Skip to main content
Top
Published in: Pediatric Nephrology 9/2022

30-11-2021 | Acute Kidney Injury | Educational Review

Acute kidney injury in pediatrics: an overview focusing on pathophysiology

Authors: Ana Flávia Lima Ruas, Gabriel Malheiros Lébeis, Nicholas Bianco de Castro, Vitória Andrade Palmeira, Larissa Braga Costa, Katharina Lanza, Ana Cristina Simões e Silva

Published in: Pediatric Nephrology | Issue 9/2022

Login to get access

Abstract

Acute kidney injury (AKI) is defined as an abrupt decline in glomerular filtration rate, with increased serum creatinine and nitrogenous waste products due to several possible etiologies. Incidence in the pediatric population is estimated to be 3.9 per 1,000 hospitalizations, and prevalence among children admitted to intensive care units is 26.9%. Despite being a condition with important incidence and morbimortality, further evidence on pathophysiology and management among the pediatric population is still lacking. This narrative review aimed to summarize and discuss current data on AKI pathophysiology in the pediatric population, considering all the physiological particularities of this age range and common etiologies. Additionally, we reported current diagnostic tools, novel biomarkers, and newly proposed medications that have been studied with the aim of early diagnosis and appropriate treatment of AKI in the future.
Literature
2.
go back to reference Basile DP, Sreedharan R, Van Why SK (2016) Pathogenesis of acute kidney injury. In: Avner ED, Harmon WE, Niaudet P et al (eds) Pediatric nephrology. Springer, Berlin, Heidelberg, pp 2101–2138 Basile DP, Sreedharan R, Van Why SK (2016) Pathogenesis of acute kidney injury. In: Avner ED, Harmon WE, Niaudet P et al (eds) Pediatric nephrology. Springer, Berlin, Heidelberg, pp 2101–2138
4.
go back to reference Waikar SS, Betensky RA, Bonventre JV (2009) Creatinine as the gold standard for kidney injury biomarker studies? Nephrol Dial Transplant 24:3263–3265PubMedCrossRef Waikar SS, Betensky RA, Bonventre JV (2009) Creatinine as the gold standard for kidney injury biomarker studies? Nephrol Dial Transplant 24:3263–3265PubMedCrossRef
5.
go back to reference Selewski DT, Charlton JR, Jetton JG et al (2015) Neonatal acute kidney injury. Pediatrics 136:e463–e473PubMedCrossRef Selewski DT, Charlton JR, Jetton JG et al (2015) Neonatal acute kidney injury. Pediatrics 136:e463–e473PubMedCrossRef
6.
go back to reference Slater MB, Anand V, Uleryk EM, Parshuram CS (2012) A systematic review of RIFLE criteria in children, and its application and association with measures of mortality and morbidity. Kidney Int 81:791–798PubMedCrossRef Slater MB, Anand V, Uleryk EM, Parshuram CS (2012) A systematic review of RIFLE criteria in children, and its application and association with measures of mortality and morbidity. Kidney Int 81:791–798PubMedCrossRef
7.
go back to reference Kaddourah A, Basu RK, Bagshaw SM, Golstein SL et al (2017) epidemiology of acute kidney injury in critically ill children and young adults. N Engl J Med 376:11–20PubMedCrossRef Kaddourah A, Basu RK, Bagshaw SM, Golstein SL et al (2017) epidemiology of acute kidney injury in critically ill children and young adults. N Engl J Med 376:11–20PubMedCrossRef
8.
go back to reference Hoste EAJ, Kellum JA, Selby NM, Zarbock A, Palevsky PM, Bagshaw SM, Goldstein SL, Cerdá J, Chawla LS (2018) Global epidemiology and outcomes of acute kidney injury. Nat Rev Nephrol 14:607–625PubMedCrossRef Hoste EAJ, Kellum JA, Selby NM, Zarbock A, Palevsky PM, Bagshaw SM, Goldstein SL, Cerdá J, Chawla LS (2018) Global epidemiology and outcomes of acute kidney injury. Nat Rev Nephrol 14:607–625PubMedCrossRef
10.
go back to reference Sutherland SM, Ji J, Sheikhi FH, Widen E, Tian L, Alexander SR, Ling XB (2013) AKI in hospitalized children: epidemiology and clinical associations in a national cohort. Clin J Am Soc Nephrol 8:1661–1669PubMedPubMedCentralCrossRef Sutherland SM, Ji J, Sheikhi FH, Widen E, Tian L, Alexander SR, Ling XB (2013) AKI in hospitalized children: epidemiology and clinical associations in a national cohort. Clin J Am Soc Nephrol 8:1661–1669PubMedPubMedCentralCrossRef
11.
go back to reference Goldstein SL, Kirkendall E, Nguyen H et al (2013) Electronic health record identification of nephrotoxin exposure and associated acute kidney injury. Pediatrics 132:e756–e767PubMedCrossRef Goldstein SL, Kirkendall E, Nguyen H et al (2013) Electronic health record identification of nephrotoxin exposure and associated acute kidney injury. Pediatrics 132:e756–e767PubMedCrossRef
12.
go back to reference Bresolin N, Bianchini AP, Haas CA (2013) Pediatric acute kidney injury assessed by pRIFLE as a prognostic factor in the intensive care unit. Pediatr Nephrol 28:485–492PubMedCrossRef Bresolin N, Bianchini AP, Haas CA (2013) Pediatric acute kidney injury assessed by pRIFLE as a prognostic factor in the intensive care unit. Pediatr Nephrol 28:485–492PubMedCrossRef
14.
go back to reference Sutherland SM, Kwiatkowski DM (2017) Acute kidney injury in children. Adv Chronic Kidney Dis 24:380–387PubMedCrossRef Sutherland SM, Kwiatkowski DM (2017) Acute kidney injury in children. Adv Chronic Kidney Dis 24:380–387PubMedCrossRef
15.
go back to reference Mammen C, Al Abbas A, Skippen P, Nadel H, Levine D, Collet JP, Matsell DG (2012) Long-term risk of CKD in children surviving episodes of acute kidney injury in the intensive care unit: a prospective cohort study. Am J Kidney Dis 59:523–530PubMedCrossRef Mammen C, Al Abbas A, Skippen P, Nadel H, Levine D, Collet JP, Matsell DG (2012) Long-term risk of CKD in children surviving episodes of acute kidney injury in the intensive care unit: a prospective cohort study. Am J Kidney Dis 59:523–530PubMedCrossRef
16.
