Skip to main content
Top
Published in: Medical Microbiology and Immunology 4/2012

01-11-2012 | Review

Murine cytomegalovirus immune evasion proteins operative in the MHC class I pathway of antigen processing and presentation: state of knowledge, revisions, and questions

Authors: Niels A. W. Lemmermann, Annette Fink, Jürgen Podlech, Stefan Ebert, Vanessa Wilhelmi, Verena Böhm, Rafaela Holtappels, Matthias J. Reddehase

Published in: Medical Microbiology and Immunology | Issue 4/2012

Login to get access

Abstract

Medical interest in cytomegalovirus (CMV) is based on lifelong neurological sequelae, such as sensorineural hearing loss and mental retardation, resulting from congenital infection of the fetus in utero, as well as on CMV disease with multiple organ manifestations and graft loss in recipients of hematopoietic cell transplantation or solid organ transplantation. CMV infection of transplantation recipients occurs consequent to reactivation of virus harbored in a latent state in the transplanted donor cells and tissues, or in the tissues of the transplantation recipient herself or himself. Hence, CMV infection is a paradigm for a viral infection that causes disease primarily in the immunocompromised host, while infection of the immunocompetent host is associated with only mild and nonspecific symptoms so that it usually goes unnoticed. Thus, CMV is kept under strict immune surveillance. These medical facts are in apparent conflict with the notion that CMVs in general, human CMV as well as animal CMVs, are masters of ‘immune evasion’, which during virus-host co-speciation have convergently evolved sophisticated mechanisms to avoid their recognition by innate and adaptive immunity of their respective host species, with viral genes apparently dedicated to serve just this purpose (Reddehase in Nat Rev Immunol 2:831–844, 2002). With focus on viral interference with antigen presentation to CD8 T cells in the preclinical model of murine CMV infection, we try here to shed some more light on the in vivo balance between host immune surveillance of CMV infection and viral ‘immune evasion’ strategies.
Literature
1.
go back to reference Hengel H, Koszinowski UH (1997) Interference with antigen processing by viruses. Curr Opin Immunol 9:470–476PubMedCrossRef Hengel H, Koszinowski UH (1997) Interference with antigen processing by viruses. Curr Opin Immunol 9:470–476PubMedCrossRef
2.
go back to reference Wiertz E, Hill A, Tortorella D, Ploegh H (1997) Cytomegaloviruses use multiple mechanisms to elude the host immune response. Immunol Lett 57:213–216PubMedCrossRef Wiertz E, Hill A, Tortorella D, Ploegh H (1997) Cytomegaloviruses use multiple mechanisms to elude the host immune response. Immunol Lett 57:213–216PubMedCrossRef
3.
go back to reference Hengel H, Brune W, Koszinowski UH (1998) Immune evasion by cytomegalovirus—survival strategies of a highly adapted opportunist. Trends Microbiol 6:190–197PubMedCrossRef Hengel H, Brune W, Koszinowski UH (1998) Immune evasion by cytomegalovirus—survival strategies of a highly adapted opportunist. Trends Microbiol 6:190–197PubMedCrossRef
4.
go back to reference Hengel H, Reusch U, Gutermann A, Ziegler H, Jonjic S, Lucin P, Koszinowski UH (1999) Cytomegaloviral control of MHC class I function in the mouse. Immunol Rev 168:167–176PubMedCrossRef Hengel H, Reusch U, Gutermann A, Ziegler H, Jonjic S, Lucin P, Koszinowski UH (1999) Cytomegaloviral control of MHC class I function in the mouse. Immunol Rev 168:167–176PubMedCrossRef
5.
go back to reference *Reddehase MJ (2002) Antigens and immunoevasins: opponents in cytomegalovirus immune surveillance. Nat Rev Immunol 2:831–844PubMedCrossRef *Reddehase MJ (2002) Antigens and immunoevasins: opponents in cytomegalovirus immune surveillance. Nat Rev Immunol 2:831–844PubMedCrossRef
6.
go back to reference Basta S, Bennink JR (2003) A survival game of hide and seek: cytomegaloviruses and MHC class I antigen presentation pathways. Viral Immunol 16:231–242PubMedCrossRef Basta S, Bennink JR (2003) A survival game of hide and seek: cytomegaloviruses and MHC class I antigen presentation pathways. Viral Immunol 16:231–242PubMedCrossRef
7.
go back to reference *Reddehase MJ, Reddehase MJ, Simon CO, Podlech J, Holtappels R (2004) Stalemating a clever opportunist: lessons from murine cytomegalovirus. Hum Immunol 65:446–455PubMedCrossRef *Reddehase MJ, Reddehase MJ, Simon CO, Podlech J, Holtappels R (2004) Stalemating a clever opportunist: lessons from murine cytomegalovirus. Hum Immunol 65:446–455PubMedCrossRef
8.
go back to reference Pinto AK, Hill AB (2005) Viral interference with antigen presentation to CD8 + T cells: lessons from cytomegalovirus. Viral Immunol 18:434–444PubMedCrossRef Pinto AK, Hill AB (2005) Viral interference with antigen presentation to CD8 + T cells: lessons from cytomegalovirus. Viral Immunol 18:434–444PubMedCrossRef
9.
go back to reference Doom CM, Hill AB (2008) MHC class I immune evasion in MCMV infection. Med Microbiol Immunol 197:191–204PubMedCrossRef Doom CM, Hill AB (2008) MHC class I immune evasion in MCMV infection. Med Microbiol Immunol 197:191–204PubMedCrossRef
10.
go back to reference Powers C, DeFilippis V, Malouli D, Früh K (2008) Cytomegalovirus immune evasion. Curr Top Microbiol Immunol 325:333–359PubMedCrossRef Powers C, DeFilippis V, Malouli D, Früh K (2008) Cytomegalovirus immune evasion. Curr Top Microbiol Immunol 325:333–359PubMedCrossRef
11.
go back to reference Hansen TH, Bouvier M (2009) MHC class I antigen presentation: learning from viral evasion strategies. Nat Rev Immunol 9:503–513PubMedCrossRef Hansen TH, Bouvier M (2009) MHC class I antigen presentation: learning from viral evasion strategies. Nat Rev Immunol 9:503–513PubMedCrossRef
12.
