Skip to main content
Top
Published in: Basic Research in Cardiology 3/2010

01-05-2010 | Original Contribution

Blockage of Angiotensin II type 2 receptor prevents thyroxine-mediated cardiac hypertrophy by blocking Akt activation

Authors: M. S. Carneiro-Ramos, G. P. Diniz, A. P. Nadu, J. Almeida, R. L. P. Vieira, R. A. S. Santos, M. L. M. Barreto-Chaves

Published in: Basic Research in Cardiology | Issue 3/2010

Login to get access

Abstract

Although most of effects of Angiotensin II (Ang II) related to cardiac remodelling can be attributed to type 1 Ang II receptor (AT1R), the type 2 receptor (AT2R) has been shown to be involved in the development of some cardiac hypertrophy models. In the present study, we investigated whether the thyroid hormone (TH) action leading to cardiac hypertrophy is also mediated by increased Ang II levels or by change on AT1R and AT2R expression, which could contribute to this effect. In addition, we also evaluated the possible contribution of AT2R in the activation of Akt and in the development of TH-induced cardiac hypertrophy. To address these questions, Wistar rats were treated with thyroxine (T4, 0.1 mg/kg BW/day, i.p.), with or without AT2R blocker (PD123319), for 14 days. Cardiac hypertrophy was identified based on heart/body weight ratio and confirmed by analysis of atrial natriuretic factor mRNA expression. Cardiomyocyte cultures were used to exclude the influence of TH-related hemodynamic effects. Our results demonstrate that the cardiac Ang II levels were significantly increased (80%, P < 0.001) as well as the AT2R expression (50%, P < 0.05) in TH-induced cardiac hypertrophy. The critical involvement of AT2R to the development of this cardiac hypertrophy in vivo was evidenced after administration of AT2 blocker, which was able to prevent in 40% (P < 0.01) the cardiac mass gain and the Akt activation induced by TH. The role of AT2R to the TH-induced cardiomyocyte hypertrophy was also confirmed after using PD123319 in the in vitro studies. These findings improve understanding of the cardiac hypertrophy observed in hyperthyroidism and provide new insights into the generation of future therapeutic strategies.
Literature
1.
go back to reference Barreto-Chaves ML, Heimann A, Krieger JE (2000) Stimulatory effect of dexamethasone on angiotensin-converting enzyme in neonatal rat cardiac myocytes. Braz J Med Biol Res 33:661–664CrossRefPubMed Barreto-Chaves ML, Heimann A, Krieger JE (2000) Stimulatory effect of dexamethasone on angiotensin-converting enzyme in neonatal rat cardiac myocytes. Braz J Med Biol Res 33:661–664CrossRefPubMed
2.
go back to reference Berry C, Touyz R, Dominiczak AF, Webb RC, Johns DG (2001) Angiotensin receptors: signaling, vascular pathophysiology, and interactions with ceramide. Am J Physiol Heart Circ Physiol 281:H2337–H2365PubMed Berry C, Touyz R, Dominiczak AF, Webb RC, Johns DG (2001) Angiotensin receptors: signaling, vascular pathophysiology, and interactions with ceramide. Am J Physiol Heart Circ Physiol 281:H2337–H2365PubMed
3.
go back to reference Billet S, Aguilar F, Baudry C, Clauser E (2008) Role of angiotensin II AT1 receptor activation in cardiovascular diseases. Kidney Int 74:1379–1384CrossRefPubMed Billet S, Aguilar F, Baudry C, Clauser E (2008) Role of angiotensin II AT1 receptor activation in cardiovascular diseases. Kidney Int 74:1379–1384CrossRefPubMed
4.
go back to reference Booz GW (2004) Cardiac angiotensin AT2 receptor: what exactly does it do? Hypertension 43:1162–1163CrossRefPubMed Booz GW (2004) Cardiac angiotensin AT2 receptor: what exactly does it do? Hypertension 43:1162–1163CrossRefPubMed
5.