go back to reference Hoseini R, Otukesh H, Rahimzadeh N, Hoseini S (2012) Glomerular function in neonates. Iran J Kidney Dis 6:166–172PubMed Hoseini R, Otukesh H, Rahimzadeh N, Hoseini S (2012) Glomerular function in neonates. Iran J Kidney Dis 6:166–172PubMed
17.
go back to reference Kastl JT (2017) Renal function in the fetus and neonate–the creatinine enigma. Semin Fetal Neonatal Med 22:83–89PubMedCrossRef Kastl JT (2017) Renal function in the fetus and neonate–the creatinine enigma. Semin Fetal Neonatal Med 22:83–89PubMedCrossRef
18.
go back to reference Gubhaju L, Sutherland MR, Horne RSC, Medhurst A, Kent AL, Ramsden A, Moorre L, Singh G, Hoy WE, Black J (2014) Assessment of renal functional maturation and injury in preterm neonates during the first month of life. Am J Physiol Renal Physiol 307:F149–F158PubMedCrossRef Gubhaju L, Sutherland MR, Horne RSC, Medhurst A, Kent AL, Ramsden A, Moorre L, Singh G, Hoy WE, Black J (2014) Assessment of renal functional maturation and injury in preterm neonates during the first month of life. Am J Physiol Renal Physiol 307:F149–F158PubMedCrossRef
19.
go back to reference Filler G, Guerrero-Kanan R, Alvarez-Elías AC (2016) Assessment of glomerular filtration rate in the neonate: is creatinine the best tool? Curr Opin Pediatr 28:173–179PubMedCrossRef Filler G, Guerrero-Kanan R, Alvarez-Elías AC (2016) Assessment of glomerular filtration rate in the neonate: is creatinine the best tool? Curr Opin Pediatr 28:173–179PubMedCrossRef
20.
go back to reference Garp P, Hidalgo G (2017) Glomerular filtration rate estimation by serum creatinine or serum cystatin C in preterm (< 31 weeks) neonates. Indian Pediatr 54:508–509 Garp P, Hidalgo G (2017) Glomerular filtration rate estimation by serum creatinine or serum cystatin C in preterm (< 31 weeks) neonates. Indian Pediatr 54:508–509
21.
go back to reference Abitbol CL, DeFreitas MJ, Strauss J (2016) Assessment of kidney function in preterm infants: lifelong implications. Pediatr Nephrol 31:2213–2222PubMedCrossRef Abitbol CL, DeFreitas MJ, Strauss J (2016) Assessment of kidney function in preterm infants: lifelong implications. Pediatr Nephrol 31:2213–2222PubMedCrossRef
22.
go back to reference Zilleruelo G, Sultan S, Bancalari E, Steele B, Strauss J (1986) Renal bicarbonate handling in low birth weight infants during metabolic acidosis. Biol Neonate 49:132–139PubMedCrossRef Zilleruelo G, Sultan S, Bancalari E, Steele B, Strauss J (1986) Renal bicarbonate handling in low birth weight infants during metabolic acidosis. Biol Neonate 49:132–139PubMedCrossRef
23.
24.
go back to reference Joppich R, Scherer B, Weber PC (1979) Renal prostaglandins: relationship to the development of blood pressure and concentrating capacity in pre-term and full term healthy infants. Eur J Pediatr 132:253–259PubMedCrossRef Joppich R, Scherer B, Weber PC (1979) Renal prostaglandins: relationship to the development of blood pressure and concentrating capacity in pre-term and full term healthy infants. Eur J Pediatr 132:253–259PubMedCrossRef
25.
go back to reference Fisher DA (1963) Control of water balance in the newborn. Arch Pediatr Adolesc Med 106:137CrossRef Fisher DA (1963) Control of water balance in the newborn. Arch Pediatr Adolesc Med 106:137CrossRef
26.
go back to reference (2012) Summary of recommendation statements. Kidney Int Suppl 2:8–12 (2012) Summary of recommendation statements. Kidney Int Suppl 2:8–12
27.
go back to reference Desanti De Oliveira B, Xu K, Shen TH, Callahan M, Kiryluk K, D’Agati VD, Tatonetti NP, Barasch J, Devarajan P (2019) Molecular nephrology: types of acute tubular injury. Nat Rev Nephrol 15:599–612PubMedCrossRef Desanti De Oliveira B, Xu K, Shen TH, Callahan M, Kiryluk K, D’Agati VD, Tatonetti NP, Barasch J, Devarajan P (2019) Molecular nephrology: types of acute tubular injury. Nat Rev Nephrol 15:599–612PubMedCrossRef
29.
go back to reference Kaballo MA, Elsayed ME, Stack AG (2017) Linking acute kidney injury to chronic kidney disease: the missing links. J Nephrol 30:461–475PubMedCrossRef Kaballo MA, Elsayed ME, Stack AG (2017) Linking acute kidney injury to chronic kidney disease: the missing links. J Nephrol 30:461–475PubMedCrossRef
30.
go back to reference Sutton TA, Fisher CJ, Molitoris BA (2002) Microvascular endothelial injury and dysfunction during ischemic acute renal failure. Kidney Int 62:1539–1549PubMedCrossRef Sutton TA, Fisher CJ, Molitoris BA (2002) Microvascular endothelial injury and dysfunction during ischemic acute renal failure. Kidney Int 62:1539–1549PubMedCrossRef
31.
go back to reference Bonventre JV (2010) Pathophysiology of AKI: injury and normal and abnormal repair. Contrib Nephrol 165:9–17PubMedCrossRef Bonventre JV (2010) Pathophysiology of AKI: injury and normal and abnormal repair. Contrib Nephrol 165:9–17PubMedCrossRef
32.
go back to reference Kwon O, Hong S-M, Ramesh G (2009) Diminished NO generation by injured endothelium and loss of macula densa nNOS may contribute to sustained acute kidney injury after ischemia-reperfusion. Am J Physiol Renal Physiol 296:F25–F33PubMedCrossRef Kwon O, Hong S-M, Ramesh G (2009) Diminished NO generation by injured endothelium and loss of macula densa nNOS may contribute to sustained acute kidney injury after ischemia-reperfusion. Am J Physiol Renal Physiol 296:F25–F33PubMedCrossRef
33.