go back to reference *Lemmermann NA, Böhm V, Holtappels R, Reddehase MJ (2011) In vivo impact of cytomegalovirus evasion of CD8 T-cell immunity: facts and thoughts based on murine models. Virus Res 157:161–174PubMedCrossRef *Lemmermann NA, Böhm V, Holtappels R, Reddehase MJ (2011) In vivo impact of cytomegalovirus evasion of CD8 T-cell immunity: facts and thoughts based on murine models. Virus Res 157:161–174PubMedCrossRef
13.
go back to reference Noriega V, Redmann V, Gardner T, Tortorella D (2012) Diverse immune evasion strategies by human cytomegalovirus. Immunol Res Mar 28 [Epub ahead of print] Noriega V, Redmann V, Gardner T, Tortorella D (2012) Diverse immune evasion strategies by human cytomegalovirus. Immunol Res Mar 28 [Epub ahead of print]
14.
go back to reference Babić M, Krmpotić A, Jonjić S (2011) All is fair in virus-host interactions: NK cells and cytomegalovirus. Trends Mol Med 17:677–685PubMedCrossRef Babić M, Krmpotić A, Jonjić S (2011) All is fair in virus-host interactions: NK cells and cytomegalovirus. Trends Mol Med 17:677–685PubMedCrossRef
15.
go back to reference Wilkinson GW, Aicheler RJ, Wang EC (2013) Natural killer cells and human cytomegalovirus. In: Reddehase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to intervention. Caister Academic Press, Norfolk, vol II, Chap 8 (in press) Wilkinson GW, Aicheler RJ, Wang EC (2013) Natural killer cells and human cytomegalovirus. In: Reddehase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to intervention. Caister Academic Press, Norfolk, vol II, Chap 8 (in press)
16.
go back to reference Vidal S, Krmpotic A, Pyzik M, Jonjic S (2013) Innate immunity to cytomegalovirus in the murine model. In: Reddehase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to intervention. Caister Academic Press, Norfolk, vol II, Chap 9 (in press) Vidal S, Krmpotic A, Pyzik M, Jonjic S (2013) Innate immunity to cytomegalovirus in the murine model. In: Reddehase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to intervention. Caister Academic Press, Norfolk, vol II, Chap 9 (in press)
17.
go back to reference *Holtappels R, Gillert-Marien D, Thomas D, Podlech J, Deegen P, Herter S, Oehrlein-Karpi SA, Strand D, Wagner M, Reddehase MJ (2006) Cytomegalovirus encodes a positive regulator of antigen presentation. J Virol 80:7613–7624PubMedCrossRef *Holtappels R, Gillert-Marien D, Thomas D, Podlech J, Deegen P, Herter S, Oehrlein-Karpi SA, Strand D, Wagner M, Reddehase MJ (2006) Cytomegalovirus encodes a positive regulator of antigen presentation. J Virol 80:7613–7624PubMedCrossRef
18.
go back to reference Reddehase MJ, Koszinowski UH (1984) Significance of herpesvirus immediate early gene expression in cellular immunity to cytomegalovirus infection. Nature 312:369–371PubMedCrossRef Reddehase MJ, Koszinowski UH (1984) Significance of herpesvirus immediate early gene expression in cellular immunity to cytomegalovirus infection. Nature 312:369–371PubMedCrossRef
19.
go back to reference Keil GM, Fibi MR, Koszinowski UH (1985) Characterization of the major immediate-early polypeptides encoded by murine cytomegalovirus. J Virol 54:422–428PubMed Keil GM, Fibi MR, Koszinowski UH (1985) Characterization of the major immediate-early polypeptides encoded by murine cytomegalovirus. J Virol 54:422–428PubMed
20.
go back to reference Reddehase MJ, Bühring HJ, Koszinowski UH (1986) Cloned long-term cytolytic T-lymphocyte line with specificity for an immediate-early membrane antigen of murine cytomegalovirus. J Virol 57:408–412PubMed Reddehase MJ, Bühring HJ, Koszinowski UH (1986) Cloned long-term cytolytic T-lymphocyte line with specificity for an immediate-early membrane antigen of murine cytomegalovirus. J Virol 57:408–412PubMed
21.
go back to reference Reddehase MJ, Rothbard JB, Koszinowski UH (1989) A pentapeptide as minimal antigenic determinant for MHC class I-restricted T lymphocytes. Nature 337:651–653PubMedCrossRef Reddehase MJ, Rothbard JB, Koszinowski UH (1989) A pentapeptide as minimal antigenic determinant for MHC class I-restricted T lymphocytes. Nature 337:651–653PubMedCrossRef
22.
go back to reference Reddehase MJ, Fibi MR, Keil GM, Koszinowski UH (1986) Late-phase expression of a murine cytomegalovirus immediate-early antigen recognized by cytolytic T lymphocytes. J Virol 60:1125–1129PubMed Reddehase MJ, Fibi MR, Keil GM, Koszinowski UH (1986) Late-phase expression of a murine cytomegalovirus immediate-early antigen recognized by cytolytic T lymphocytes. J Virol 60:1125–1129PubMed
23.
go back to reference Del Val M, Münch K, Reddehase MJ, Koszinowski UH (1989) Presentation of CMV immediate-early antigen to cytolytic T lymphocytes is selectively prevented by viral genes expressed in the early phase. Cell 58:305–315PubMedCrossRef Del Val M, Münch K, Reddehase MJ, Koszinowski UH (1989) Presentation of CMV immediate-early antigen to cytolytic T lymphocytes is selectively prevented by viral genes expressed in the early phase. Cell 58:305–315PubMedCrossRef
24.
