Skip to main content
Top
Published in: Basic Research in Cardiology 2/2009

Open Access 01-03-2009 | Original Contribution

Autophagy is required for preconditioning by the adenosine A1 receptor-selective agonist CCPA

Authors: Smadar Yitzhaki, Chengqun Huang, Wayne Liu, Youngil Lee, Åsa B. Gustafsson, Robert M. Mentzer Jr, Roberta A. Gottlieb

Published in: Basic Research in Cardiology | Issue 2/2009

Login to get access

Abstract

We have shown that the cellular process of macroautophagy plays a protective role in HL-1 cardiomyocytes subjected to simulated ischemia/reperfusion (sI/R) (Hamacher-Brady et al. in J Biol Chem 281(40):29776–29787). Since the nucleoside adenosine has been shown to mimic both early and late phase ischemic preconditioning, a potent cardioprotective phenomenon, the purpose of this study was to determine the effect of adenosine on autophagosome formation. Autophagy is a highly regulated intracellular degradation process by which cells remove cytosolic long-lived proteins and damaged organelles, and can be monitored by imaging the incorporation of microtubule-associated light chain 3 (LC3) fused to a fluorescent protein (GFP or mCherry) into nascent autophagosomes. We investigated the effect of adenosine receptor agonists on autophagy and cell survival following sI/R in GFP-LC3 infected HL-1 cells and neonatal rat cardiomyocytes. The A1 adenosine receptor agonist 2-chloro-N(6)-cyclopentyladenosine (CCPA) (100 nM) caused an increase in the number of autophagosomes within 10 min of treatment; the effect persisted for at least 300 min. A significant inhibition of autophagy and loss of protection against sI/R measured by release of lactate dehydrogenase (LDH), was demonstrated in CCPA-pretreated cells treated with an A1 receptor antagonist, a phospholipase C inhibitor, or an intracellular Ca(+2) chelator. To determine whether autophagy was required for the protective effect of CCPA, autophagy was blocked with a dominant negative inhibitor (Atg5K130R) delivered by transient transfection (in HL-1 cells) or protein transduction (in adult rat cardiomyocytes). CCPA attenuated LDH release after sI/R, but protection was lost when autophagy was blocked. To assess autophagy in vivo, transgenic mice expressing the red fluorescent autophagy marker mCherry-LC3 under the control of the alpha myosin heavy chain promoter were treated with CCPA 1 mg/kg i.p. Fluorescence microscopy of cryosections taken from the left ventricle 30 min after CCPA injection revealed a large increase in the number of mCherry-LC3-labeled structures, indicating the induction of autophagy by CCPA in vivo. Taken together, these results indicate that autophagy plays an important role in mediating the cardioprotective effects conferred by adenosine pretreatment.
Literature
1.
go back to reference Hamacher-Brady A, Brady NR, Gottlieb RA (2006) Enhancing macroautophagy protects against ischemia/reperfusion injury in cardiac myocytes. J Biol Chem 281(40):29776–29787PubMedCrossRef Hamacher-Brady A, Brady NR, Gottlieb RA (2006) Enhancing macroautophagy protects against ischemia/reperfusion injury in cardiac myocytes. J Biol Chem 281(40):29776–29787PubMedCrossRef
2.
go back to reference Cohen MV, Downey JM (2008) Adenosine: trigger and mediator of cardioprotection. Basic Res Cardiol 103(3):203–215PubMedCrossRef Cohen MV, Downey JM (2008) Adenosine: trigger and mediator of cardioprotection. Basic Res Cardiol 103(3):203–215PubMedCrossRef
3.
go back to reference Downey JM, Krieg T, Cohen MV (2008) Mapping preconditioning’s signaling pathways: an engineering approach. Ann N Y Acad Sci 1123:187–196PubMedCrossRef Downey JM, Krieg T, Cohen MV (2008) Mapping preconditioning’s signaling pathways: an engineering approach. Ann N Y Acad Sci 1123:187–196PubMedCrossRef