go back to reference Linas S, Whittenburg D, Repine JE (1997) Nitric oxide prevents neutrophil-mediated acute renal failure. Am J Physiol 272:F48–F54PubMed Linas S, Whittenburg D, Repine JE (1997) Nitric oxide prevents neutrophil-mediated acute renal failure. Am J Physiol 272:F48–F54PubMed
34.
go back to reference Conger J (1997) Hemodynamic factors in acute renal failure. Adv Ren Replace Ther 4:25–37PubMed Conger J (1997) Hemodynamic factors in acute renal failure. Adv Ren Replace Ther 4:25–37PubMed
35.
go back to reference Matthys E, Patton MK, Osgood RW et al (1983) Alterations in vascular function and morphology in acute ischemic renal failure. Kidney Int 23:717–724PubMedCrossRef Matthys E, Patton MK, Osgood RW et al (1983) Alterations in vascular function and morphology in acute ischemic renal failure. Kidney Int 23:717–724PubMedCrossRef
36.
go back to reference Ysebaert DK, De Greef KE, Vercauteren SR, Ghielli M, Verpooten GA, Eyskens EJ, De Broe ME (2000) Identification and kinetics of leukocytes after severe ischaemia/reperfusion renal injury. Nephrol Dial Transplant 15:1562–1574PubMedCrossRef Ysebaert DK, De Greef KE, Vercauteren SR, Ghielli M, Verpooten GA, Eyskens EJ, De Broe ME (2000) Identification and kinetics of leukocytes after severe ischaemia/reperfusion renal injury. Nephrol Dial Transplant 15:1562–1574PubMedCrossRef
37.
go back to reference Kelly KJ, Williams WW Jr, Colvin RB, Bonventre JV (1994) Antibody to intercellular adhesion molecule 1 protects the kidney against ischemic injury. Proc Natl Acad Sci U S A 91:812–816PubMedPubMedCentralCrossRef Kelly KJ, Williams WW Jr, Colvin RB, Bonventre JV (1994) Antibody to intercellular adhesion molecule 1 protects the kidney against ischemic injury. Proc Natl Acad Sci U S A 91:812–816PubMedPubMedCentralCrossRef
38.
go back to reference Kelly KJ, Williams WW Jr, Colvin RB, Meehan SM, Springer TA et al (1996) Intercellular adhesion molecule-1-deficient mice are protected against ischemic renal injury. J Clin Invest 97:1056–1063PubMedPubMedCentralCrossRef Kelly KJ, Williams WW Jr, Colvin RB, Meehan SM, Springer TA et al (1996) Intercellular adhesion molecule-1-deficient mice are protected against ischemic renal injury. J Clin Invest 97:1056–1063PubMedPubMedCentralCrossRef
39.
go back to reference Homeister JW, Lucchesi BR (1994) Complement activation and inhibition in myocardial ischemia and reperfusion injury. Annu Rev Pharmacol Toxicol 34:17–40PubMedCrossRef Homeister JW, Lucchesi BR (1994) Complement activation and inhibition in myocardial ischemia and reperfusion injury. Annu Rev Pharmacol Toxicol 34:17–40PubMedCrossRef
41.
go back to reference Nony PA, Schnellmann RG (2003) Mechanisms of renal cell repair and regeneration after acute renal failure. J Pharmacol Exp Ther 304:905–912PubMedCrossRef Nony PA, Schnellmann RG (2003) Mechanisms of renal cell repair and regeneration after acute renal failure. J Pharmacol Exp Ther 304:905–912PubMedCrossRef
42.
go back to reference Basile DP, Fredrich K, Chelladurai B, Leonard EC, Parrish AR (2008) Renal ischemia reperfusion inhibits VEGF expression and induces ADAMTS-1, a novel VEGF inhibitor. Am J Physiol Renal Physiol 294:F928–F936PubMedCrossRef Basile DP, Fredrich K, Chelladurai B, Leonard EC, Parrish AR (2008) Renal ischemia reperfusion inhibits VEGF expression and induces ADAMTS-1, a novel VEGF inhibitor. Am J Physiol Renal Physiol 294:F928–F936PubMedCrossRef
43.
go back to reference Forbes JM, Hewitson TD, Becker GJ, Jones CL (2000) Ischemic acute renal failure: long-term histology of cell and matrix changes in the rat. Kidney Int 57:2375–2385PubMedCrossRef Forbes JM, Hewitson TD, Becker GJ, Jones CL (2000) Ischemic acute renal failure: long-term histology of cell and matrix changes in the rat. Kidney Int 57:2375–2385PubMedCrossRef
44.
go back to reference Venkatachalam MA, Griffin KA, Lan R, Geng H, Saikumar P, Bidani AK (2010) Acute kidney injury: a springboard for progression in chronic kidney disease. Am J Physiol Renal Physiol 298:F1078–F1094PubMedPubMedCentralCrossRef Venkatachalam MA, Griffin KA, Lan R, Geng H, Saikumar P, Bidani AK (2010) Acute kidney injury: a springboard for progression in chronic kidney disease. Am J Physiol Renal Physiol 298:F1078–F1094PubMedPubMedCentralCrossRef
46.
go back to reference Endre ZH, Kellum JA, Di Somma S, Doi K, Goldestin ST, Koyner JL, Macedo E, Metha RL, Murray PT (2013) Differential diagnosis of AKI in clinical practice by functional and damage biomarkers: workgroup statements from the tenth Acute Dialysis Quality Initiative Consensus Conference. Contrib Nephrol 182:30–44PubMedCrossRef Endre ZH, Kellum JA, Di Somma S, Doi K, Goldestin ST, Koyner JL, Macedo E, Metha RL, Murray PT (2013) Differential diagnosis of AKI in clinical practice by functional and damage biomarkers: workgroup statements from the tenth Acute Dialysis Quality Initiative Consensus Conference. Contrib Nephrol 182:30–44PubMedCrossRef
47.
go back to reference Badr KF, Ichikawa I (1988) Prerenal failure: a deleterious shift from renal compensation to decompensation. N Engl J Med 319:623–629PubMedCrossRef Badr KF, Ichikawa I (1988) Prerenal failure: a deleterious shift from renal compensation to decompensation. N Engl J Med 319:623–629PubMedCrossRef
48.