25.
go back to reference Wearsch PA, Cresswell P (2008) The quality control of MHC class I peptide loading. Curr Opin Cell Biol 20:624–631PubMedCrossRef Wearsch PA, Cresswell P (2008) The quality control of MHC class I peptide loading. Curr Opin Cell Biol 20:624–631PubMedCrossRef
26.
go back to reference Del Val M, Hengel H, Häcker H, Hartlaub U, Ruppert T, Lucin P, Koszinowski UH (1992) Cytomegalovirus prevents antigen presentation by blocking the transport of peptide-loaded major histocompatibility complex class I molecules into the medial-Golgi compartment. J Exp Med 176:729–738PubMedCrossRef Del Val M, Hengel H, Häcker H, Hartlaub U, Ruppert T, Lucin P, Koszinowski UH (1992) Cytomegalovirus prevents antigen presentation by blocking the transport of peptide-loaded major histocompatibility complex class I molecules into the medial-Golgi compartment. J Exp Med 176:729–738PubMedCrossRef
27.
go back to reference Thäle R, Szepan U, Hengel H, Geginat G, Lucin P, Koszinowski UH (1995) Identification of the mouse cytomegalovirus genomic region affecting major histocompatibility complex class I molecule transport. J Virol 69:6098–6105PubMed Thäle R, Szepan U, Hengel H, Geginat G, Lucin P, Koszinowski UH (1995) Identification of the mouse cytomegalovirus genomic region affecting major histocompatibility complex class I molecule transport. J Virol 69:6098–6105PubMed
28.
go back to reference Ziegler H, Thäle R, Lucin P, Muranyi W, Flohr T, Hengel H, Farrell H, Rawlinson W, Koszinowski UH (1997) A mouse cytomegalovirus glycoprotein retains MHC class I complexes in the ERGIC/cis-Golgi compartments. Immunity 6:57–66PubMedCrossRef Ziegler H, Thäle R, Lucin P, Muranyi W, Flohr T, Hengel H, Farrell H, Rawlinson W, Koszinowski UH (1997) A mouse cytomegalovirus glycoprotein retains MHC class I complexes in the ERGIC/cis-Golgi compartments. Immunity 6:57–66PubMedCrossRef
29.
go back to reference Ziegler H, Muranyi W, Burgert HG, Kremmer E, Koszinowski UH (2000) The luminal part of the murine cytomegalovirus glycoprotein gp40 catalyzes the retention of MHC class I molecules. EMBO J 19:870–881PubMedCrossRef Ziegler H, Muranyi W, Burgert HG, Kremmer E, Koszinowski UH (2000) The luminal part of the murine cytomegalovirus glycoprotein gp40 catalyzes the retention of MHC class I molecules. EMBO J 19:870–881PubMedCrossRef
30.
go back to reference Lenac T, Arapović J, Traven L, Krmpotić A, Jonjić S (2008) Murine cytomegalovirus regulation of NKG2D ligands. Med Microbiol Immunol 197:159–166PubMedCrossRef Lenac T, Arapović J, Traven L, Krmpotić A, Jonjić S (2008) Murine cytomegalovirus regulation of NKG2D ligands. Med Microbiol Immunol 197:159–166PubMedCrossRef
31.
go back to reference Reusch U, Muranyi W, Lucin P, Burgert HG, Hengel H, Koszinowski UH (1999) A cytomegalovirus glycoprotein re-routes MHC class I complexes to lysosomes for degradation. EMBO J 18:1081–1091PubMedCrossRef Reusch U, Muranyi W, Lucin P, Burgert HG, Hengel H, Koszinowski UH (1999) A cytomegalovirus glycoprotein re-routes MHC class I complexes to lysosomes for degradation. EMBO J 18:1081–1091PubMedCrossRef
32.
go back to reference Reusch U, Bernhard O, Koszinowski U, Schu P (2002) AP-1A and AP-3A lysosomal sorting functions. Traffic 3:752–761PubMedCrossRef Reusch U, Bernhard O, Koszinowski U, Schu P (2002) AP-1A and AP-3A lysosomal sorting functions. Traffic 3:752–761PubMedCrossRef
33.
go back to reference Kleijnen MF, Huppa JB, Lucin P, Mukherjee S, Farrell H, Campbell AE, Koszinowski UH, Hill AB, Ploegh HL (1997) A mouse cytomegalovirus glycoprotein, gp34, forms a complex with folded class I MHC molecules in the ER which is not retained but is transported to the cell surface. EMBO J 16:685–694PubMedCrossRef Kleijnen MF, Huppa JB, Lucin P, Mukherjee S, Farrell H, Campbell AE, Koszinowski UH, Hill AB, Ploegh HL (1997) A mouse cytomegalovirus glycoprotein, gp34, forms a complex with folded class I MHC molecules in the ER which is not retained but is transported to the cell surface. EMBO J 16:685–694PubMedCrossRef
34.
go back to reference Kavanagh DG, Koszinowski UH, Hill AB (2001) The murine cytomegalovirus immune evasion protein m4/gp34 forms biochemically distinct complexes with class I MHC at the cell surface and in a pre-Golgi compartment. J Immunol 167:3894–3902PubMed Kavanagh DG, Koszinowski UH, Hill AB (2001) The murine cytomegalovirus immune evasion protein m4/gp34 forms biochemically distinct complexes with class I MHC at the cell surface and in a pre-Golgi compartment. J Immunol 167:3894–3902PubMed
35.
go back to reference Lu X, Kavanagh DG, Hill AB (2006) Cellular and molecular requirements for association of the murine cytomegalovirus protein m4/gp34 with major histocompatibility complex class I molecules. J Virol 80:6048–6055PubMedCrossRef Lu X, Kavanagh DG, Hill AB (2006) Cellular and molecular requirements for association of the murine cytomegalovirus protein m4/gp34 with major histocompatibility complex class I molecules. J Virol 80:6048–6055PubMedCrossRef
36.
go back to reference Aguilar RC, Boehm M, Gorshkova I, Crouch RJ, Tomita K, Saito T, Ohno H, Bonifacino JS (2001) Signal-binding specificity of the mu4 subunit of the adaptor protein complex AP-4. J Biol Chem 276:13145–13152PubMedCrossRef Aguilar RC, Boehm M, Gorshkova I, Crouch RJ, Tomita K, Saito T, Ohno H, Bonifacino JS (2001) Signal-binding specificity of the mu4 subunit of the adaptor protein complex AP-4. J Biol Chem 276:13145–13152PubMedCrossRef
37.
go back to reference Corbett AJ, Forbes CA, Moro D, Scalzo AA (2007) Extensive sequence variation exists among isolates of murine cytomegalovirus within members of the m02 family of genes. J Gen Virol 88:758–769PubMedCrossRef Corbett AJ, Forbes CA, Moro D, Scalzo AA (2007) Extensive sequence variation exists among isolates of murine cytomegalovirus within members of the m02 family of genes. J Gen Virol 88:758–769PubMedCrossRef
38.
