Skip to main content
Top
Published in: Brain Tumor Pathology 2/2023

29-03-2023 | Glioblastoma | Original Article

Easy-to-use machine learning system for the prediction of IDH mutation and 1p/19q codeletion using MRI images of adult-type diffuse gliomas

Authors: Tomohide Nishikawa, Fumiharu Ohka, Kosuke Aoki, Hiromichi Suzuki, Kazuya Motomura, Junya Yamaguchi, Sachi Maeda, Yuji Kibe, Hiroki Shimizu, Atsushi Natsume, Hideki Innan, Ryuta Saito

Published in: Brain Tumor Pathology | Issue 2/2023

Login to get access

Abstract

Adult-type diffuse gliomas are divided into Astrocytoma, IDH-mutant, Oligodendroglioma, IDH-mutant and 1p/19q-codeleted and Glioblastoma, IDH-wildtype based on the IDH mutation, and 1p/19q codeletion status. To determine the treatment strategy for these tumors, pre-operative prediction of IDH mutation and 1p/19q codeletion status might be effective. Computer-aided diagnosis (CADx) systems using machine learning have been noted as innovative diagnostic methods. However, it is difficult to promote the clinical application of machine learning systems at each institute because the support of various specialists is essential. In this study, we established an easy-to-use computer-aided diagnosis system using Microsoft Azure Machine Learning Studio (MAMLS) to predict these statuses. We constructed an analysis model using 258 adult-type diffuse glioma cases from The Cancer Genome Atlas (TCGA) cohort. Using MRI T2-weighted images, the overall accuracy, sensitivity, and specificity for the prediction of IDH mutation and 1p/19q codeletion were 86.9%, 80.9%, and 92.0%, and 94.7%, 94.1%, and 95.1%, respectively. We also constructed an reliable analysis model for the prediction of IDH mutation and 1p/19q codeletion using an independent Nagoya cohort including 202 cases. These analysis models were established within 30 min. This easy-to-use CADx system might be useful for the clinical application of CADx in various institutes.
Literature
1.
go back to reference Suzuki H, Aoki K, Chiba K et al (2015) Mutational landscape and clonal architecture in grade II and III gliomas. Nat Genet 47:458–468CrossRefPubMed Suzuki H, Aoki K, Chiba K et al (2015) Mutational landscape and clonal architecture in grade II and III gliomas. Nat Genet 47:458–468CrossRefPubMed
2.
go back to reference Aoki K, Nakamura H, Suzuki H et al (2018) Prognostic relevance of genetic alterations in diffuse lower-grade gliomas. Neuro Oncol 20:66–77CrossRefPubMed Aoki K, Nakamura H, Suzuki H et al (2018) Prognostic relevance of genetic alterations in diffuse lower-grade gliomas. Neuro Oncol 20:66–77CrossRefPubMed
3.
go back to reference Brat DJ, Verhaak RG, Aldape KD et al (2015) Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N Engl J Med 372:2481–2498CrossRefPubMed Brat DJ, Verhaak RG, Aldape KD et al (2015) Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N Engl J Med 372:2481–2498CrossRefPubMed
4.
5.
go back to reference Wijnenga MMJ, French PJ, Dubbink HJ et al (2018) The impact of surgery in molecularly defined low-grade glioma: an integrated clinical, radiological, and molecular analysis. Neuro Oncol 20:103–112CrossRefPubMed Wijnenga MMJ, French PJ, Dubbink HJ et al (2018) The impact of surgery in molecularly defined low-grade glioma: an integrated clinical, radiological, and molecular analysis. Neuro Oncol 20:103–112CrossRefPubMed
6.
go back to reference Ding X, Wang Z, Chen D et al (2018) The prognostic value of maximal surgical resection is attenuated in oligodendroglioma subgroups of adult diffuse glioma: a multicenter retrospective study. J Neurooncol 140:591–603CrossRefPubMed Ding X, Wang Z, Chen D et al (2018) The prognostic value of maximal surgical resection is attenuated in oligodendroglioma subgroups of adult diffuse glioma: a multicenter retrospective study. J Neurooncol 140:591–603CrossRefPubMed
7.