go back to reference Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254CrossRefPubMed Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254CrossRefPubMed
6.
go back to reference Brent GA, Williams GR, Harney JW, Forman BM, Samuels HH, Moore DD, Larsen PR (1991) Effects of varying the position of thyroid hormone response elements within the rat growth hormone promoter: implications for positive and negative regulation by 3,5,3′-triiodothyronine. Mol Endocrinol 5:542–548CrossRefPubMed Brent GA, Williams GR, Harney JW, Forman BM, Samuels HH, Moore DD, Larsen PR (1991) Effects of varying the position of thyroid hormone response elements within the rat growth hormone promoter: implications for positive and negative regulation by 3,5,3′-triiodothyronine. Mol Endocrinol 5:542–548CrossRefPubMed
7.
go back to reference Burrow GN (1994) Thyroid dysfunction in the recently pregnant: postpartum thyroiditis. Thyroid 4:363–365CrossRefPubMed Burrow GN (1994) Thyroid dysfunction in the recently pregnant: postpartum thyroiditis. Thyroid 4:363–365CrossRefPubMed
8.
go back to reference Carneiro-Ramos MS, da Silva VB, Coutinho MB Jr, Battastini AM, Sarkis JJ, Barreto-Chaves ML (2004) Thyroid hormone stimulates 5′-ecto-nucleotidase of neonatal rat ventricular myocytes. Mol Cell Biochem 265:195–201CrossRefPubMed Carneiro-Ramos MS, da Silva VB, Coutinho MB Jr, Battastini AM, Sarkis JJ, Barreto-Chaves ML (2004) Thyroid hormone stimulates 5′-ecto-nucleotidase of neonatal rat ventricular myocytes. Mol Cell Biochem 265:195–201CrossRefPubMed
9.
go back to reference Carneiro-Ramos MS, Diniz GP, Almeida J, Vieira RL, Pinheiro SV, Santos RA, Barreto-Chaves ML (2007) Cardiac angiotensin II type I and type II receptors are increased in rats submitted to experimental hypothyroidism. J Physiol 583:213–223CrossRefPubMed Carneiro-Ramos MS, Diniz GP, Almeida J, Vieira RL, Pinheiro SV, Santos RA, Barreto-Chaves ML (2007) Cardiac angiotensin II type I and type II receptors are increased in rats submitted to experimental hypothyroidism. J Physiol 583:213–223CrossRefPubMed
10.
go back to reference Carneiro-Ramos MS, Silva VB, Santos RA, Barreto-Chaves ML (2006) Tissue-specific modulation of angiotensin-converting enzyme (ACE) in hyperthyroidism. Peptides 11:2942–2949CrossRef Carneiro-Ramos MS, Silva VB, Santos RA, Barreto-Chaves ML (2006) Tissue-specific modulation of angiotensin-converting enzyme (ACE) in hyperthyroidism. Peptides 11:2942–2949CrossRef
11.
go back to reference Caruso-Neves C, Kwon SH, Guggino WB (2005) Albumin endocytosis in proximal tubule cells is modulated by angiotensin II through an AT2 receptor-mediated protein kinase B activation. Proc Natl Acad Sci USA 102:17513–17518CrossRefPubMed Caruso-Neves C, Kwon SH, Guggino WB (2005) Albumin endocytosis in proximal tubule cells is modulated by angiotensin II through an AT2 receptor-mediated protein kinase B activation. Proc Natl Acad Sci USA 102:17513–17518CrossRefPubMed
12.
go back to reference D’Amore A, Black MJ, Thomas WG (2005) The angiotensin II type 2 receptor causes constitutive growth of cardiomyocytes and does not antagonize angiotensin II type 1 receptor-mediated hypertrophy. Hypertension 46:1347–1354CrossRefPubMed D’Amore A, Black MJ, Thomas WG (2005) The angiotensin II type 2 receptor causes constitutive growth of cardiomyocytes and does not antagonize angiotensin II type 1 receptor-mediated hypertrophy. Hypertension 46:1347–1354CrossRefPubMed
13.