go back to reference Miller TR, Anderson RJ, Linas SL, Henrich WL, Berns A, Gabon PA, Schrier RW (1978) Urinary diagnostic indices in acute renal failure: a prospective study. Ann Intern Med 89:47–50PubMedCrossRef Miller TR, Anderson RJ, Linas SL, Henrich WL, Berns A, Gabon PA, Schrier RW (1978) Urinary diagnostic indices in acute renal failure: a prospective study. Ann Intern Med 89:47–50PubMedCrossRef
50.
go back to reference Araujo CAA, Araujo NAA, Daher EF, Oliveira JDB et al (2013) Resolution of hypercalcemia and acute kidney injury after treatment for pulmonary tuberculosis without the use of corticosteroids. Am J Trop Med Hyg 88:592–595PubMedPubMedCentralCrossRef Araujo CAA, Araujo NAA, Daher EF, Oliveira JDB et al (2013) Resolution of hypercalcemia and acute kidney injury after treatment for pulmonary tuberculosis without the use of corticosteroids. Am J Trop Med Hyg 88:592–595PubMedPubMedCentralCrossRef
51.
go back to reference Silva ACSE, Lanza K, Palmeira VA, Costa LB, Flynn JT (2021) 2020 update on the renin–angiotensin–aldosterone system in pediatric kidney disease and its interactions with coronavirus. Pediatr Nephrol 36:1407–1426PubMedCrossRef Silva ACSE, Lanza K, Palmeira VA, Costa LB, Flynn JT (2021) 2020 update on the renin–angiotensin–aldosterone system in pediatric kidney disease and its interactions with coronavirus. Pediatr Nephrol 36:1407–1426PubMedCrossRef
52.
go back to reference Prowle J, Bagshaw SM, Bellomo R (2012) Renal blood flow, fractional excretion of sodium and acute kidney injury: time for a new paradigm? Curr Opin Crit Care 18:585–592PubMedCrossRef Prowle J, Bagshaw SM, Bellomo R (2012) Renal blood flow, fractional excretion of sodium and acute kidney injury: time for a new paradigm? Curr Opin Crit Care 18:585–592PubMedCrossRef
53.
go back to reference Epstein FH, Agmon Y, Brezis M (2008) Physiology of renal hypoxia. Ann N Y Acad Sci 718:72–82CrossRef Epstein FH, Agmon Y, Brezis M (2008) Physiology of renal hypoxia. Ann N Y Acad Sci 718:72–82CrossRef
54.
go back to reference Dyson A, Bezemer R, Legrand M, Balestra G, Singer M, Ince C (2011) Microvascular and interstitial oxygen tension in the renal cortex and medulla studied in a 4-h rat model of LPS-induced endotoxemia. Shock 36:83–89PubMedCrossRef Dyson A, Bezemer R, Legrand M, Balestra G, Singer M, Ince C (2011) Microvascular and interstitial oxygen tension in the renal cortex and medulla studied in a 4-h rat model of LPS-induced endotoxemia. Shock 36:83–89PubMedCrossRef
55.
go back to reference Nourbakhsh N, Singh P (2014) Role of renal oxygenation and mitochondrial function in the pathophysiology of acute kidney injury. Nephron Clin Pract 127:149–152PubMedCrossRef Nourbakhsh N, Singh P (2014) Role of renal oxygenation and mitochondrial function in the pathophysiology of acute kidney injury. Nephron Clin Pract 127:149–152PubMedCrossRef
56.
go back to reference Wang Z, Holthoff JH, Seely KA, Pathak E, Spencer HJ 3rd, Gokden N, Mayeux PR (2012) Development of oxidative stress in the peritubular capillary microenvironment mediates sepsis-induced renal microcirculatory failure and acute kidney injury. Am J Pathol 180:505–516PubMedPubMedCentralCrossRef Wang Z, Holthoff JH, Seely KA, Pathak E, Spencer HJ 3rd, Gokden N, Mayeux PR (2012) Development of oxidative stress in the peritubular capillary microenvironment mediates sepsis-induced renal microcirculatory failure and acute kidney injury. Am J Pathol 180:505–516PubMedPubMedCentralCrossRef
57.
go back to reference Seely KA, Holthoff JH, Burns ST, Wang Z, Thakali KM, Gokden N, Rhee SW, Mayeux PR (2011) Hemodynamic changes in the kidney in a pediatric rat model of sepsis-induced acute kidney injury. Am J Physiol Renal Physiol 301:F209–F217PubMedPubMedCentralCrossRef Seely KA, Holthoff JH, Burns ST, Wang Z, Thakali KM, Gokden N, Rhee SW, Mayeux PR (2011) Hemodynamic changes in the kidney in a pediatric rat model of sepsis-induced acute kidney injury. Am J Physiol Renal Physiol 301:F209–F217PubMedPubMedCentralCrossRef
58.
go back to reference Vandenberghe W, Gevaert S, Kellum JA, Bagshaw SM, Peperstraete H, Herck I, Decruyenaere J, Hoste EAJ (2016) Acute kidney injury in cardiorenal syndrome type 1 patients: a systematic review and meta-analysis. Cardiorenal Med 6:116–128PubMedCrossRef Vandenberghe W, Gevaert S, Kellum JA, Bagshaw SM, Peperstraete H, Herck I, Decruyenaere J, Hoste EAJ (2016) Acute kidney injury in cardiorenal syndrome type 1 patients: a systematic review and meta-analysis. Cardiorenal Med 6:116–128PubMedCrossRef
59.
go back to reference Ronco C, Haapio M, House AA, Anavekar N, Bellomo R (2008) Cardiorenal syndrome. J Am Coll Cardiol 52:1527–1539PubMedCrossRef Ronco C, Haapio M, House AA, Anavekar N, Bellomo R (2008) Cardiorenal syndrome. J Am Coll Cardiol 52:1527–1539PubMedCrossRef
60.
go back to reference Di Lullo L, Bellasi A, Barbera V, Russo D, Russo L, Iorio BD, Cozzolino M, Ronco C (2017) Pathophysiology of the cardio-renal syndromes types 1–5: an uptodate. Indian Heart J 69:255–265PubMedPubMedCentralCrossRef Di Lullo L, Bellasi A, Barbera V, Russo D, Russo L, Iorio BD, Cozzolino M, Ronco C (2017) Pathophysiology of the cardio-renal syndromes types 1–5: an uptodate. Indian Heart J 69:255–265PubMedPubMedCentralCrossRef
61.