4.
go back to reference Yao Z, Gross GJ (1994) A comparison of adenosine-induced cardioprotection and ischemic preconditioning in dogs. Efficacy, time course, and role of KATP channels. Circulation 89(3):1229–1236PubMed Yao Z, Gross GJ (1994) A comparison of adenosine-induced cardioprotection and ischemic preconditioning in dogs. Efficacy, time course, and role of KATP channels. Circulation 89(3):1229–1236PubMed
5.
go back to reference Fryer RM, Eells JT, Hsu AK, Henry MM, Gross GJ (2000) Ischemic preconditioning in rats: role of mitochondrial K(ATP) channel in preservation of mitochondrial function. Am J Physiol Heart Circ Physiol 278(1):H305–H312PubMed Fryer RM, Eells JT, Hsu AK, Henry MM, Gross GJ (2000) Ischemic preconditioning in rats: role of mitochondrial K(ATP) channel in preservation of mitochondrial function. Am J Physiol Heart Circ Physiol 278(1):H305–H312PubMed
6.
go back to reference Costa AD, Garlid KD (2008) Intramitochondrial signaling: interactions among mitoKATP, PKCepsilon, ROS, and MPT. Am J Physiol Heart Circ Physiol 295(2):H874–H882PubMedCrossRef Costa AD, Garlid KD (2008) Intramitochondrial signaling: interactions among mitoKATP, PKCepsilon, ROS, and MPT. Am J Physiol Heart Circ Physiol 295(2):H874–H882PubMedCrossRef
7.
go back to reference Garcia-Dorado D, Rodriguez-Sinovas A, Ruiz-Meana M, Inserte J, Agullo L, Cabestrero A (2006) The end-effectors of preconditioning protection against myocardial cell death secondary to ischemia-reperfusion. Cardiovasc Res 70(2):274–285PubMedCrossRef Garcia-Dorado D, Rodriguez-Sinovas A, Ruiz-Meana M, Inserte J, Agullo L, Cabestrero A (2006) The end-effectors of preconditioning protection against myocardial cell death secondary to ischemia-reperfusion. Cardiovasc Res 70(2):274–285PubMedCrossRef
8.
go back to reference Caro LHP, Plomp PJAM, Wolvetang EJ, Kerkhof C, Meijer AJ (1988) 3-Methyladenine, an inhibitor of autophagy, has multiple effects on metabolism. Eur J Biochem 175(2):325–329PubMedCrossRef Caro LHP, Plomp PJAM, Wolvetang EJ, Kerkhof C, Meijer AJ (1988) 3-Methyladenine, an inhibitor of autophagy, has multiple effects on metabolism. Eur J Biochem 175(2):325–329PubMedCrossRef
9.
go back to reference Sekulic A, Hudson CC, Homme JL, Yin P, Otterness DM, Karnitz LM, Abraham RT (2000) A direct linkage between the phosphoinositide 3-kinase-AKT signaling pathway and the mammalian target of Rapamycin in mitogen-stimulated and transformed cells. Cancer Res 60(13):3504–3513PubMed Sekulic A, Hudson CC, Homme JL, Yin P, Otterness DM, Karnitz LM, Abraham RT (2000) A direct linkage between the phosphoinositide 3-kinase-AKT signaling pathway and the mammalian target of Rapamycin in mitogen-stimulated and transformed cells. Cancer Res 60(13):3504–3513PubMed
10.
go back to reference Mizushima N, Noda T, Yoshimori T, Tanaka Y, Ishii T, George MD, Klionsky DJ, Ohsumi M, Ohsumi Y (1998) A protein conjugation system essential for autophagy. Nature 395(6700):395–398PubMedCrossRef Mizushima N, Noda T, Yoshimori T, Tanaka Y, Ishii T, George MD, Klionsky DJ, Ohsumi M, Ohsumi Y (1998) A protein conjugation system essential for autophagy. Nature 395(6700):395–398PubMedCrossRef
11.
go back to reference Hamacher-Brady A, Brady NR, Logue SE, Sayen MR, Jinno M, Kirshenbaum LA, Gottlieb RA, Gustafsson AB (2006) Response to myocardial ischemia/reperfusion injury involves Bnip3 and autophagy. Cell Death Differ 14:146–157PubMedCrossRef Hamacher-Brady A, Brady NR, Logue SE, Sayen MR, Jinno M, Kirshenbaum LA, Gottlieb RA, Gustafsson AB (2006) Response to myocardial ischemia/reperfusion injury involves Bnip3 and autophagy. Cell Death Differ 14:146–157PubMedCrossRef