go back to reference de Gasparo M, Catt KJ, Inagami T, Wright JW, Unger T (2000) International union of pharmacology. XXIII. The angiotensin II receptors. Pharmacol Rev 52:415–472PubMed de Gasparo M, Catt KJ, Inagami T, Wright JW, Unger T (2000) International union of pharmacology. XXIII. The angiotensin II receptors. Pharmacol Rev 52:415–472PubMed
14.
go back to reference Diniz GP, Carneiro-Ramos MS, Barreto-Chaves ML (2007) Angiotensin type 1 (AT1) and type 2 (AT2) receptors mediate the increase in TGF-beta1 in thyroid hormone-induced cardiac hypertrophy. Pflugers Arch 454:75–81CrossRefPubMed Diniz GP, Carneiro-Ramos MS, Barreto-Chaves ML (2007) Angiotensin type 1 (AT1) and type 2 (AT2) receptors mediate the increase in TGF-beta1 in thyroid hormone-induced cardiac hypertrophy. Pflugers Arch 454:75–81CrossRefPubMed
15.
go back to reference Diniz GP, Carneiro-Ramos MS, Barreto-Chaves ML (2009) Angiotensin type 1 receptor mediates thyroid hormone-induced cardiomyocyte hypertrophy through the Akt/GSK-3beta/mTOR signaling pathway. Basic Res Cardiol 104:653–667CrossRefPubMed Diniz GP, Carneiro-Ramos MS, Barreto-Chaves ML (2009) Angiotensin type 1 receptor mediates thyroid hormone-induced cardiomyocyte hypertrophy through the Akt/GSK-3beta/mTOR signaling pathway. Basic Res Cardiol 104:653–667CrossRefPubMed
16.
go back to reference Dostal DE, Rothblum KN, Conrad KM, Cooper GR, Baker KM (1992) Detection of angiotensin I and II in cultured rat cardiac myocytes and fibroblasts. Am J Physiol 263:C851–C863PubMed Dostal DE, Rothblum KN, Conrad KM, Cooper GR, Baker KM (1992) Detection of angiotensin I and II in cultured rat cardiac myocytes and fibroblasts. Am J Physiol 263:C851–C863PubMed
17.
go back to reference Eppenberger-Eberhardt M, Aigner S, Donath MY, Kurer V, Walther P, Zuppinger C, Schaub MC, Eppenberger HM (1997) IGF-I and bFGF differentially influence atrial natriuretic factor and alpha-smooth muscle actin expression in cultured atrial compared to ventricular adult rat cardiomyocytes. J Mol Cell Cardiol 29:2027–2039CrossRefPubMed Eppenberger-Eberhardt M, Aigner S, Donath MY, Kurer V, Walther P, Zuppinger C, Schaub MC, Eppenberger HM (1997) IGF-I and bFGF differentially influence atrial natriuretic factor and alpha-smooth muscle actin expression in cultured atrial compared to ventricular adult rat cardiomyocytes. J Mol Cell Cardiol 29:2027–2039CrossRefPubMed
18.
go back to reference Fischer P, Hilfiker-Kleiner D (2007) Survival pathways in hypertrophy and heart failure: the gp130-STAT3 axis. Basic Res Cardiol 102:279–297CrossRefPubMed Fischer P, Hilfiker-Kleiner D (2007) Survival pathways in hypertrophy and heart failure: the gp130-STAT3 axis. Basic Res Cardiol 102:279–297CrossRefPubMed
19.
go back to reference Gosteli-Peter MA, Harder BA, Eppenberger HM, Zapf J, Schaub MC (1996) Triiodothyronine induces over-expression of alpha-smooth muscle actin, restricts myofibrillar expansion and is permissive for the action of basic fibroblast growth factor and insulin-like growth factor I in adult rat cardiomyocytes. J Clin Invest 98:1737–1744CrossRefPubMed Gosteli-Peter MA, Harder BA, Eppenberger HM, Zapf J, Schaub MC (1996) Triiodothyronine induces over-expression of alpha-smooth muscle actin, restricts myofibrillar expansion and is permissive for the action of basic fibroblast growth factor and insulin-like growth factor I in adult rat cardiomyocytes. J Clin Invest 98:1737–1744CrossRefPubMed
20.