go back to reference Athwani V, Bhargava M, Chanchlani R, Mehta AJ (2017) Incidence and outcome of acute cardiorenal syndrome in hospitalized children. Indian J Pediatr 84:420–424PubMedCrossRef Athwani V, Bhargava M, Chanchlani R, Mehta AJ (2017) Incidence and outcome of acute cardiorenal syndrome in hospitalized children. Indian J Pediatr 84:420–424PubMedCrossRef
62.
go back to reference Price JF, Goldstein SL (2009) Cardiorenal syndrome in children with heart failure. Curr Heart Fail Rep 6:191–198PubMedCrossRef Price JF, Goldstein SL (2009) Cardiorenal syndrome in children with heart failure. Curr Heart Fail Rep 6:191–198PubMedCrossRef
63.
go back to reference Ortega-Loubon C, Fernández-Molina M, Carrascal-Hinojal Y, Fulquet-Carreras E (2016) Cardiac surgery-associated acute kidney injury. Ann Card Anaesth 19:687–698PubMedPubMedCentralCrossRef Ortega-Loubon C, Fernández-Molina M, Carrascal-Hinojal Y, Fulquet-Carreras E (2016) Cardiac surgery-associated acute kidney injury. Ann Card Anaesth 19:687–698PubMedPubMedCentralCrossRef
64.
go back to reference Romagnoli S, Ricci Z, Ronco C (2018) Perioperative acute kidney injury: prevention, early recognition, and supportive measures. Nephron 140:105–110PubMedCrossRef Romagnoli S, Ricci Z, Ronco C (2018) Perioperative acute kidney injury: prevention, early recognition, and supportive measures. Nephron 140:105–110PubMedCrossRef
65.
go back to reference Lawal TA, Raji YR, Ajayi SO, Ademola AD et al (2019) Predictors and outcome of acute kidney injury after non-cardiac paediatric surgery. Ren Replace Ther 5:1–7CrossRef Lawal TA, Raji YR, Ajayi SO, Ademola AD et al (2019) Predictors and outcome of acute kidney injury after non-cardiac paediatric surgery. Ren Replace Ther 5:1–7CrossRef
67.
go back to reference Peerapornratana S, Manrique-Caballero CL, Gómez H, Kellum JA (2019) Acute kidney injury from sepsis: current concepts, epidemiology, pathophysiology, prevention and treatment. Kidney Int 96:1083–1099PubMedPubMedCentralCrossRef Peerapornratana S, Manrique-Caballero CL, Gómez H, Kellum JA (2019) Acute kidney injury from sepsis: current concepts, epidemiology, pathophysiology, prevention and treatment. Kidney Int 96:1083–1099PubMedPubMedCentralCrossRef
70.
go back to reference Ejaz AA, Johnson RJ, Shimada M, Mohandas R, Alquadan KF, Beaver TM, Lapsia V, Daas B (2019) The role of uric acid in acute kidney injury. Nephron 142:275–283PubMedCrossRef Ejaz AA, Johnson RJ, Shimada M, Mohandas R, Alquadan KF, Beaver TM, Lapsia V, Daas B (2019) The role of uric acid in acute kidney injury. Nephron 142:275–283PubMedCrossRef
71.
72.
go back to reference Abu-Alfa AK, Younes A (2010) Tumor lysis syndrome and acute kidney injury: evaluation, prevention, and management. Am J Kidney Dis 55:S1–S13; quiz S14–9 Abu-Alfa AK, Younes A (2010) Tumor lysis syndrome and acute kidney injury: evaluation, prevention, and management. Am J Kidney Dis 55:S1–S13; quiz S14–9
74.
go back to reference Arimura Y, Muso E, Fujimoto S, Hasegawa M et al (2016) Evidence-based clinical practice guidelines for rapidly progressive glomerulonephritis 2014. Clin Exp Nephrol 20:322–341PubMedPubMedCentralCrossRef Arimura Y, Muso E, Fujimoto S, Hasegawa M et al (2016) Evidence-based clinical practice guidelines for rapidly progressive glomerulonephritis 2014. Clin Exp Nephrol 20:322–341PubMedPubMedCentralCrossRef
75.
go back to reference Piyaphanee N, Ananboontarick C, Supavekin S, Sumboonnanonda A (2017) Renal outcome and risk factors for end-stage renal disease in pediatric rapidly progressive glomerulonephritis. Pediatr Int 59:334–341PubMedCrossRef Piyaphanee N, Ananboontarick C, Supavekin S, Sumboonnanonda A (2017) Renal outcome and risk factors for end-stage renal disease in pediatric rapidly progressive glomerulonephritis. Pediatr Int 59:334–341PubMedCrossRef
76.
77.
go back to reference Eison TM, Ault BH, Jones DP, Chersney RW, Wyatt RJ (2011) Post-streptococcal acute glomerulonephritis in children: clinical features and pathogenesis. Pediatr Nephrol 26:165–180PubMedCrossRef Eison TM, Ault BH, Jones DP, Chersney RW, Wyatt RJ (2011) Post-streptococcal acute glomerulonephritis in children: clinical features and pathogenesis. Pediatr Nephrol 26:165–180PubMedCrossRef
78.
go back to reference Couser WG (2016) Pathogenesis and treatment of glomerulonephritis-an update. J Bras Nefrol 38:107–122PubMedCrossRef Couser WG (2016) Pathogenesis and treatment of glomerulonephritis-an update. J Bras Nefrol 38:107–122PubMedCrossRef
79.
go back to reference Couser WG, Johnson RJ (2014) The etiology of glomerulonephritis: roles of infection and autoimmunity. Kidney Int 86:905–914PubMedCrossRef Couser WG, Johnson RJ (2014) The etiology of glomerulonephritis: roles of infection and autoimmunity. Kidney Int 86:905–914PubMedCrossRef
81.
go back to reference Andrew M, Brooker LA (1996) Hemostatic complications in renal disorders of the young. Pediatr Nephrol 10:88–99PubMedCrossRef Andrew M, Brooker LA (1996) Hemostatic complications in renal disorders of the young. Pediatr Nephrol 10:88–99PubMedCrossRef
82.