12.
go back to reference Pyo J-O, Jang M-H, Kwon Y-K, Lee H-J, Jun J-IL, Woo H-N, Cho D-H, Choi B, Lee H, Kim J-H, Mizushima N, Oshumi Y, Jung Y-K (2005) Essential roles of Atg5 and FADD in autophagic cell death: DISSECTION OF AUTOPHAGIC CELL DEATH INTO VACUOLE FORMATION AND CELL DEATH. J Biol Chem 280(21):20722–20729PubMedCrossRef Pyo J-O, Jang M-H, Kwon Y-K, Lee H-J, Jun J-IL, Woo H-N, Cho D-H, Choi B, Lee H, Kim J-H, Mizushima N, Oshumi Y, Jung Y-K (2005) Essential roles of Atg5 and FADD in autophagic cell death: DISSECTION OF AUTOPHAGIC CELL DEATH INTO VACUOLE FORMATION AND CELL DEATH. J Biol Chem 280(21):20722–20729PubMedCrossRef
13.
go back to reference Decker RS, Wildenthal K (1980) Lysosomal alterations in hypoxic and reoxygenated hearts. I. Ultrastructural and cytochemical changes. Am J Pathol 98(2):425–444PubMed Decker RS, Wildenthal K (1980) Lysosomal alterations in hypoxic and reoxygenated hearts. I. Ultrastructural and cytochemical changes. Am J Pathol 98(2):425–444PubMed
14.
go back to reference Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. Embo J 19(21):5720–5728PubMedCrossRef Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. Embo J 19(21):5720–5728PubMedCrossRef
15.
go back to reference Yan L, Vatner DE, Kim SJ, Ge H, Masurekar M, Massover WH, Yang G, Matsui Y, Sadoshima J, Vatner SF (2005) Autophagy in chronically ischemic myocardium. Proc Natl Acad Sci USA 102(39):13807–13812PubMedCrossRef Yan L, Vatner DE, Kim SJ, Ge H, Masurekar M, Massover WH, Yang G, Matsui Y, Sadoshima J, Vatner SF (2005) Autophagy in chronically ischemic myocardium. Proc Natl Acad Sci USA 102(39):13807–13812PubMedCrossRef
16.
go back to reference Claycomb WC, Lanson NA Jr, Stallworth BS, Egeland DB, Delcarpio JB, Bahinski A, Izzo NJ Jr (1998) HL–1 cells: a cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte. Proc Natl Acad Sci USA 95(6):2979–2984PubMedCrossRef Claycomb WC, Lanson NA Jr, Stallworth BS, Egeland DB, Delcarpio JB, Bahinski A, Izzo NJ Jr (1998) HL–1 cells: a cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte. Proc Natl Acad Sci USA 95(6):2979–2984PubMedCrossRef
17.
go back to reference Becker-Hapak M, McAllister SS, Dowdy SF (2001) TAT-mediated protein transduction into mammalian cells. Methods 24(3):247–256PubMedCrossRef Becker-Hapak M, McAllister SS, Dowdy SF (2001) TAT-mediated protein transduction into mammalian cells. Methods 24(3):247–256PubMedCrossRef
18.
go back to reference Gustafsson AB, Sayen MR, Williams SD, Crow MT, Gottlieb RA (2002) TAT protein transduction into isolated perfused hearts: TAT-apoptosis repressor with caspase recruitment domain is cardioprotective. Circulation 106(6):735–739PubMed Gustafsson AB, Sayen MR, Williams SD, Crow MT, Gottlieb RA (2002) TAT protein transduction into isolated perfused hearts: TAT-apoptosis repressor with caspase recruitment domain is cardioprotective. Circulation 106(6):735–739PubMed
19.
go back to reference Yamamoto A, Tagawa Y, Yoshimori T, Moriyama Y, Masaki R, Tashiro Y (1998) Bafilomycin A1 prevents maturation of autophagic vacuoles by inhibiting fusion between autophagosomes and lysosomes in rat hepatoma cell line, H-4-II-E cells. Cell Struct Funct 23(1):33–42PubMedCrossRef Yamamoto A, Tagawa Y, Yoshimori T, Moriyama Y, Masaki R, Tashiro Y (1998) Bafilomycin A1 prevents maturation of autophagic vacuoles by inhibiting fusion between autophagosomes and lysosomes in rat hepatoma cell line, H-4-II-E cells. Cell Struct Funct 23(1):33–42PubMedCrossRef
