Skip to main content
Top
Published in: European Spine Journal 11/2014

01-11-2014 | Original Article

Dynamic motion characteristics of the lower lumbar spine: implication to lumbar pathology and surgical treatment

Authors: Minfei Wu, Shaobai Wang, Sean J. Driscoll, Thomas D. Cha, Kirkham B. Wood, Guoan Li

Published in: European Spine Journal | Issue 11/2014

Login to get access

Abstract

Purpose

Many studies have reported on the segmental motion range of the lumbar spine using various in vitro and in vivo experimental designs. However, the in vivo weightbearing dynamic motion characteristics of the L4–5 and L5–S1 motion segments are still not clearly described in literature. This study investigated in vivo motion of the lumbar spine during a weight-lifting activity.

Methods

Ten asymptomatic subjects (M/F: 5/5; age: 40–60 years) were recruited. The lumbar segment of each subject was MRI-scanned to construct 3D models of the L2–S1 vertebrae. The lumbar spine was then imaged using a dual fluoroscopic imaging system as the subject performed a weight-lifting activity from a lumbar flexion position (45°) to maximal extension position. The 3D vertebral models and the fluoroscopic images were used to reproduce the in vivo vertebral positions along the motion path. The relative translations and rotations of each motion segment were analyzed.

Results

All vertebral motion segments, L2–3, L3–4, L4–5 and L5–S1, rotated similarly during the lifting motion. L4–5 showed the largest anterior-posterior (AP) translation with 2.9 ± 1.5 mm and was significantly larger than L5–S1 (p < 0.05). L5–S1 showed the largest proximal–distal (PD) translation with 2.8 ± 0.9 mm and was significantly larger than all other motion segments (p < 0.05).