go back to reference *Holtappels R, Thomas D, Podlech J, Geginat G, Steffens HP, Reddehase MJ (2000) The putative natural killer decoy early gene m04 (gp34) of murine cytomegalovirus encodes an antigenic peptide recognized by protective antiviral CD8 T cells. J Virol 74:1871–1884PubMedCrossRef *Holtappels R, Thomas D, Podlech J, Geginat G, Steffens HP, Reddehase MJ (2000) The putative natural killer decoy early gene m04 (gp34) of murine cytomegalovirus encodes an antigenic peptide recognized by protective antiviral CD8 T cells. J Virol 74:1871–1884PubMedCrossRef
39.
go back to reference Pearse BM, Smith CJ, Owen DJ (2000) Clathrin coat construction in endocytosis. Curr Opin Struct Biol 10:220–228PubMedCrossRef Pearse BM, Smith CJ, Owen DJ (2000) Clathrin coat construction in endocytosis. Curr Opin Struct Biol 10:220–228PubMedCrossRef
40.
41.
go back to reference *Wagner M, Gutermann A, Podlech J, Reddehase MJ, Koszinowski UH (2002) Major histocompatibility complex class I allele-specific cooperative and competitive interactions between immune evasion proteins of cytomegalovirus. J Exp Med 196:805–816PubMedCrossRef *Wagner M, Gutermann A, Podlech J, Reddehase MJ, Koszinowski UH (2002) Major histocompatibility complex class I allele-specific cooperative and competitive interactions between immune evasion proteins of cytomegalovirus. J Exp Med 196:805–816PubMedCrossRef
42.
go back to reference Pinto AK, Munks MW, Koszinowski UH, Hill AB (2006) Coordinated function of murine cytomegalovirus genes completely inhibits CTL lysis. J Immunol 177:3225–3234PubMed Pinto AK, Munks MW, Koszinowski UH, Hill AB (2006) Coordinated function of murine cytomegalovirus genes completely inhibits CTL lysis. J Immunol 177:3225–3234PubMed
43.
go back to reference *Holtappels R, Simon CO, Munks MW, Thomas D, Deegen P, Kühnapfel B, Däubner T, Emde SF, Podlech J, Grzimek NK, Oehrlein-Karpi SA, Hill AB, Reddehase MJ (2008) Subdominant CD8 T-cell epitopes account for protection against cytomegalovirus independent of immunodomination. J Virol 82:5781–5796PubMedCrossRef *Holtappels R, Simon CO, Munks MW, Thomas D, Deegen P, Kühnapfel B, Däubner T, Emde SF, Podlech J, Grzimek NK, Oehrlein-Karpi SA, Hill AB, Reddehase MJ (2008) Subdominant CD8 T-cell epitopes account for protection against cytomegalovirus independent of immunodomination. J Virol 82:5781–5796PubMedCrossRef
44.
go back to reference Kavanagh DG, Gold MC, Wagner M, Koszinowski UH, Hill AB (2001) The multiple immune-evasion genes of murine cytomegalovirus are not redundant: m4 and m152 inhibit antigen presentation in a complementary and cooperative fashion. J Exp Med 194:967–978PubMedCrossRef Kavanagh DG, Gold MC, Wagner M, Koszinowski UH, Hill AB (2001) The multiple immune-evasion genes of murine cytomegalovirus are not redundant: m4 and m152 inhibit antigen presentation in a complementary and cooperative fashion. J Exp Med 194:967–978PubMedCrossRef
45.
go back to reference *Böhm V, Simon CO, Podlech J, Seckert CK, Gendig D, Deegen P, Gillert-Marien D, Lemmermann NA, Holtappels R, Reddehase MJ (2008) The immune evasion paradox: immunoevasins of murine cytomegalovirus enhance priming of CD8 T cells by preventing negative feedback regulation. J Virol 82:11637–11650PubMedCrossRef *Böhm V, Simon CO, Podlech J, Seckert CK, Gendig D, Deegen P, Gillert-Marien D, Lemmermann NA, Holtappels R, Reddehase MJ (2008) The immune evasion paradox: immunoevasins of murine cytomegalovirus enhance priming of CD8 T cells by preventing negative feedback regulation. J Virol 82:11637–11650PubMedCrossRef
46.
go back to reference *Lemmermann NA, Gergely K, Böhm V, Deegen P, Däubner T, Reddehase MJ (2010) Immune evasion proteins of murine cytomegalovirus preferentially affect cell surface display of recently generated peptide presentation complexes. J Virol 84:1221–1236PubMedCrossRef *Lemmermann NA, Gergely K, Böhm V, Deegen P, Däubner T, Reddehase MJ (2010) Immune evasion proteins of murine cytomegalovirus preferentially affect cell surface display of recently generated peptide presentation complexes. J Virol 84:1221–1236PubMedCrossRef
47.
go back to reference Porgador A, Yewdell JW, Deng Y, Bennink JR, Germain RN (1997) Localization, quantitation, and in situ detection of specific peptide-MHC class I complexes using a monoclonal antibody. Immunity 6:715–726PubMedCrossRef Porgador A, Yewdell JW, Deng Y, Bennink JR, Germain RN (1997) Localization, quantitation, and in situ detection of specific peptide-MHC class I complexes using a monoclonal antibody. Immunity 6:715–726PubMedCrossRef
48.
go back to reference *Däubner T, Fink A, Seitz A, Tenzer S, Müller J, Strand D, Seckert CK, Janssen C, Renzaho A, Grzimek NK, Simon CO, Ebert S, Reddehase MJ, Oehrlein-Karpi SA, Lemmermann NA (2010) A novel transmembrane domain mediating retention of a highly motile herpesvirus glycoprotein in the endoplasmic reticulum. J Gen Virol 91:1524–1534PubMedCrossRef *Däubner T, Fink A, Seitz A, Tenzer S, Müller J, Strand D, Seckert CK, Janssen C, Renzaho A, Grzimek NK, Simon CO, Ebert S, Reddehase MJ, Oehrlein-Karpi SA, Lemmermann NA (2010) A novel transmembrane domain mediating retention of a highly motile herpesvirus glycoprotein in the endoplasmic reticulum. J Gen Virol 91:1524–1534PubMedCrossRef
49.