20.
go back to reference El-Ani D, Jacobson KA, Shainberg A (1994) Characterization of adenosine receptors in intact cultured heart cells. Biochem Pharmacol 48(4):727–735PubMedCrossRef El-Ani D, Jacobson KA, Shainberg A (1994) Characterization of adenosine receptors in intact cultured heart cells. Biochem Pharmacol 48(4):727–735PubMedCrossRef
21.
go back to reference Safran N, Shneyvays V, Balas N, Jacobson KA, Nawrath H, Shainberg A (2001) Cardioprotective effects of adenosine A1 and A3 receptor activation during hypoxia in isolated rat cardiac myocytes. Mol Cell Biochem 217(1–2):143–152PubMedCrossRef Safran N, Shneyvays V, Balas N, Jacobson KA, Nawrath H, Shainberg A (2001) Cardioprotective effects of adenosine A1 and A3 receptor activation during hypoxia in isolated rat cardiac myocytes. Mol Cell Biochem 217(1–2):143–152PubMedCrossRef
22.
go back to reference Nieminen A-L, Gores GJ, Bond JM, Imberti R, Herman B, Lemasters JJ (1992) A novel cytotoxicity screening assay using a multiwell fluorescence scanner. Toxicol Appl Pharmacol 115(2):147–155PubMedCrossRef Nieminen A-L, Gores GJ, Bond JM, Imberti R, Herman B, Lemasters JJ (1992) A novel cytotoxicity screening assay using a multiwell fluorescence scanner. Toxicol Appl Pharmacol 115(2):147–155PubMedCrossRef
23.
go back to reference Iwai-Kanai E, Yuan H, Huang C, Sayen MR, Perry-Garza CN, Kim L, Gottlieb RA (2008) A method to measure cardiac autophagic flux in vivo. Autophagy 4(3):322–329PubMed Iwai-Kanai E, Yuan H, Huang C, Sayen MR, Perry-Garza CN, Kim L, Gottlieb RA (2008) A method to measure cardiac autophagic flux in vivo. Autophagy 4(3):322–329PubMed
24.
go back to reference Ethier MF, Madison JM (2006) Adenosine A1 receptors mediate mobilization of calcium in human bronchial smooth muscle cells. Am J Respir Cell Mol Biol 35(4):496–502PubMedCrossRef Ethier MF, Madison JM (2006) Adenosine A1 receptors mediate mobilization of calcium in human bronchial smooth muscle cells. Am J Respir Cell Mol Biol 35(4):496–502PubMedCrossRef
25.
go back to reference Brady NR, Hamacher-Brady A, Yuan H, Gottlieb RA (2007) The autophagic response to nutrient deprivation in the HL-1 cardiac myocyte is modulated by Bcl-2 and sarco/endoplasmic reticulum calcium stores. FEBS J 274(12):3184–3197PubMedCrossRef Brady NR, Hamacher-Brady A, Yuan H, Gottlieb RA (2007) The autophagic response to nutrient deprivation in the HL-1 cardiac myocyte is modulated by Bcl-2 and sarco/endoplasmic reticulum calcium stores. FEBS J 274(12):3184–3197PubMedCrossRef
26.
go back to reference Mubagwa K (2002) Does adenosine protect the heart by acting on the sarcoplasmic reticulum? Cardiovasc Res 53(2):286–289PubMedCrossRef Mubagwa K (2002) Does adenosine protect the heart by acting on the sarcoplasmic reticulum? Cardiovasc Res 53(2):286–289PubMedCrossRef
27.
go back to reference Hamacher-Brady A, Brady NR, Gottlieb RA, Gustafsson AB (2006) Autophagy as a protective response to Bnip3-mediated apoptotic signaling in the heart. Autophagy 2(4):307–309PubMed Hamacher-Brady A, Brady NR, Gottlieb RA, Gustafsson AB (2006) Autophagy as a protective response to Bnip3-mediated apoptotic signaling in the heart. Autophagy 2(4):307–309PubMed
28.
go back to reference Yuan H, Perry CN, Huang C, Iwai-Kanai E, Carreira RS, Glembotski CC, Gottlieb RA (2008) LPS-induced autophagy is mediated by oxidative signaling in cardiomyocytes and is associated with cytoprotection. Am J Physiol Heart Circ Physiol 296(2):H470–H479PubMedCrossRef Yuan H, Perry CN, Huang C, Iwai-Kanai E, Carreira RS, Glembotski CC, Gottlieb RA (2008) LPS-induced autophagy is mediated by oxidative signaling in cardiomyocytes and is associated with cytoprotection. Am J Physiol Heart Circ Physiol 296(2):H470–H479PubMedCrossRef