go back to reference Horiuchi M, Akishita M, Dzau VJ (1999) Recent progress in angiotensin II type 2 receptor research in the cardiovascular system. Hypertension 33:613–621PubMed Horiuchi M, Akishita M, Dzau VJ (1999) Recent progress in angiotensin II type 2 receptor research in the cardiovascular system. Hypertension 33:613–621PubMed
21.
go back to reference Hu LW, Benvenuti LA, Liberti EA, Carneiro-Ramos MS, Barreto-Chaves ML (2003) Thyroxine-induced cardiac hypertrophy: influence of adrenergic nervous system versus renin–angiotensin system on myocyte remodeling. Am J Physiol Regul Integr Comp Physiol 285:R1473–R1480PubMed Hu LW, Benvenuti LA, Liberti EA, Carneiro-Ramos MS, Barreto-Chaves ML (2003) Thyroxine-induced cardiac hypertrophy: influence of adrenergic nervous system versus renin–angiotensin system on myocyte remodeling. Am J Physiol Regul Integr Comp Physiol 285:R1473–R1480PubMed
22.
go back to reference Ichihara S, Senbonmatsu T, Price E Jr, Ichiki T, Gaffney FA, Inagami T (2001) Angiotensin II type 2 receptor is essential for left ventricular hypertrophy and cardiac fibrosis in chronic angiotensin II-induced hypertension. Circulation 104:346–351PubMed Ichihara S, Senbonmatsu T, Price E Jr, Ichiki T, Gaffney FA, Inagami T (2001) Angiotensin II type 2 receptor is essential for left ventricular hypertrophy and cardiac fibrosis in chronic angiotensin II-induced hypertension. Circulation 104:346–351PubMed
23.
24.
go back to reference Katz AM (2003) Pathophysiology of heart failure: identifying targets for pharmacotherapy. Med Clin North Am 87:303–316CrossRefPubMed Katz AM (2003) Pathophysiology of heart failure: identifying targets for pharmacotherapy. Med Clin North Am 87:303–316CrossRefPubMed
25.
go back to reference Kenessey A, Ojamaa K (2006) Thyroid hormone stimulates protein synthesis in the cardiomyocyte by activating the Akt-mTOR and p70S6K pathways. J Biol Chem 281:20666–20672CrossRefPubMed Kenessey A, Ojamaa K (2006) Thyroid hormone stimulates protein synthesis in the cardiomyocyte by activating the Akt-mTOR and p70S6K pathways. J Biol Chem 281:20666–20672CrossRefPubMed
28.
go back to reference Klein I (1988) Thyroxine-induced cardiac hypertrophy: time course of development and inhibition by propranolol. Endocrinology 123:203–210CrossRefPubMed Klein I (1988) Thyroxine-induced cardiac hypertrophy: time course of development and inhibition by propranolol. Endocrinology 123:203–210CrossRefPubMed
29.
go back to reference Kobori H, Ichihara A, Miyashita Y, Hayashi M, Saruta T (1999) Local renin–angiotensin system contributes to hyperthyroidism-induced cardiac hypertrophy. J Endocrinol 160:43–47CrossRefPubMed Kobori H, Ichihara A, Miyashita Y, Hayashi M, Saruta T (1999) Local renin–angiotensin system contributes to hyperthyroidism-induced cardiac hypertrophy. J Endocrinol 160:43–47CrossRefPubMed
30.