go back to reference *Lemmermann NA, Kropp KA, Seckert CK, Grzimek NK, Reddehase MJ (2011) Reverse genetics modification of cytomegalovirus antigenicity and immunogenicity by CD8 T-cell epitope deletion and insertion. J Biomed Biotechnol 2011:812742PubMedCrossRef *Lemmermann NA, Kropp KA, Seckert CK, Grzimek NK, Reddehase MJ (2011) Reverse genetics modification of cytomegalovirus antigenicity and immunogenicity by CD8 T-cell epitope deletion and insertion. J Biomed Biotechnol 2011:812742PubMedCrossRef
50.
go back to reference Gold MC, Munks MW, Wagner M, Koszinowski UH, Hill AB, Fling SP (2002) The murine cytomegalovirus immunomodulatory gene m152 prevents recognition of infected cells by M45-specific CTL but does not alter the immunodominance of the M45-specific CD8 T cell response in vivo. J Immunol 169:359–365PubMed Gold MC, Munks MW, Wagner M, Koszinowski UH, Hill AB, Fling SP (2002) The murine cytomegalovirus immunomodulatory gene m152 prevents recognition of infected cells by M45-specific CTL but does not alter the immunodominance of the M45-specific CD8 T cell response in vivo. J Immunol 169:359–365PubMed
51.
go back to reference Munks MW, Pinto AK, Doom CM, Hill AB (2007) Viral interference with antigen presentation does not alter acute or chronic CD8 T cell immunodominance in murine cytomegalovirus infection. J Immunol 178:7235–7241PubMed Munks MW, Pinto AK, Doom CM, Hill AB (2007) Viral interference with antigen presentation does not alter acute or chronic CD8 T cell immunodominance in murine cytomegalovirus infection. J Immunol 178:7235–7241PubMed
52.
go back to reference Munks MW, Gold MC, Zajac AL, Doom CM, Morello CS, Spector DH, Hill AB (2006) Genome-wide analysis reveals a highly diverse CD8 T cell response to murine cytomegalovirus. J Immunol 176:3760–3766PubMed Munks MW, Gold MC, Zajac AL, Doom CM, Morello CS, Spector DH, Hill AB (2006) Genome-wide analysis reveals a highly diverse CD8 T cell response to murine cytomegalovirus. J Immunol 176:3760–3766PubMed
53.
go back to reference Snyder CM, Allan JE, Bonnett EL, Doom CM, Hill AB (2010) Cross-presentation of a spread-defective MCMV is sufficient to prime the majority of virus-specific CD8 + T cells. PLoS ONE 5:e9681PubMedCrossRef Snyder CM, Allan JE, Bonnett EL, Doom CM, Hill AB (2010) Cross-presentation of a spread-defective MCMV is sufficient to prime the majority of virus-specific CD8 + T cells. PLoS ONE 5:e9681PubMedCrossRef
54.
go back to reference Torti N, Walton SM, Murphy KM, Oxenius A (2011) Batf3 transcription factor-dependent DC subsets in murine CMV infection: differential impact on T-cell priming and memory inflation. Eur J Immunol 41:2612–2618PubMedCrossRef Torti N, Walton SM, Murphy KM, Oxenius A (2011) Batf3 transcription factor-dependent DC subsets in murine CMV infection: differential impact on T-cell priming and memory inflation. Eur J Immunol 41:2612–2618PubMedCrossRef
55.
56.
go back to reference Cannon MJ, Grosse SD, Fowler KB (2013) The epidemiology and public health impact of congenital cytomegalovirus infection. In: Reddehase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to intervention. Caister Academic Press, Norfolk, vol II, Chap 2 (in press) Cannon MJ, Grosse SD, Fowler KB (2013) The epidemiology and public health impact of congenital cytomegalovirus infection. In: Reddehase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to intervention. Caister Academic Press, Norfolk, vol II, Chap 2 (in press)
57.
go back to reference Adler SP, Nigro G (2013) Clinical cytomegalovirus research: congenital infection. In: Reddehase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to intervention. Caister Academic Press, Norfolk, vol II, Chap 3 (in press) Adler SP, Nigro G (2013) Clinical cytomegalovirus research: congenital infection. In: Reddehase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to intervention. Caister Academic Press, Norfolk, vol II, Chap 3 (in press)
58.
go back to reference Klein L, Hinterberger M, Wirnsberger G, Kyewski B (2009) Antigen presentation in the thymus for positive selection and central tolerance induction. Nat Rev Immunol 9:833–844PubMedCrossRef Klein L, Hinterberger M, Wirnsberger G, Kyewski B (2009) Antigen presentation in the thymus for positive selection and central tolerance induction. Nat Rev Immunol 9:833–844PubMedCrossRef
59.
go back to reference Reddehase MJ, Balthesen M, Rapp M, Jonjić S, Pavić I, Koszinowski UH (1994) The conditions of primary infection define the load of latent viral genome in organs and the risk of recurrent cytomegalovirus disease. J Exp Med 179:185–193PubMedCrossRef Reddehase MJ, Balthesen M, Rapp M, Jonjić S, Pavić I, Koszinowski UH (1994) The conditions of primary infection define the load of latent viral genome in organs and the risk of recurrent cytomegalovirus disease. J Exp Med 179:185–193PubMedCrossRef
60.
go back to reference Reddehase MJ, Keil GM, Koszinowski UH (1984) The cytolytic T lymphocyte response to the murine cytomegalovirus. II. Detection of virus replication stage-specific antigens by separate populations of in vivo active cytolytic T lymphocyte precursors. Eur J Immunol 14:56–61PubMedCrossRef Reddehase MJ, Keil GM, Koszinowski UH (1984) The cytolytic T lymphocyte response to the murine cytomegalovirus. II. Detection of virus replication stage-specific antigens by separate populations of in vivo active cytolytic T lymphocyte precursors. Eur J Immunol 14:56–61PubMedCrossRef
61.