29.
go back to reference Takagi H, Matsui Y, Hirotani S, Sakoda H, Asano T, Sadoshima J (2007) AMPK mediates autophagy during myocardial ischemia in vivo. Autophagy 3(4):405–407PubMed Takagi H, Matsui Y, Hirotani S, Sakoda H, Asano T, Sadoshima J (2007) AMPK mediates autophagy during myocardial ischemia in vivo. Autophagy 3(4):405–407PubMed
30.
go back to reference Sivaprasad U, Basu A (2008) Inhibition of ERK attenuates autophagy and potentiates tumor necrosis factor-alpha-induced cell death in MCF-7 cells. J Cell Mol Med 12(4):1265–1271PubMedCrossRef Sivaprasad U, Basu A (2008) Inhibition of ERK attenuates autophagy and potentiates tumor necrosis factor-alpha-induced cell death in MCF-7 cells. J Cell Mol Med 12(4):1265–1271PubMedCrossRef
31.
go back to reference Valeur HS, Valen G (2009) Innate immunity and myocardial adaptation to ischemia. Basic Res Cardiol 104(1):22–32PubMedCrossRef Valeur HS, Valen G (2009) Innate immunity and myocardial adaptation to ischemia. Basic Res Cardiol 104(1):22–32PubMedCrossRef
32.
go back to reference Saitoh T, Fujita N, Jang MH, Uematsu S, Yang BG, Satoh T, Omori H, Noda T, Yamamoto N, Komatsu M, Tanaka K, Kawai T, Tsujimura T, Takeuchi O, Yoshimori T, Akira S (2008) Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature 456(7219):264–268PubMedCrossRef Saitoh T, Fujita N, Jang MH, Uematsu S, Yang BG, Satoh T, Omori H, Noda T, Yamamoto N, Komatsu M, Tanaka K, Kawai T, Tsujimura T, Takeuchi O, Yoshimori T, Akira S (2008) Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature 456(7219):264–268PubMedCrossRef
33.
go back to reference Hausenloy DJ, Wynne AM, Yellon DM (2007) Ischemic preconditioning targets the reperfusion phase. Basic Res Cardiol 102(5):445–452PubMedCrossRef Hausenloy DJ, Wynne AM, Yellon DM (2007) Ischemic preconditioning targets the reperfusion phase. Basic Res Cardiol 102(5):445–452PubMedCrossRef
34.
go back to reference Mykytenko J, Reeves JG, Kin H, Wang NP, Zatta AJ, Jiang R, Guyton RA, Vinten-Johansen J, Zhao ZQ (2008) Persistent beneficial effect of postconditioning against infarct size: role of mitochondrial K(ATP) channels during reperfusion. Basic Res Cardiol 103(5):472–484PubMedCrossRef Mykytenko J, Reeves JG, Kin H, Wang NP, Zatta AJ, Jiang R, Guyton RA, Vinten-Johansen J, Zhao ZQ (2008) Persistent beneficial effect of postconditioning against infarct size: role of mitochondrial K(ATP) channels during reperfusion. Basic Res Cardiol 103(5):472–484PubMedCrossRef
35.
go back to reference Sivaraman V, Mudalagiri NR, Di Salvo C, Kolvekar S, Hayward M, Yap J, Keogh B, Hausenloy DJ, Yellon DM (2007) Postconditioning protects human atrial muscle through the activation of the RISK pathway. Basic Res Cardiol 102(5):453–459PubMedCrossRef Sivaraman V, Mudalagiri NR, Di Salvo C, Kolvekar S, Hayward M, Yap J, Keogh B, Hausenloy DJ, Yellon DM (2007) Postconditioning protects human atrial muscle through the activation of the RISK pathway. Basic Res Cardiol 102(5):453–459PubMedCrossRef
Metadata
Title
Autophagy is required for preconditioning by the adenosine A1 receptor-selective agonist CCPA
Authors
Smadar Yitzhaki
Chengqun Huang
Wayne Liu
Youngil Lee
Åsa B. Gustafsson
Robert M. Mentzer Jr
Roberta A. Gottlieb
Publication date
01-03-2009
Publisher
D. Steinkopff-Verlag
Published in
Basic Research in Cardiology / Issue 2/2009
Print ISSN: 0300-8428
Electronic ISSN: 1435-1803
DOI
https://doi.org/10.1007/s00395-009-0006-6

Other articles of this Issue 2/2009

Basic Research in Cardiology 2/2009 Go to the issue