go back to reference Asghar M, Ahmed K, Shah SS, Siddique MK, Dasgupta P, Khan MS (2007) Renal vein thrombosis. Eur J Vasc Endovasc Surg 34:217–223PubMedCrossRef Asghar M, Ahmed K, Shah SS, Siddique MK, Dasgupta P, Khan MS (2007) Renal vein thrombosis. Eur J Vasc Endovasc Surg 34:217–223PubMedCrossRef
83.
go back to reference Woolf AS (2006) Renal hypoplasia and dysplasia: starting to put the puzzle together. J Am Soc Nephrol 17:2647–2649PubMedCrossRef Woolf AS (2006) Renal hypoplasia and dysplasia: starting to put the puzzle together. J Am Soc Nephrol 17:2647–2649PubMedCrossRef
87.
go back to reference Klahr S (1991) New insights into the consequences and mechanisms of renal impairment in obstructive nephropathy. Am J Kidney Dis 18:689–699PubMedCrossRef Klahr S (1991) New insights into the consequences and mechanisms of renal impairment in obstructive nephropathy. Am J Kidney Dis 18:689–699PubMedCrossRef
88.
go back to reference Bilgutay AN, Roth DR, Gonzales ET Jr, Koh CJ et al (2016) Posterior urethral valves: risk factors for progression to renal failure. J Pediatr Urol 12:179.e1–e7CrossRef Bilgutay AN, Roth DR, Gonzales ET Jr, Koh CJ et al (2016) Posterior urethral valves: risk factors for progression to renal failure. J Pediatr Urol 12:179.e1–e7CrossRef
89.
go back to reference Stoops C, Stone S, Evans E, Dill L, Henderson T, Griffin R, Goldstein SL, Coghill C, Askenazi DJ (2019) Baby NINJA (Nephrotoxic Injury Negated by Just-in-Time Action): reduction of nephrotoxic medication-associated acute kidney injury in the neonatal intensive care unit. J Pediatr 215:223-228.e6PubMedPubMedCentralCrossRef Stoops C, Stone S, Evans E, Dill L, Henderson T, Griffin R, Goldstein SL, Coghill C, Askenazi DJ (2019) Baby NINJA (Nephrotoxic Injury Negated by Just-in-Time Action): reduction of nephrotoxic medication-associated acute kidney injury in the neonatal intensive care unit. J Pediatr 215:223-228.e6PubMedPubMedCentralCrossRef
90.
go back to reference Goldstein SL, Dahale D, Kirkendall ES et al (2020) A prospective multi-center quality improvement initiative (NINJA) indicates a reduction in nephrotoxic acute kidney injury in hospitalized children. Kidney Int 97:580–588PubMedCrossRef Goldstein SL, Dahale D, Kirkendall ES et al (2020) A prospective multi-center quality improvement initiative (NINJA) indicates a reduction in nephrotoxic acute kidney injury in hospitalized children. Kidney Int 97:580–588PubMedCrossRef
91.
go back to reference Goldstein SL, Mottes T, Simpson K, Barclay C, Muething S, Haslam DB, Kirkendall ES (2016) A sustained quality improvement program reduces nephrotoxic medication-associated acute kidney injury. Kidney Int 90:212–221PubMedCrossRef Goldstein SL, Mottes T, Simpson K, Barclay C, Muething S, Haslam DB, Kirkendall ES (2016) A sustained quality improvement program reduces nephrotoxic medication-associated acute kidney injury. Kidney Int 90:212–221PubMedCrossRef
92.
go back to reference Goldstein SL (2017) Nephrotoxicities. F1000Res 6:55 Goldstein SL (2017) Nephrotoxicities. F1000Res 6:55
93.
go back to reference Goldstein SL, Dahale D, Kirkendall ES, Mottes T et al (2016) A sustained quality improvement program reduces nephrotoxic medication-associated acute kidney injury. Kidney Int 90:212–221PubMedCrossRef Goldstein SL, Dahale D, Kirkendall ES, Mottes T et al (2016) A sustained quality improvement program reduces nephrotoxic medication-associated acute kidney injury. Kidney Int 90:212–221PubMedCrossRef
94.
go back to reference Sutherland SM, Byrnes JJ, Kothari M, Longhurst CA, Dutta S, Gracia P, Golstein SL (2015) AKI in hospitalized children: comparing the pRIFLE, AKIN, and KDIGO definitions. Clin J Am Soc Nephrol 10:554–561PubMedPubMedCentralCrossRef Sutherland SM, Byrnes JJ, Kothari M, Longhurst CA, Dutta S, Gracia P, Golstein SL (2015) AKI in hospitalized children: comparing the pRIFLE, AKIN, and KDIGO definitions. Clin J Am Soc Nephrol 10:554–561PubMedPubMedCentralCrossRef
95.
go back to reference Basu RK, Zappitelli M, Brunner L, Wang Y, Wong HR et al (2014) Derivation and validation of the renal angina index to improve the prediction of acute kidney injury in critically ill children. Kidney Int 85:659–667PubMedCrossRef Basu RK, Zappitelli M, Brunner L, Wang Y, Wong HR et al (2014) Derivation and validation of the renal angina index to improve the prediction of acute kidney injury in critically ill children. Kidney Int 85:659–667PubMedCrossRef
96.
go back to reference Basu RK, Kaddourah A, Goldstein SL; AWARE Study Investigators (2018) Assessment of a renal angina index for prediction of severe acute kidney injury in critically ill children: a multicentre, multinational, prospective observational study. Lancet Child Adolesc Health 2:112–120CrossRef Basu RK, Kaddourah A, Goldstein SL; AWARE Study Investigators (2018) Assessment of a renal angina index for prediction of severe acute kidney injury in critically ill children: a multicentre, multinational, prospective observational study. Lancet Child Adolesc Health 2:112–120CrossRef
97.
go back to reference Rosa RM, Colucci JA, Yokota R et al (2016) Alternative pathways for angiotensin II production as an important determinant of kidney damage in endotoxemia. Am J Physiol Renal Physiol 311:F496–F504PubMedCrossRef Rosa RM, Colucci JA, Yokota R et al (2016) Alternative pathways for angiotensin II production as an important determinant of kidney damage in endotoxemia. Am J Physiol Renal Physiol 311:F496–F504PubMedCrossRef
98.