go back to reference Bantug GR, Cekinovic D, Bradford R, Koontz T, Jonjic S, Britt WJ (2008) CD8 + T lymphocytes control murine cytomegalovirus replication in the central nervous system of newborn animals. J Immunol 181:2111–2123PubMed Bantug GR, Cekinovic D, Bradford R, Koontz T, Jonjic S, Britt WJ (2008) CD8 + T lymphocytes control murine cytomegalovirus replication in the central nervous system of newborn animals. J Immunol 181:2111–2123PubMed
62.
go back to reference *Lemmermann NA, Podlech J, Seckert CK, Kropp KA, Grzimek NK, Reddehase MJ, Holtappels R (2010) CD8 T-cell immunotherapy of cytomegalovirus disease in the murine model. In: Kabelitz D, Kaufmann SHE (eds) Methods in microbiology: immunology of infection. Academic Press, London, pp 369–420CrossRef *Lemmermann NA, Podlech J, Seckert CK, Kropp KA, Grzimek NK, Reddehase MJ, Holtappels R (2010) CD8 T-cell immunotherapy of cytomegalovirus disease in the murine model. In: Kabelitz D, Kaufmann SHE (eds) Methods in microbiology: immunology of infection. Academic Press, London, pp 369–420CrossRef
63.
go back to reference *Seckert CK, Schader SI, Ebert S, Thomas D, Freitag K, Renzaho A, Podlech J, Reddehase MJ, Holtappels R (2011) Antigen-presenting cells of haematopoietic origin prime cytomegalovirus-specific CD8 T-cells but are not sufficient for driving memory inflation during viral latency. J Gen Virol 92:1994–2005PubMedCrossRef *Seckert CK, Schader SI, Ebert S, Thomas D, Freitag K, Renzaho A, Podlech J, Reddehase MJ, Holtappels R (2011) Antigen-presenting cells of haematopoietic origin prime cytomegalovirus-specific CD8 T-cells but are not sufficient for driving memory inflation during viral latency. J Gen Virol 92:1994–2005PubMedCrossRef
64.
go back to reference *Holtappels R, Pahl-Seibert MF, Thomas D, Reddehase MJ (2000) Enrichment of immediate-early 1 (m123/pp 89) peptide-specific CD8 T cells in a pulmonary CD62L(lo) memory-effector cell pool during latent murine cytomegalovirus infection of the lungs. J Virol 74:11495–11503PubMedCrossRef *Holtappels R, Pahl-Seibert MF, Thomas D, Reddehase MJ (2000) Enrichment of immediate-early 1 (m123/pp 89) peptide-specific CD8 T cells in a pulmonary CD62L(lo) memory-effector cell pool during latent murine cytomegalovirus infection of the lungs. J Virol 74:11495–11503PubMedCrossRef
65.
66.
go back to reference Snyder CM (2011) Buffered memory: a hypothesis for the maintenance of functional, virus-specific CD8(+) T cells during cytomegalovirus infection. Immunol Res 51:195–204PubMedCrossRef Snyder CM (2011) Buffered memory: a hypothesis for the maintenance of functional, virus-specific CD8(+) T cells during cytomegalovirus infection. Immunol Res 51:195–204PubMedCrossRef
67.
go back to reference O’Hara GA, Welten SP, Klenerman P, Arens R (2012) Memory T cell inflation: understanding cause and effect. Trends Immunol 33:84–90PubMedCrossRef O’Hara GA, Welten SP, Klenerman P, Arens R (2012) Memory T cell inflation: understanding cause and effect. Trends Immunol 33:84–90PubMedCrossRef
68.
go back to reference *Seckert CK, GrießlM, Büttner JK, Freitag K, Lemmermann NA, Hummel MA, Liu XF, Abecassis MI, Angulo A, Messerle M, Cook CH, Reddehase MJ (2013) Immune surveillance of cytomegalovirus latency and reactivation in murine models: link to “memory inflation”. In: Reddehase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to intervention. Caister Academic Press, Norfolk, vol I, Chap 22 (in press) *Seckert CK, GrießlM, Büttner JK, Freitag K, Lemmermann NA, Hummel MA, Liu XF, Abecassis MI, Angulo A, Messerle M, Cook CH, Reddehase MJ (2013) Immune surveillance of cytomegalovirus latency and reactivation in murine models: link to “memory inflation”. In: Reddehase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to intervention. Caister Academic Press, Norfolk, vol I, Chap 22 (in press)
69.
go back to reference Kurz SK, Rapp M, Steffens HP, Grzimek NK, Schmalz S, Reddehase MJ (1999) Focal transcriptional activity of murine cytomegalovirus during latency in the lungs. J Virol 73:482–494PubMed Kurz SK, Rapp M, Steffens HP, Grzimek NK, Schmalz S, Reddehase MJ (1999) Focal transcriptional activity of murine cytomegalovirus during latency in the lungs. J Virol 73:482–494PubMed
70.
go back to reference *Simon CO, Holtappels R, Tervo HM, Böhm V, Däubner T, Oehrlein-Karpi SA, Kühnapfel B, Renzaho A, Strand D, Podlech J, Reddehase MJ, Grzimek NK (2006) CD8 T cells control cytomegalovirus latency by epitope-specific sensing of transcriptional reactivation. J Virol 80:10436–10456PubMedCrossRef *Simon CO, Holtappels R, Tervo HM, Böhm V, Däubner T, Oehrlein-Karpi SA, Kühnapfel B, Renzaho A, Strand D, Podlech J, Reddehase MJ, Grzimek NK (2006) CD8 T cells control cytomegalovirus latency by epitope-specific sensing of transcriptional reactivation. J Virol 80:10436–10456PubMedCrossRef
71.
go back to reference *Reddehase MJ, Simon CO, Seckert CK, Lemmermann N, Grzimek NK (2008) Murine model of cytomegalovirus latency and reactivation. Curr Top Microbiol Immunol 325:315–331PubMedCrossRef *Reddehase MJ, Simon CO, Seckert CK, Lemmermann N, Grzimek NK (2008) Murine model of cytomegalovirus latency and reactivation. Curr Top Microbiol Immunol 325:315–331PubMedCrossRef
72.