go back to reference Fukuma R, Yanagisawa T, Kinoshita M et al (2019) Prediction of IDH and TERT promoter mutations in low-grade glioma from magnetic resonance images using a convolutional neural network. Sci Rep 9:20311CrossRefPubMedPubMedCentral Fukuma R, Yanagisawa T, Kinoshita M et al (2019) Prediction of IDH and TERT promoter mutations in low-grade glioma from magnetic resonance images using a convolutional neural network. Sci Rep 9:20311CrossRefPubMedPubMedCentral
8.
go back to reference Chang K, Bai HX, Zhou H et al (2018) Residual convolutional neural network for the determination of IDH status in low- and high-grade gliomas from MR imaging. Clin Cancer Res 24:1073–1081CrossRefPubMed Chang K, Bai HX, Zhou H et al (2018) Residual convolutional neural network for the determination of IDH status in low- and high-grade gliomas from MR imaging. Clin Cancer Res 24:1073–1081CrossRefPubMed
9.
go back to reference Chang P, Grinband J, Weinberg BD et al (2018) Deep-learning convolutional neural networks accurately classify genetic mutations in gliomas. AJNR Am J Neuroradiol 39:1201–1207CrossRefPubMedPubMedCentral Chang P, Grinband J, Weinberg BD et al (2018) Deep-learning convolutional neural networks accurately classify genetic mutations in gliomas. AJNR Am J Neuroradiol 39:1201–1207CrossRefPubMedPubMedCentral
10.
go back to reference Matsui Y, Maruyama T, Nitta M et al (2020) Prediction of lower-grade glioma molecular subtypes using deep learning. J Neurooncol 146:321–327CrossRefPubMed Matsui Y, Maruyama T, Nitta M et al (2020) Prediction of lower-grade glioma molecular subtypes using deep learning. J Neurooncol 146:321–327CrossRefPubMed
11.
go back to reference Nalawade S, Murugesan GK, Vejdani-Jahromi M et al (2019) Classification of brain tumor isocitrate dehydrogenase status using MRI and deep learning. J Med Imaging (Bellingham) 6:046003PubMed Nalawade S, Murugesan GK, Vejdani-Jahromi M et al (2019) Classification of brain tumor isocitrate dehydrogenase status using MRI and deep learning. J Med Imaging (Bellingham) 6:046003PubMed
12.
go back to reference Choi YS, Bae S, Chang JH et al (2021) Fully automated hybrid approach to predict the IDH mutation status of gliomas via deep learning and radiomics. Neuro Oncol 23:304–313CrossRefPubMed Choi YS, Bae S, Chang JH et al (2021) Fully automated hybrid approach to predict the IDH mutation status of gliomas via deep learning and radiomics. Neuro Oncol 23:304–313CrossRefPubMed
14.
go back to reference Kim I, Choi HJ, Ryu JM et al (2019) A predictive model for high/low risk group according to oncotype DX recurrence score using machine learning. Eur J Surg Oncol 45:134–140CrossRefPubMed Kim I, Choi HJ, Ryu JM et al (2019) A predictive model for high/low risk group according to oncotype DX recurrence score using machine learning. Eur J Surg Oncol 45:134–140CrossRefPubMed
15.
go back to reference Twarish Alhamazani K, Alshudukhi J, Aljaloud S et al (2021) Implementation of machine learning models for the prevention of kidney diseases (CKD) or their derivatives. Comput Intell Neurosci 2021:3941978CrossRefPubMedPubMedCentral Twarish Alhamazani K, Alshudukhi J, Aljaloud S et al (2021) Implementation of machine learning models for the prevention of kidney diseases (CKD) or their derivatives. Comput Intell Neurosci 2021:3941978CrossRefPubMedPubMedCentral
16.
go back to reference Choi S, Park J, Park S et al (2021) Establishment of a prediction tool for ocular trauma patients with machine learning algorithm. Int J Ophthalmol 14:1941–1949CrossRefPubMedPubMedCentral Choi S, Park J, Park S et al (2021) Establishment of a prediction tool for ocular trauma patients with machine learning algorithm. Int J Ophthalmol 14:1941–1949CrossRefPubMedPubMedCentral
17.