go back to reference Chawla LS, Busse L, Brasha-Mitchell E, Davison D, Honiq J, Alotaibi Z, Seneff MG (2014) Intravenous angiotensin II for the treatment of high-output shock (ATHOS trial): a pilot study. Crit Care 18:534PubMedPubMedCentralCrossRef Chawla LS, Busse L, Brasha-Mitchell E, Davison D, Honiq J, Alotaibi Z, Seneff MG (2014) Intravenous angiotensin II for the treatment of high-output shock (ATHOS trial): a pilot study. Crit Care 18:534PubMedPubMedCentralCrossRef
99.
go back to reference Asci H, Saygin M, Cankara FN, Bayram D, Yesilot S et al (2015) The impact of alpha-lipoic acid on amikacin-induced nephrotoxicity. Ren Fail 37:117–121PubMedCrossRef Asci H, Saygin M, Cankara FN, Bayram D, Yesilot S et al (2015) The impact of alpha-lipoic acid on amikacin-induced nephrotoxicity. Ren Fail 37:117–121PubMedCrossRef
100.
go back to reference Li G, Gao L, Jia J, Gong X, Zang B, Chen W (2014) α-Lipoic acid prolongs survival and attenuates acute kidney injury in a rat model of sepsis. Clin Exp Pharmacol Physiol 41:459–468PubMedCrossRef Li G, Gao L, Jia J, Gong X, Zang B, Chen W (2014) α-Lipoic acid prolongs survival and attenuates acute kidney injury in a rat model of sepsis. Clin Exp Pharmacol Physiol 41:459–468PubMedCrossRef
101.
go back to reference Messaoudi I, El Heni J, Hammouda F, Said K, Kerkeni A (2009) Protective effects of selenium, zinc, or their combination on cadmium-induced oxidative stress in rat kidney. Biol Trace Elem Res 130:152–161PubMedCrossRef Messaoudi I, El Heni J, Hammouda F, Said K, Kerkeni A (2009) Protective effects of selenium, zinc, or their combination on cadmium-induced oxidative stress in rat kidney. Biol Trace Elem Res 130:152–161PubMedCrossRef
102.
go back to reference El-Nahas AR, Elsaadany MM, Taha D-E, Elshal AM et al (2017) A randomised controlled trial evaluating renal protective effects of selenium with vitamins A, C, E, verapamil, and losartan against extracorporeal shockwave lithotripsy-induced renal injury. BJU Int 119:142–147PubMedCrossRef El-Nahas AR, Elsaadany MM, Taha D-E, Elshal AM et al (2017) A randomised controlled trial evaluating renal protective effects of selenium with vitamins A, C, E, verapamil, and losartan against extracorporeal shockwave lithotripsy-induced renal injury. BJU Int 119:142–147PubMedCrossRef
103.
go back to reference Bang J-Y, Lee J, Oh J, Song JG, Hwang GS (2016) The influence of propofol and sevoflurane on acute kidney injury after colorectal surgery: a retrospective cohort study. Anesth Analg 123:363–370PubMedCrossRef Bang J-Y, Lee J, Oh J, Song JG, Hwang GS (2016) The influence of propofol and sevoflurane on acute kidney injury after colorectal surgery: a retrospective cohort study. Anesth Analg 123:363–370PubMedCrossRef
104.
go back to reference Ammar AS, Mahmoud KM (2016) Comparative effect of propofol versus sevoflurane on renal ischemia/reperfusion injury after elective open abdominal aortic aneurysm repair. Saudi J Anaesth 10:301–307PubMedPubMedCentralCrossRef Ammar AS, Mahmoud KM (2016) Comparative effect of propofol versus sevoflurane on renal ischemia/reperfusion injury after elective open abdominal aortic aneurysm repair. Saudi J Anaesth 10:301–307PubMedPubMedCentralCrossRef
105.
go back to reference Feng Y, Bai T, Ma H, Wang J-K (2015) Propofol attenuates human proximal renal tubular epithelial cell injury induced by anoxia-reoxygenation. Lab Med 39:356–360CrossRef Feng Y, Bai T, Ma H, Wang J-K (2015) Propofol attenuates human proximal renal tubular epithelial cell injury induced by anoxia-reoxygenation. Lab Med 39:356–360CrossRef
107.
go back to reference Fujino T, Muhib S, Sato N, Hasebe N (2013) Silencing of p53 RNA through transarterial delivery ameliorates renal tubular injury and downregulates GSK-3β expression after ischemia-reperfusion injury. Am J Physiol Renal Physiol 305:F1617–F1627PubMedCrossRef Fujino T, Muhib S, Sato N, Hasebe N (2013) Silencing of p53 RNA through transarterial delivery ameliorates renal tubular injury and downregulates GSK-3β expression after ischemia-reperfusion injury. Am J Physiol Renal Physiol 305:F1617–F1627PubMedCrossRef
108.
go back to reference Gist KM, Goldstein SL, Wrona J, Alten JA, Basu RK et al (2017) Kinetics of the cell cycle arrest biomarkers (TIMP-2*IGFBP-7) for prediction of acute kidney injury in infants after cardiac surgery. Pediatr Nephrol 32:1611–1619PubMedCrossRef Gist KM, Goldstein SL, Wrona J, Alten JA, Basu RK et al (2017) Kinetics of the cell cycle arrest biomarkers (TIMP-2*IGFBP-7) for prediction of acute kidney injury in infants after cardiac surgery. Pediatr Nephrol 32:1611–1619PubMedCrossRef
109.
go back to reference Westhoff JH, Tönshoff B, Waldherr S, Poschl J et al (2015) Urinary tissue inhibitor of metalloproteinase-2 (TIMP-2) insulin-like growth factor-binding protein 7 (IGFBP7) predicts adverse outcome in pediatric acute kidney injury. PLoS One 10:e0143628PubMedPubMedCentralCrossRef Westhoff JH, Tönshoff B, Waldherr S, Poschl J et al (2015) Urinary tissue inhibitor of metalloproteinase-2 (TIMP-2) insulin-like growth factor-binding protein 7 (IGFBP7) predicts adverse outcome in pediatric acute kidney injury. PLoS One 10:e0143628PubMedPubMedCentralCrossRef
110.