go back to reference Kobori H, Ichihara A, Suzuki H, Miyashita Y, Hayashi M, Saruta T (1997) Thyroid hormone stimulates renin synthesis in rats without involving the sympathetic nervous system. Am J Physiol 272:E227–E232PubMed Kobori H, Ichihara A, Suzuki H, Miyashita Y, Hayashi M, Saruta T (1997) Thyroid hormone stimulates renin synthesis in rats without involving the sympathetic nervous system. Am J Physiol 272:E227–E232PubMed
31.
go back to reference Kuzman JA, Vogelsang KA, Thomas TA, Gerdes AM (2005) l-Thyroxine activates Akt signaling in the heart. J Mol Cell Cardiol 39:251–258CrossRefPubMed Kuzman JA, Vogelsang KA, Thomas TA, Gerdes AM (2005) l-Thyroxine activates Akt signaling in the heart. J Mol Cell Cardiol 39:251–258CrossRefPubMed
32.
go back to reference Levy BI, Benessiano J, Henrion D, Caputo L, Heymes C, Duriez M, Poitevin P, Samuel JL (1996) Chronic blockade of AT2-subtype receptors prevents the effect of angiotensin II on the rat vascular structure. J Clin Invest 98:418–425CrossRefPubMed Levy BI, Benessiano J, Henrion D, Caputo L, Heymes C, Duriez M, Poitevin P, Samuel JL (1996) Chronic blockade of AT2-subtype receptors prevents the effect of angiotensin II on the rat vascular structure. J Clin Invest 98:418–425CrossRefPubMed
33.
go back to reference Lindpaintner K, Lu W, Neidermajer N, Schieffer B, Just H, Ganten D, Drexler H (1993) Selective activation of cardiac angiotensinogen gene expression in post-infarction ventricular remodeling in the rat. J Mol Cell Cardiol 25:133–143CrossRefPubMed Lindpaintner K, Lu W, Neidermajer N, Schieffer B, Just H, Ganten D, Drexler H (1993) Selective activation of cardiac angiotensinogen gene expression in post-infarction ventricular remodeling in the rat. J Mol Cell Cardiol 25:133–143CrossRefPubMed
34.
go back to reference Liu YH, Yang XP, Sharov VG, Nass O, Sabbah HN, Peterson E, Carretero OA (1997) Effects of angiotensin-converting enzyme inhibitors and angiotensin II type 1 receptor antagonists in rats with heart failure. Role of kinins and angiotensin II type 2 receptors. J Clin Invest 99:1926–1935CrossRefPubMed Liu YH, Yang XP, Sharov VG, Nass O, Sabbah HN, Peterson E, Carretero OA (1997) Effects of angiotensin-converting enzyme inhibitors and angiotensin II type 1 receptor antagonists in rats with heart failure. Role of kinins and angiotensin II type 2 receptors. J Clin Invest 99:1926–1935CrossRefPubMed
35.
go back to reference Mifune M, Sasamura H, Shimizu-Hirota R, Miyazaki H, Saruta T (2000) Angiotensin II type 2 receptors stimulate collagen synthesis in cultured vascular smooth muscle cells. Hypertension 36:845–850PubMed Mifune M, Sasamura H, Shimizu-Hirota R, Miyazaki H, Saruta T (2000) Angiotensin II type 2 receptors stimulate collagen synthesis in cultured vascular smooth muscle cells. Hypertension 36:845–850PubMed
36.
go back to reference Miki T, Miura T, Tanno M, Nishihara M, Naitoh K, Sato T, Takahashi A, Shimamoto K (2007) Impairment of cardioprotective PI3K-Akt signaling by post-infarct ventricular remodeling is compensated by an ERK-mediated pathway. Basic Res Cardiol 102:163–170CrossRefPubMed Miki T, Miura T, Tanno M, Nishihara M, Naitoh K, Sato T, Takahashi A, Shimamoto K (2007) Impairment of cardioprotective PI3K-Akt signaling by post-infarct ventricular remodeling is compensated by an ERK-mediated pathway. Basic Res Cardiol 102:163–170CrossRefPubMed
37.