go back to reference Lorenzo AJ, Rickard M, Braga LH et al (2019) Predictive analytics and modeling employing machine learning technology: the next step in data sharing, analysis, and individualized counseling explored with a large, prospective prenatal hydronephrosis database. Urology 123:204–209CrossRefPubMed Lorenzo AJ, Rickard M, Braga LH et al (2019) Predictive analytics and modeling employing machine learning technology: the next step in data sharing, analysis, and individualized counseling explored with a large, prospective prenatal hydronephrosis database. Urology 123:204–209CrossRefPubMed
18.
go back to reference Pawelka D, Laczmanska I, Karpinski P et al (2022) Machine-learning-based Analysis Identifies miRNA expression profile for diagnosis and prediction of colorectal cancer: a preliminary study. Cancer Genomics Proteomics 19:503–511CrossRefPubMedPubMedCentral Pawelka D, Laczmanska I, Karpinski P et al (2022) Machine-learning-based Analysis Identifies miRNA expression profile for diagnosis and prediction of colorectal cancer: a preliminary study. Cancer Genomics Proteomics 19:503–511CrossRefPubMedPubMedCentral
19.
go back to reference Park YJ, Bae JH, Shin MH et al (2019) Development of predictive models in patients with epiphora using lacrimal scintigraphy and machine learning. Nucl Med Mol Imaging 53:125–135CrossRefPubMedPubMedCentral Park YJ, Bae JH, Shin MH et al (2019) Development of predictive models in patients with epiphora using lacrimal scintigraphy and machine learning. Nucl Med Mol Imaging 53:125–135CrossRefPubMedPubMedCentral
20.
go back to reference Makino Y, Arakawa Y, Yoshioka E et al (2021) Prognostic stratification for IDH-wild-type lower-grade astrocytoma by Sanger sequencing and copy-number alteration analysis with MLPA. Sci Rep 11:14408CrossRefPubMedPubMedCentral Makino Y, Arakawa Y, Yoshioka E et al (2021) Prognostic stratification for IDH-wild-type lower-grade astrocytoma by Sanger sequencing and copy-number alteration analysis with MLPA. Sci Rep 11:14408CrossRefPubMedPubMedCentral
21.
go back to reference Jeuken J, Cornelissen S, Boots-Sprenger S et al (2006) Multiplex ligation-dependent probe amplification: a diagnostic tool for simultaneous identification of different genetic markers in glial tumors. J Mol Diagn 8:433–443CrossRefPubMedPubMedCentral Jeuken J, Cornelissen S, Boots-Sprenger S et al (2006) Multiplex ligation-dependent probe amplification: a diagnostic tool for simultaneous identification of different genetic markers in glial tumors. J Mol Diagn 8:433–443CrossRefPubMedPubMedCentral
22.
go back to reference Kanda Y (2013) Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant 48:452–458CrossRefPubMed Kanda Y (2013) Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant 48:452–458CrossRefPubMed
23.
go back to reference Hrapsa I, Florian IA, Susman S et al (2022) External validation of a convolutional neural network for IDH mutation prediction. Medicina (Kaunas) 58:526CrossRefPubMed Hrapsa I, Florian IA, Susman S et al (2022) External validation of a convolutional neural network for IDH mutation prediction. Medicina (Kaunas) 58:526CrossRefPubMed
24.
go back to reference Xie Y, Zaccagna F, Rundo L et al (2022) Convolutional neural network techniques for brain tumor classification (from 2015 to 2022): review, challenges, and future perspectives. Diagnostics (Basel) 12:1850CrossRefPubMed Xie Y, Zaccagna F, Rundo L et al (2022) Convolutional neural network techniques for brain tumor classification (from 2015 to 2022): review, challenges, and future perspectives. Diagnostics (Basel) 12:1850CrossRefPubMed
Metadata
Title
Easy-to-use machine learning system for the prediction of IDH mutation and 1p/19q codeletion using MRI images of adult-type diffuse gliomas
Authors
Tomohide Nishikawa
Fumiharu Ohka
Kosuke Aoki
Hiromichi Suzuki
Kazuya Motomura
Junya Yamaguchi
Sachi Maeda
Yuji Kibe
Hiroki Shimizu
Atsushi Natsume
Hideki Innan
Ryuta Saito
Publication date
29-03-2023
Publisher
Springer Nature Singapore
Published in
Brain Tumor Pathology / Issue 2/2023
Print ISSN: 1433-7398
Electronic ISSN: 1861-387X
DOI
https://doi.org/10.1007/s10014-023-00459-4

Other articles of this Issue 2/2023

Brain Tumor Pathology 2/2023 Go to the issue