Conclusions

The lower lumbar motion segments L4–5 and L5–S1 showed larger AP and PD translations, respectively, than the higher vertebral motion segments during the weight-lifting motion. The data provide insight into the physiological motion characteristics of the lumbar spine and potential mechanical mechanisms of lumbar disease development.
Appendix
Available only for authorised users
Literature
1.
go back to reference Gilbert JW, Martin JC, Wheeler GR, Storey BB, Mick GE, Richardson GB, Herder SL, Gyarteng-Dakwa K, Broughton PG (2010) Lumbar disk protrusion rates of symptomatic patients using magnetic resonance imaging. J Manipulative Physiol Ther 33:626–629. doi:10.1016/j.jmpt.2010.08.010 PubMedCrossRef Gilbert JW, Martin JC, Wheeler GR, Storey BB, Mick GE, Richardson GB, Herder SL, Gyarteng-Dakwa K, Broughton PG (2010) Lumbar disk protrusion rates of symptomatic patients using magnetic resonance imaging. J Manipulative Physiol Ther 33:626–629. doi:10.​1016/​j.​jmpt.​2010.​08.​010 PubMedCrossRef
2.
go back to reference Biluts H, Munie T, Abebe M (2012) Review of lumbar disc diseases at Tikur Anbessa Hospital. Ethiop Med J 50:57–65PubMed Biluts H, Munie T, Abebe M (2012) Review of lumbar disc diseases at Tikur Anbessa Hospital. Ethiop Med J 50:57–65PubMed
3.
go back to reference Kuisma M, Karppinen J, Niinimaki J, Ojala R, Haapea M, Heliovaara M, Korpelainen R, Taimela S, Natri A, Tervonen O (2007) Modic changes in endplates of lumbar vertebral bodies: prevalence and association with low back and sciatic pain among middle-aged male workers. Spine 32:1116–1122. doi:10.1097/01.brs.0000261561.12944.ff PubMedCrossRef Kuisma M, Karppinen J, Niinimaki J, Ojala R, Haapea M, Heliovaara M, Korpelainen R, Taimela S, Natri A, Tervonen O (2007) Modic changes in endplates of lumbar vertebral bodies: prevalence and association with low back and sciatic pain among middle-aged male workers. Spine 32:1116–1122. doi:10.​1097/​01.​brs.​0000261561.​12944.​ff PubMedCrossRef
4.
go back to reference Evans W, Jobe W, Seibert C (1989) A cross-sectional prevalence study of lumbar disc degeneration in a working population. Spine 14:60–64PubMedCrossRef Evans W, Jobe W, Seibert C (1989) A cross-sectional prevalence study of lumbar disc degeneration in a working population. Spine 14:60–64PubMedCrossRef
5.
6.
go back to reference Cheung KM, Karppinen J, Chan D, Ho DW, Song YQ, Sham P, Cheah KS, Leong JC, Luk KD (2009) Prevalence and pattern of lumbar magnetic resonance imaging changes in a population study of one thousand forty-three individuals. Spine 34:934–940. doi:10.1097/BRS.0b013e3181a01b3f PubMedCrossRef Cheung KM, Karppinen J, Chan D, Ho DW, Song YQ, Sham P, Cheah KS, Leong JC, Luk KD (2009) Prevalence and pattern of lumbar magnetic resonance imaging changes in a population study of one thousand forty-three individuals. Spine 34:934–940. doi:10.​1097/​BRS.​0b013e3181a01b3f​ PubMedCrossRef
8.
go back to reference Rosenberg NJ (1975) Degenerative spondylolisthesis. Predisposing factors. J Bone Joint Surg Am 57:467–474PubMed Rosenberg NJ (1975) Degenerative spondylolisthesis. Predisposing factors. J Bone Joint Surg Am 57:467–474PubMed
9.
go back to reference Herkowitz HN, Garfin SR, Eismont FJ, Bell GR, Balderston RA (2011) Rothman-Simeone the spine, 6th edn. Saunders Elsevier, Philadelphia Herkowitz HN, Garfin SR, Eismont FJ, Bell GR, Balderston RA (2011) Rothman-Simeone the spine, 6th edn. Saunders Elsevier, Philadelphia
10.
go back to reference Iguchi T, Wakami T, Kurihara A, Kasahara K, Yoshiya S, Nishida K (2002) Lumbar multilevel degenerative spondylolisthesis: radiological evaluation and factors related to anterolisthesis and retrolisthesis. J Spinal Disord Tech 15:93–99PubMedCrossRef Iguchi T, Wakami T, Kurihara A, Kasahara K, Yoshiya S, Nishida K (2002) Lumbar multilevel degenerative spondylolisthesis: radiological evaluation and factors related to anterolisthesis and retrolisthesis. J Spinal Disord Tech 15:93–99PubMedCrossRef