go back to reference *Holtappels R, Thomas D, Podlech J, Reddehase MJ (2002) Two antigenic peptides from genes m123 and m164 of murine cytomegalovirus quantitatively dominate CD8 T-cell memory in the H-2d haplotype. J Virol 76:151–164PubMedCrossRef *Holtappels R, Thomas D, Podlech J, Reddehase MJ (2002) Two antigenic peptides from genes m123 and m164 of murine cytomegalovirus quantitatively dominate CD8 T-cell memory in the H-2d haplotype. J Virol 76:151–164PubMedCrossRef
73.
go back to reference Munks MW, Cho KS, Pinto AK, Sierro S, Klenerman P, Hill AB (2006) Four distinct patterns of memory CD8 T cell responses to chronic murine cytomegalovirus infection. J Immunol 177:450–458PubMed Munks MW, Cho KS, Pinto AK, Sierro S, Klenerman P, Hill AB (2006) Four distinct patterns of memory CD8 T cell responses to chronic murine cytomegalovirus infection. J Immunol 177:450–458PubMed
74.
go back to reference *Holtappels R, Munks MW, Podlech J, Reddehase MJ (2006) CD8 T-cell-based immunotherapy of cytomegalovirus disease in the mouse model of the immunocompromised bone marrow transplantation recipient. In: Reddehase MJ (ed) Cytomegaloviruses: molecular biology and immunology. Caister Academic Press, Norfolk, Chap 19, pp 383–418 *Holtappels R, Munks MW, Podlech J, Reddehase MJ (2006) CD8 T-cell-based immunotherapy of cytomegalovirus disease in the mouse model of the immunocompromised bone marrow transplantation recipient. In: Reddehase MJ (ed) Cytomegaloviruses: molecular biology and immunology. Caister Academic Press, Norfolk, Chap 19, pp 383–418
75.
go back to reference Torti N, Walton SM, Brocker T, Rülicke T, Oxenius A (2011) Non-hematopoietic cells in lymph nodes drive memory CD8 T cell inflation during murine cytomegalovirus infection. PLoS Pathog 7:e1002313PubMedCrossRef Torti N, Walton SM, Brocker T, Rülicke T, Oxenius A (2011) Non-hematopoietic cells in lymph nodes drive memory CD8 T cell inflation during murine cytomegalovirus infection. PLoS Pathog 7:e1002313PubMedCrossRef
76.
go back to reference Gold MC, Munks MW, Wagner M, McMahon CW, Kelly A, Kavanagh DG, Slifka MK, Koszinowski UH, Raulet DH, Hill AB (2004) Murine cytomegalovirus interference with antigen presentation has little effect on the size or the effector memory phenotype of the CD8 T cell response. J Immunol 172:6944–6953PubMed Gold MC, Munks MW, Wagner M, McMahon CW, Kelly A, Kavanagh DG, Slifka MK, Koszinowski UH, Raulet DH, Hill AB (2004) Murine cytomegalovirus interference with antigen presentation has little effect on the size or the effector memory phenotype of the CD8 T cell response. J Immunol 172:6944–6953PubMed
77.
go back to reference Lu X, Pinto AK, Kelly AM, Cho KS, Hill AB (2006) Murine cytomegalovirus interference with antigen presentation contributes to the inability of CD8 T cells to control virus in the salivary gland. J Virol 80:4200–4202PubMedCrossRef Lu X, Pinto AK, Kelly AM, Cho KS, Hill AB (2006) Murine cytomegalovirus interference with antigen presentation contributes to the inability of CD8 T cells to control virus in the salivary gland. J Virol 80:4200–4202PubMedCrossRef
78.
go back to reference *Holtappels R, Ebert S, Podlech J, Fink A, Böhm V, Lemmermann NA, Freitag K, Renzaho A, Thomas D, Reddehase MJ (2013) Murine model for cytoimmunotherapy of CMV disease after hematopoietic cell transplantation. In: Reddehase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to intervention. Caister Academic Press, Norfolk, vol II, Chap 17 (in press) *Holtappels R, Ebert S, Podlech J, Fink A, Böhm V, Lemmermann NA, Freitag K, Renzaho A, Thomas D, Reddehase MJ (2013) Murine model for cytoimmunotherapy of CMV disease after hematopoietic cell transplantation. In: Reddehase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to intervention. Caister Academic Press, Norfolk, vol II, Chap 17 (in press)
79.
go back to reference Podlech J, Holtappels R, Wirtz N, Steffens HP, Reddehase MJ (1998) Reconstitution of CD8 T cells is essential for the prevention of multiple-organ cytomegalovirus histopathology after bone marrow transplantation. J Gen Virol 79:2099–2104PubMed Podlech J, Holtappels R, Wirtz N, Steffens HP, Reddehase MJ (1998) Reconstitution of CD8 T cells is essential for the prevention of multiple-organ cytomegalovirus histopathology after bone marrow transplantation. J Gen Virol 79:2099–2104PubMed
80.
go back to reference *Podlech J, Holtappels R, Pahl-Seibert MF, Steffens HP, Reddehase MJ (2000) Murine model of interstitial cytomegalovirus pneumonia in syngeneic bone marrow transplantation: persistence of protective pulmonary CD8-T-cell infiltrates after clearance of acute infection. J Virol 74:7496–7507PubMedCrossRef *Podlech J, Holtappels R, Pahl-Seibert MF, Steffens HP, Reddehase MJ (2000) Murine model of interstitial cytomegalovirus pneumonia in syngeneic bone marrow transplantation: persistence of protective pulmonary CD8-T-cell infiltrates after clearance of acute infection. J Virol 74:7496–7507PubMedCrossRef
81.
go back to reference *Böhm V, Seckert CK, Simon CO, Thomas D, Renzaho A, Gendig D, Holtappels R, Reddehase MJ (2009) Immune evasion proteins enhance cytomegalovirus latency in the lungs. J Virol 83:10293–10298PubMedCrossRef *Böhm V, Seckert CK, Simon CO, Thomas D, Renzaho A, Gendig D, Holtappels R, Reddehase MJ (2009) Immune evasion proteins enhance cytomegalovirus latency in the lungs. J Virol 83:10293–10298PubMedCrossRef
82.