go back to reference Morgan HE, Baker KM (1991) Cardiac hypertrophy. Mechanical, neural, and endocrine dependence. Circulation 83:13–25PubMed Morgan HE, Baker KM (1991) Cardiac hypertrophy. Mechanical, neural, and endocrine dependence. Circulation 83:13–25PubMed
38.
go back to reference Nouet S, Amzallag N, Li JM, Louis S, Seitz I, Cui TX, Alleaume AM, Di Benedetto M, Boden C, Masson M, Strosberg AD, Horiuchi M, Couraud PO, Nahmias C (2004) Trans-inactivation of receptor tyrosine kinases by novel angiotensin II AT2 receptor-interacting protein, ATIP. J Biol Chem 279:28989–28997CrossRefPubMed Nouet S, Amzallag N, Li JM, Louis S, Seitz I, Cui TX, Alleaume AM, Di Benedetto M, Boden C, Masson M, Strosberg AD, Horiuchi M, Couraud PO, Nahmias C (2004) Trans-inactivation of receptor tyrosine kinases by novel angiotensin II AT2 receptor-interacting protein, ATIP. J Biol Chem 279:28989–28997CrossRefPubMed
39.
go back to reference Oudit GY, Penninger JM (2009) Cardiac regulation by phosphoinositide 3-kinases and PTEN. Cardiovasc Res 82:250–260CrossRefPubMed Oudit GY, Penninger JM (2009) Cardiac regulation by phosphoinositide 3-kinases and PTEN. Cardiovasc Res 82:250–260CrossRefPubMed
40.
go back to reference Pantos C, Mourouzis I, Markakis K, Tsagoulis N, Panagiotou M, Cokkinos DV (2008) Long-term thyroid hormone administration reshapes left ventricular chamber and improves cardiac function after myocardial infarction in rats. Basic Res Cardiol 103:308–318CrossRefPubMed Pantos C, Mourouzis I, Markakis K, Tsagoulis N, Panagiotou M, Cokkinos DV (2008) Long-term thyroid hormone administration reshapes left ventricular chamber and improves cardiac function after myocardial infarction in rats. Basic Res Cardiol 103:308–318CrossRefPubMed
41.
go back to reference Pantos C, Mourouzis I, Xinaris C, Papadopoulou-Daifoti Z, Cokkinos D (2008) Thyroid hormone and “cardiac metamorphosis”: potential therapeutic implications. Pharmacol Ther 118:277–294CrossRefPubMed Pantos C, Mourouzis I, Xinaris C, Papadopoulou-Daifoti Z, Cokkinos D (2008) Thyroid hormone and “cardiac metamorphosis”: potential therapeutic implications. Pharmacol Ther 118:277–294CrossRefPubMed
42.
go back to reference Porrello ER, Delbridge LM, Thomas WG (2009) The angiotensin II type 2 (AT2) receptor: an enigmatic seven transmembrane receptor. Front Biosci 14:958–972CrossRefPubMed Porrello ER, Delbridge LM, Thomas WG (2009) The angiotensin II type 2 (AT2) receptor: an enigmatic seven transmembrane receptor. Front Biosci 14:958–972CrossRefPubMed
43.
go back to reference Sadoshima J, Izumo S (1993) Molecular characterization of angiotensin II-induced hypertrophy of cardiac myocytes and hyperplasia of cardiac fibroblasts. Critical role of the AT1 receptor subtype. Circ Res 73:413–423PubMed Sadoshima J, Izumo S (1993) Molecular characterization of angiotensin II-induced hypertrophy of cardiac myocytes and hyperplasia of cardiac fibroblasts. Critical role of the AT1 receptor subtype. Circ Res 73:413–423PubMed
44.