11.
go back to reference Friberg O (1987) Lumbar instability: a dynamic approach by traction-compression radiography. Spine 12:119–129PubMedCrossRef Friberg O (1987) Lumbar instability: a dynamic approach by traction-compression radiography. Spine 12:119–129PubMedCrossRef
12.
go back to reference Sato H, Kikuchi S (1993) The natural history of radiographic instability of the lumbar spine. Spine 18:2075–2079PubMedCrossRef Sato H, Kikuchi S (1993) The natural history of radiographic instability of the lumbar spine. Spine 18:2075–2079PubMedCrossRef
13.
go back to reference Iguchi T, Kanemura A, Kasahara K, Sato K, Kurihara A, Yoshiya S, Nishida K, Miyamoto H, Doita M (2004) Lumbar instability and clinical symptoms: which is the more critical factor for symptoms: sagittal translation or segment angulation? J Spinal Disord Tech 17:284–290PubMedCrossRef Iguchi T, Kanemura A, Kasahara K, Sato K, Kurihara A, Yoshiya S, Nishida K, Miyamoto H, Doita M (2004) Lumbar instability and clinical symptoms: which is the more critical factor for symptoms: sagittal translation or segment angulation? J Spinal Disord Tech 17:284–290PubMedCrossRef
16.
go back to reference Kettler A, Marin F, Sattelmayer G, Mohr M, Mannel H, Durselen L, Claes L, Wilke HJ (2004) Finite helical axes of motion are a useful tool to describe the three-dimensional in vitro kinematics of the intact, injured and stabilised spine. Eur Spine J 13:553–559. doi:10.1007/s00586-004-0710-8 PubMedCrossRefPubMedCentral Kettler A, Marin F, Sattelmayer G, Mohr M, Mannel H, Durselen L, Claes L, Wilke HJ (2004) Finite helical axes of motion are a useful tool to describe the three-dimensional in vitro kinematics of the intact, injured and stabilised spine. Eur Spine J 13:553–559. doi:10.​1007/​s00586-004-0710-8 PubMedCrossRefPubMedCentral
18.
go back to reference el SariAli H, Lemaire JP, Pascal-Mousselard H, Carrier H, Skalli W (2006) In vivo study of the kinematics in axial rotation of the lumbar spine after total intervertebral disc replacement: long-term results: a 10–14 years follow up evaluation. Eur Spine J 15:1501–1510. doi:10.1007/s00586-005-0016-5 CrossRef el SariAli H, Lemaire JP, Pascal-Mousselard H, Carrier H, Skalli W (2006) In vivo study of the kinematics in axial rotation of the lumbar spine after total intervertebral disc replacement: long-term results: a 10–14 years follow up evaluation. Eur Spine J 15:1501–1510. doi:10.​1007/​s00586-005-0016-5 CrossRef
24.
go back to reference Hashemirad F, Hatef B, Jaberzadeh S, Ale Agha N (2013) Validity and reliability of skin markers for measurement of intersegmental mobility at L2-3 and L3-4 during lateral bending in healthy individuals: a fluoroscopy study. J Bodyw Mov Ther 17:46–52. doi:10.1016/j.jbmt.2012.04.010 PubMedCrossRef Hashemirad F, Hatef B, Jaberzadeh S, Ale Agha N (2013) Validity and reliability of skin markers for measurement of intersegmental mobility at L2-3 and L3-4 during lateral bending in healthy individuals: a fluoroscopy study. J Bodyw Mov Ther 17:46–52. doi:10.​1016/​j.​jbmt.​2012.​04.​010 PubMedCrossRef
25.
go back to reference Takayanagi K, Takahashi K, Yamagata M, Moriya H, Kitahara H, Tamaki T (2001) Using cineradiography for continuous dynamic-motion analysis of the lumbar spine. Spine 26:1858–1865PubMedCrossRef Takayanagi K, Takahashi K, Yamagata M, Moriya H, Kitahara H, Tamaki T (2001) Using cineradiography for continuous dynamic-motion analysis of the lumbar spine. Spine 26:1858–1865PubMedCrossRef
26.
go back to reference Yamamoto I, Panjabi MM, Crisco T, Oxland T (1989) Three-dimensional movements of the whole lumbar spine and lumbosacral joint. Spine 14:1256–1260PubMedCrossRef Yamamoto I, Panjabi MM, Crisco T, Oxland T (1989) Three-dimensional movements of the whole lumbar spine and lumbosacral joint. Spine 14:1256–1260PubMedCrossRef
