moreira MS, de Paula EC, Marques MM (2006) Influence of different power densities of LILT on cultured human fibroblast growth: a pilot study. Lasers Med Sci 21(2):86–89PubMedCrossRef
152.
go back to reference Kreisler M, Christoffers AB, Willershausen B, d'Hoedt B (2003) Effect of low-level GaAlAs laser irradiation on the proliferation rate of human periodontal ligament fibroblasts: an in vitro study. J Clin Periodontol 30(4):353–358PubMedCrossRef Kreisler M, Christoffers AB, Willershausen B, d'Hoedt B (2003) Effect of low-level GaAlAs laser irradiation on the proliferation rate of human periodontal ligament fibroblasts: an in vitro study. J Clin Periodontol 30(4):353–358PubMedCrossRef
Metadata
Title
Low-level laser therapy: a useful technique for enhancing the proliferation of various cultured cells
Authors
Khalid M. AlGhamdi
Ashok Kumar
Noura A. Moussa
Publication date
01-01-2012
Publisher
Springer-Verlag
Published in
Lasers in Medical Science / Issue 1/2012
Print ISSN: 0268-8921
Electronic ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-011-0885-2

Other articles of this Issue 1/2012

Lasers in Medical Science 1/2012 Go to the issue