go back to reference Santos RA, Simoes e Silva AC, Maric C, Silva DM, Machado RP, de Buhr I, Heringer-Walther S, Pinheiro SV, Lopes MT, Bader M, Mendes EP, Lemos VS, Campagnole-Santos MJ, Schultheiss HP, Speth R, Walther T (2003) Angiotensin-(1–7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc Natl Acad Sci USA 100:8258–8263CrossRefPubMed Santos RA, Simoes e Silva AC, Maric C, Silva DM, Machado RP, de Buhr I, Heringer-Walther S, Pinheiro SV, Lopes MT, Bader M, Mendes EP, Lemos VS, Campagnole-Santos MJ, Schultheiss HP, Speth R, Walther T (2003) Angiotensin-(1–7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc Natl Acad Sci USA 100:8258–8263CrossRefPubMed
45.
go back to reference Senbonmatsu T, Ichihara S, Price E Jr, Gaffney FA, Inagami T (2000) Evidence for angiotensin II type 2 receptor-mediated cardiac myocyte enlargement during in vivo pressure overload. J Clin Invest 106:R25–R29CrossRefPubMed Senbonmatsu T, Ichihara S, Price E Jr, Gaffney FA, Inagami T (2000) Evidence for angiotensin II type 2 receptor-mediated cardiac myocyte enlargement during in vivo pressure overload. J Clin Invest 106:R25–R29CrossRefPubMed
46.
go back to reference Senbonmatsu T, Saito T, Landon EJ, Watanabe O, Price E Jr, Roberts RL, Imboden H, Fitzgerald TG, Gaffney FA, Inagami T (2003) A novel angiotensin II type 2 receptor signaling pathway: possible role in cardiac hypertrophy. EMBO J 22:6471–6482CrossRefPubMed Senbonmatsu T, Saito T, Landon EJ, Watanabe O, Price E Jr, Roberts RL, Imboden H, Fitzgerald TG, Gaffney FA, Inagami T (2003) A novel angiotensin II type 2 receptor signaling pathway: possible role in cardiac hypertrophy. EMBO J 22:6471–6482CrossRefPubMed
47.
go back to reference Tsuzuki S, Matoba T, Eguchi S, Inagami T (1996) Angiotensin II type 2 receptor inhibits cell proliferation and activates tyrosine phosphatase. Hypertension 28:916–918PubMed Tsuzuki S, Matoba T, Eguchi S, Inagami T (1996) Angiotensin II type 2 receptor inhibits cell proliferation and activates tyrosine phosphatase. Hypertension 28:916–918PubMed
48.
go back to reference Tuxworth WJ Jr, Shiraishi H, Moschella PC, Yamane K, McDermott PJ, Kuppuswamy D (2008) Translational activation of 5′-TOP mRNA in pressure overload myocardium. Basic Res Cardiol 103:41–53CrossRefPubMed Tuxworth WJ Jr, Shiraishi H, Moschella PC, Yamane K, McDermott PJ, Kuppuswamy D (2008) Translational activation of 5′-TOP mRNA in pressure overload myocardium. Basic Res Cardiol 103:41–53CrossRefPubMed
49.
go back to reference Yamada T, Horiuchi M, Dzau VJ (1996) Angiotensin II type 2 receptor mediates programmed cell death. Proc Natl Acad Sci USA 93:156–160CrossRefPubMed Yamada T, Horiuchi M, Dzau VJ (1996) Angiotensin II type 2 receptor mediates programmed cell death. Proc Natl Acad Sci USA 93:156–160CrossRefPubMed
Metadata
Title
Blockage of Angiotensin II type 2 receptor prevents thyroxine-mediated cardiac hypertrophy by blocking Akt activation
Authors
M. S. Carneiro-Ramos
G. P. Diniz
A. P. Nadu
J. Almeida
R. L. P. Vieira
R. A. S. Santos
M. L. M. Barreto-Chaves
Publication date
01-05-2010
Publisher
Springer-Verlag
Published in
Basic Research in Cardiology / Issue 3/2010
Print ISSN: 0300-8428
Electronic ISSN: 1435-1803
DOI
https://doi.org/10.1007/s00395-010-0089-0

Other articles of this Issue 3/2010

Basic Research in Cardiology 3/2010 Go to the issue