27.
go back to reference Panjabi M, Yamamoto I, Oxland T, Crisco J (1989) How does posture affect coupling in the lumbar spine? Spine 14:1002–1011PubMedCrossRef Panjabi M, Yamamoto I, Oxland T, Crisco J (1989) How does posture affect coupling in the lumbar spine? Spine 14:1002–1011PubMedCrossRef
28.
go back to reference Mimura M, Panjabi MM, Oxland TR, Crisco JJ, Yamamoto I, Vasavada A (1994) Disc degeneration affects the multidirectional flexibility of the lumbar spine. Spine 19:1371–1380PubMedCrossRef Mimura M, Panjabi MM, Oxland TR, Crisco JJ, Yamamoto I, Vasavada A (1994) Disc degeneration affects the multidirectional flexibility of the lumbar spine. Spine 19:1371–1380PubMedCrossRef
29.
go back to reference Fujiwara A, An HS, Lim TH, Haughton VM (2001) Morphologic changes in the lumbar intervertebral foramen due to flexion-extension, lateral bending, and axial rotation: an in vitro anatomic and biomechanical study. Spine 26:876–882PubMedCrossRef Fujiwara A, An HS, Lim TH, Haughton VM (2001) Morphologic changes in the lumbar intervertebral foramen due to flexion-extension, lateral bending, and axial rotation: an in vitro anatomic and biomechanical study. Spine 26:876–882PubMedCrossRef
30.
go back to reference Abumi K, Panjabi MM, Kramer KM, Duranceau J, Oxland T, Crisco JJ (1990) Biomechanical evaluation of lumbar spinal stability after graded facetectomies. Spine 15:1142–1147PubMedCrossRef Abumi K, Panjabi MM, Kramer KM, Duranceau J, Oxland T, Crisco JJ (1990) Biomechanical evaluation of lumbar spinal stability after graded facetectomies. Spine 15:1142–1147PubMedCrossRef
31.
go back to reference Hayes MA, Howard TC, Gruel CR, Kopta JA (1989) Roentgenographic evaluation of lumbar spine flexion–extension in asymptomatic individuals. Spine 14:327–331PubMedCrossRef Hayes MA, Howard TC, Gruel CR, Kopta JA (1989) Roentgenographic evaluation of lumbar spine flexion–extension in asymptomatic individuals. Spine 14:327–331PubMedCrossRef
32.
go back to reference Dvorak J, Panjabi MM, Chang DG, Theiler R, Grob D (1991) Functional radiographic diagnosis of the lumbar spine. Flexion–extension and lateral bending. Spine 16:562–571PubMedCrossRef Dvorak J, Panjabi MM, Chang DG, Theiler R, Grob D (1991) Functional radiographic diagnosis of the lumbar spine. Flexion–extension and lateral bending. Spine 16:562–571PubMedCrossRef
33.
go back to reference Boden SD, Wiesel SW (1990) Lumbosacral segmental motion in normal individuals. Have we been measuring instability properly? Spine 15:571–576PubMedCrossRef Boden SD, Wiesel SW (1990) Lumbosacral segmental motion in normal individuals. Have we been measuring instability properly? Spine 15:571–576PubMedCrossRef
34.
go back to reference Miyasaka K, Ohmori K, Suzuki K, Inoue H (2000) Radiographic analysis of lumbar motion in relation to lumbosacral stability. Investigation of moderate and maximum motion. Spine 25:732–737PubMedCrossRef Miyasaka K, Ohmori K, Suzuki K, Inoue H (2000) Radiographic analysis of lumbar motion in relation to lumbosacral stability. Investigation of moderate and maximum motion. Spine 25:732–737PubMedCrossRef
36.
41.
go back to reference Mundt DJ, Kelsey JL, Golden AL, Pastides H, Berg AT, Sklar J, Hosea T, Panjabi MM (1993) An epidemiologic study of non-occupational lifting as a risk factor for herniated lumbar intervertebral disc. The northeast collaborative group on low back pain. Spine 18:595–602PubMedCrossRef Mundt DJ, Kelsey JL, Golden AL, Pastides H, Berg AT, Sklar J, Hosea T, Panjabi MM (1993) An epidemiologic study of non-occupational lifting as a risk factor for herniated lumbar intervertebral disc. The northeast collaborative group on low back pain. Spine 18:595–602PubMedCrossRef
42.