go back to reference Krmpotic A, Messerle M, Crnkovic-Mertens I, Polic B, Jonjic S, Koszinowski UH (1999) The immunoevasive function encoded by the mouse cytomegalovirus gene m152 protects the virus against T cell control in vivo. J Exp Med 190:1285–1296PubMedCrossRef Krmpotic A, Messerle M, Crnkovic-Mertens I, Polic B, Jonjic S, Koszinowski UH (1999) The immunoevasive function encoded by the mouse cytomegalovirus gene m152 protects the virus against T cell control in vivo. J Exp Med 190:1285–1296PubMedCrossRef
83.
go back to reference *Wirtz N, Schader SI, Holtappels R, Simon CO, Lemmermann NA, Reddehase MJ, Podlech J (2008) Polyclonal cytomegalovirus-specific antibodies not only prevent virus dissemination from the portal of entry but also inhibit focal virus spread within target tissues. Med Microbiol Immunol 197:151–158PubMedCrossRef *Wirtz N, Schader SI, Holtappels R, Simon CO, Lemmermann NA, Reddehase MJ, Podlech J (2008) Polyclonal cytomegalovirus-specific antibodies not only prevent virus dissemination from the portal of entry but also inhibit focal virus spread within target tissues. Med Microbiol Immunol 197:151–158PubMedCrossRef
84.
go back to reference Powers C, Früh K (2008) Rhesus CMV: an emerging animal model for human CMV. Med Microbiol Immunol 197:109–115PubMedCrossRef Powers C, Früh K (2008) Rhesus CMV: an emerging animal model for human CMV. Med Microbiol Immunol 197:109–115PubMedCrossRef
85.
go back to reference Früh K, Malouli D, Oxford KL, Barry PA (2013) Non-human-primate models of cytomegalovirus infection, prevention, and therapy. In: Reddehase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to intervention. Caister Academic Press, Norfolk, vol II, Chap 22 (in press) Früh K, Malouli D, Oxford KL, Barry PA (2013) Non-human-primate models of cytomegalovirus infection, prevention, and therapy. In: Reddehase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to intervention. Caister Academic Press, Norfolk, vol II, Chap 22 (in press)
86.
go back to reference Jarvis MA, Hansen SG, Nelson JA, Picker LJ, Früh K (2013) Vaccine vectors using the unique biology and immunology of cytomegalovirus. In: Reddehase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to intervention. Caister Academic Press, Norfolk, vol II, Chap 21 (in press) Jarvis MA, Hansen SG, Nelson JA, Picker LJ, Früh K (2013) Vaccine vectors using the unique biology and immunology of cytomegalovirus. In: Reddehase MJ (ed) Cytomegaloviruses: from molecular pathogenesis to intervention. Caister Academic Press, Norfolk, vol II, Chap 21 (in press)
87.
go back to reference Hansen SG, Powers CJ, Richards R, Ventura AB, Ford JC, Siess D, Axthelm MK, Nelson JA, Jarvis MA, Picker LJ, Früh K (2010) Evasion of CD8 + T cells is critical for superinfection by cytomegalovirus. Science 328:102–106PubMedCrossRef Hansen SG, Powers CJ, Richards R, Ventura AB, Ford JC, Siess D, Axthelm MK, Nelson JA, Jarvis MA, Picker LJ, Früh K (2010) Evasion of CD8 + T cells is critical for superinfection by cytomegalovirus. Science 328:102–106PubMedCrossRef
88.
go back to reference *Holtappels R, Böhm V, Podlech J, Reddehase MJ (2008) CD8 T-cell-based immunotherapy of cytomegalovirus infection: “proof of concept” provided by the murine model. Med Microbiol Immunol 197:125–134PubMedCrossRef *Holtappels R, Böhm V, Podlech J, Reddehase MJ (2008) CD8 T-cell-based immunotherapy of cytomegalovirus infection: “proof of concept” provided by the murine model. Med Microbiol Immunol 197:125–134PubMedCrossRef
89.
go back to reference *Holtappels R, Thomas D, Reddehase MJ (2009) The efficacy of antigen processing is critical for protection against cytomegalovirus disease in the presence of viral immune evasion proteins. J Virol 83:9611–9615PubMedCrossRef *Holtappels R, Thomas D, Reddehase MJ (2009) The efficacy of antigen processing is critical for protection against cytomegalovirus disease in the presence of viral immune evasion proteins. J Virol 83:9611–9615PubMedCrossRef
90.
go back to reference *Holtappels R, Podlech J, Pahl-Seibert MF, Jülch M, Thomas D, Simon CO, Wagner M, Reddehase MJ (2004) Cytomegalovirus misleads its host by priming of CD8 T cells specific for an epitope not presented in infected tissues. J Exp Med 199:131–136PubMedCrossRef *Holtappels R, Podlech J, Pahl-Seibert MF, Jülch M, Thomas D, Simon CO, Wagner M, Reddehase MJ (2004) Cytomegalovirus misleads its host by priming of CD8 T cells specific for an epitope not presented in infected tissues. J Exp Med 199:131–136PubMedCrossRef
91.
go back to reference *Cicin-Sain L, Podlech J, Messerle M, Reddehase MJ, Koszinowski UH (2005) Frequent coinfection of cells explains functional in vivo complementation between cytomegalovirus variants in the multiply infected host. J Virol 79:9492–9502PubMedCrossRef *Cicin-Sain L, Podlech J, Messerle M, Reddehase MJ, Koszinowski UH (2005) Frequent coinfection of cells explains functional in vivo complementation between cytomegalovirus variants in the multiply infected host. J Virol 79:9492–9502PubMedCrossRef
Metadata
Title
Murine cytomegalovirus immune evasion proteins operative in the MHC class I pathway of antigen processing and presentation: state of knowledge, revisions, and questions
Authors
Niels A. W. Lemmermann
Annette Fink
Jürgen Podlech
Stefan Ebert
Vanessa Wilhelmi
Verena Böhm
Rafaela Holtappels
Matthias J. Reddehase
Publication date
01-11-2012
Publisher
Springer-Verlag
Published in
Medical Microbiology and Immunology / Issue 4/2012
Print ISSN: 0300-8584
Electronic ISSN: 1432-1831
DOI
https://doi.org/10.1007/s00430-012-0257-y

Other articles of this Issue 4/2012

Medical Microbiology and Immunology 4/2012 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.