go back to reference Dong L, Ma Q, Bennett M, Devarajan P (2017) Urinary biomarkers of cell cycle arrest are delayed predictors of acute kidney injury after pediatric cardiopulmonary bypass. Pediatr Nephrol 32:2351–2360PubMedPubMedCentralCrossRef Dong L, Ma Q, Bennett M, Devarajan P (2017) Urinary biomarkers of cell cycle arrest are delayed predictors of acute kidney injury after pediatric cardiopulmonary bypass. Pediatr Nephrol 32:2351–2360PubMedPubMedCentralCrossRef
111.
go back to reference Ivanišević I, Peco-Antić A, Vuličević I, Hercog D et al (2013) L-FABP can be an early marker of acute kidney injury in children. Pediatr Nephrol 28:963–969PubMedCrossRef Ivanišević I, Peco-Antić A, Vuličević I, Hercog D et al (2013) L-FABP can be an early marker of acute kidney injury in children. Pediatr Nephrol 28:963–969PubMedCrossRef
112.
go back to reference Portilla D, Dent C, Sugaya T, Nagothu KK, Kundi I et al (2008) Liver fatty acid-binding protein as a biomarker of acute kidney injury after cardiac surgery. Kidney Int 73:465–472PubMedCrossRef Portilla D, Dent C, Sugaya T, Nagothu KK, Kundi I et al (2008) Liver fatty acid-binding protein as a biomarker of acute kidney injury after cardiac surgery. Kidney Int 73:465–472PubMedCrossRef
113.
go back to reference Genc G, Ozkaya O, Avci B, Aygun C, Kucukoduk S (2013) Kidney injury molecule-1 as a promising biomarker for acute kidney injury in premature babies. Am J Perinatol 30:245–252PubMed Genc G, Ozkaya O, Avci B, Aygun C, Kucukoduk S (2013) Kidney injury molecule-1 as a promising biomarker for acute kidney injury in premature babies. Am J Perinatol 30:245–252PubMed
114.
go back to reference Parikh CR, Thiessen-Philbrook H, Garg AX, Kadiyala D et al (2013) Performance of kidney injury molecule-1 and liver fatty acid-binding protein and combined biomarkers of AKI after cardiac surgery. Clin J Am Soc Nephrol 8:1079–1088PubMedPubMedCentralCrossRef Parikh CR, Thiessen-Philbrook H, Garg AX, Kadiyala D et al (2013) Performance of kidney injury molecule-1 and liver fatty acid-binding protein and combined biomarkers of AKI after cardiac surgery. Clin J Am Soc Nephrol 8:1079–1088PubMedPubMedCentralCrossRef
115.
go back to reference Kuribayashi R, Suzumura H, Sairenchi T, Watabe Y et al (2016) Urinary neutrophil gelatinase-associated lipocalin is an early predictor of acute kidney injury in premature infants. Exp Ther Med 12:3706–3710PubMedPubMedCentralCrossRef Kuribayashi R, Suzumura H, Sairenchi T, Watabe Y et al (2016) Urinary neutrophil gelatinase-associated lipocalin is an early predictor of acute kidney injury in premature infants. Exp Ther Med 12:3706–3710PubMedPubMedCentralCrossRef
116.
go back to reference Reiter K, Balling G, Bonelli V, von Ohain JP, Braun SL et al (2018) Neutrophil gelatinase-associated lipocalin reflects inflammation and is not a reliable renal biomarker in neonates and infants after cardiopulmonary bypass: a prospective case-control study. Cardiol Young 28:243–251PubMedCrossRef Reiter K, Balling G, Bonelli V, von Ohain JP, Braun SL et al (2018) Neutrophil gelatinase-associated lipocalin reflects inflammation and is not a reliable renal biomarker in neonates and infants after cardiopulmonary bypass: a prospective case-control study. Cardiol Young 28:243–251PubMedCrossRef
117.
go back to reference Bellos I, Fitrou G, Daskalakis G, Perrea DN et al (2018) Neutrophil gelatinase-associated lipocalin as predictor of acute kidney injury in neonates with perinatal asphyxia: a systematic review and meta-analysis. Eur J Pediatr 177:1425–1434PubMedCrossRef Bellos I, Fitrou G, Daskalakis G, Perrea DN et al (2018) Neutrophil gelatinase-associated lipocalin as predictor of acute kidney injury in neonates with perinatal asphyxia: a systematic review and meta-analysis. Eur J Pediatr 177:1425–1434PubMedCrossRef
118.
go back to reference Washburn KK, Zappitelli M, Arikan AA, Loftis L et al (2008) Urinary interleukin-18 is an acute kidney injury biomarker in critically ill children. Nephrol Dial Transplant 23:566–572PubMedCrossRef Washburn KK, Zappitelli M, Arikan AA, Loftis L et al (2008) Urinary interleukin-18 is an acute kidney injury biomarker in critically ill children. Nephrol Dial Transplant 23:566–572PubMedCrossRef
119.
go back to reference Li Y, Fu C, Zhou Xiao Z, Zhu X et al (2012) Urine interleukin-18 and cystatin-C as biomarkers of acute kidney injury in critically ill neonates. Pediatr Nephrol 27:851–860PubMedPubMedCentralCrossRef Li Y, Fu C, Zhou Xiao Z, Zhu X et al (2012) Urine interleukin-18 and cystatin-C as biomarkers of acute kidney injury in critically ill neonates. Pediatr Nephrol 27:851–860PubMedPubMedCentralCrossRef
120.
go back to reference Mårtensson J, Bellomo R (2014) The rise and fall of NGAL in acute kidney injury. Blood Purif 37:304–310PubMedCrossRef Mårtensson J, Bellomo R (2014) The rise and fall of NGAL in acute kidney injury. Blood Purif 37:304–310PubMedCrossRef
Metadata
Title
Acute kidney injury in pediatrics: an overview focusing on pathophysiology
Authors
Ana Flávia Lima Ruas
Gabriel Malheiros Lébeis
Nicholas Bianco de Castro
Vitória Andrade Palmeira
Larissa Braga Costa
Katharina Lanza
Ana Cristina Simões e Silva
Publication date
30-11-2021
Publisher
Springer Berlin Heidelberg
Published in
Pediatric Nephrology / Issue 9/2022
Print ISSN: 0931-041X
Electronic ISSN: 1432-198X
DOI
https://doi.org/10.1007/s00467-021-05346-8

Other articles of this Issue 9/2022

Pediatric Nephrology 9/2022 Go to the issue