go back to reference Kelsey JL, Golden AL, Mundt DJ (1990) Low back pain/prolapsed lumbar intervertebral disc. Rheum Dis Clin North Am 16:699–716PubMed Kelsey JL, Golden AL, Mundt DJ (1990) Low back pain/prolapsed lumbar intervertebral disc. Rheum Dis Clin North Am 16:699–716PubMed
43.
go back to reference Li G, DeFrate LE, Park SE, Gill TJ, Rubash HE (2005) In vivo articular cartilage contact kinematics of the knee: an investigation using dual-orthogonal fluoroscopy and magnetic resonance image-based computer models. Am J Sports Med 33:102–107PubMedCrossRef Li G, DeFrate LE, Park SE, Gill TJ, Rubash HE (2005) In vivo articular cartilage contact kinematics of the knee: an investigation using dual-orthogonal fluoroscopy and magnetic resonance image-based computer models. Am J Sports Med 33:102–107PubMedCrossRef
45.
go back to reference Hanson GR, Suggs JF, Freiberg AA, Durbhakula S, Li G (2006) Investigation of in vivo 6DOF total knee arthoplasty kinematics using a dual orthogonal fluoroscopic system. J Orthop Res 24:974–981. doi:10.1002/jor.20141 PubMedCrossRef Hanson GR, Suggs JF, Freiberg AA, Durbhakula S, Li G (2006) Investigation of in vivo 6DOF total knee arthoplasty kinematics using a dual orthogonal fluoroscopic system. J Orthop Res 24:974–981. doi:10.​1002/​jor.​20141 PubMedCrossRef
46.
47.
go back to reference Li G, Van de Velde SK, Bingham J (2008) Validation of a non-invasive fluoroscopic imaging technique for the measurement of dynamic knee joint motion. J Biomech 41(7):1616–1622PubMedCrossRef Li G, Van de Velde SK, Bingham J (2008) Validation of a non-invasive fluoroscopic imaging technique for the measurement of dynamic knee joint motion. J Biomech 41(7):1616–1622PubMedCrossRef
49.
go back to reference Pearcy M, Portek I, Shepherd J (1984) Three-dimensional x-ray analysis of normal movement in the lumbar spine. Spine 9:294–297PubMedCrossRef Pearcy M, Portek I, Shepherd J (1984) Three-dimensional x-ray analysis of normal movement in the lumbar spine. Spine 9:294–297PubMedCrossRef
50.
go back to reference Bogduk N, Twomey LT (1987) Clinical anatomy of the lumbar spine. Churchill Livingstone, Melbourne, Edinburgh, London, New York Bogduk N, Twomey LT (1987) Clinical anatomy of the lumbar spine. Churchill Livingstone, Melbourne, Edinburgh, London, New York
51.
go back to reference Masharawi Y, Rothschild B, Dar G, Peleg S, Robinson D, Been E, Hershkovitz I (2004) Facet orientation in the thoracolumbar spine: three-dimensional anatomic and biomechanical analysis. Spine 29:1755–1763PubMedCrossRef Masharawi Y, Rothschild B, Dar G, Peleg S, Robinson D, Been E, Hershkovitz I (2004) Facet orientation in the thoracolumbar spine: three-dimensional anatomic and biomechanical analysis. Spine 29:1755–1763PubMedCrossRef
53.
go back to reference Spangfort EV (1972) The lumbar disc herniation. A computer-aided analysis of 2,504 operations. Acta Orthop Scand Suppl 142:1–95PubMed Spangfort EV (1972) The lumbar disc herniation. A computer-aided analysis of 2,504 operations. Acta Orthop Scand Suppl 142:1–95PubMed
58.
go back to reference Roussouly P, Gollogly S, Berthonnaud E, Dimnet J (2005) Classification of the normal variation in the sagittal alignment of the human lumbar spine and pelvis in the standing position. Spine 30:346–353PubMedCrossRef Roussouly P, Gollogly S, Berthonnaud E, Dimnet J (2005) Classification of the normal variation in the sagittal alignment of the human lumbar spine and pelvis in the standing position. Spine 30:346–353PubMedCrossRef
Metadata
Title
Dynamic motion characteristics of the lower lumbar spine: implication to lumbar pathology and surgical treatment
Authors
Minfei Wu
Shaobai Wang
Sean J. Driscoll
Thomas D. Cha
Kirkham B. Wood
Guoan Li
Publication date
01-11-2014
Publisher
Springer Berlin Heidelberg
Published in
European Spine Journal / Issue 11/2014
Print ISSN: 0940-6719
Electronic ISSN: 1432-0932
DOI
https://doi.org/10.1007/s00586-014-3316-9

Other articles of this Issue 11/2014

European Spine Journal 11/2014 Go to the issue