Skip to main content
Top
Published in: Basic Research in Cardiology 2/2009

01-03-2009 | Original Contribution

Presence of connexin 43 in subsarcolemmal, but not in interfibrillar cardiomyocyte mitochondria

Authors: Kerstin Boengler, Sabine Stahlhofen, Anita van de Sand, Petra Gres, Marisol Ruiz-Meana, David Garcia-Dorado, Gerd Heusch, Rainer Schulz

Published in: Basic Research in Cardiology | Issue 2/2009

Login to get access

Abstract

Cardiomyocytes contain subsarcolemmal (SSM) and interfibrillar (IFM) mitochondria, which differ in their respiratory and calcium retention capacity. Connexin 43 (Cx43) is located at the inner membrane of SSM, and Cx43 is involved in the cardioprotection by ischemic preconditioning (IP). The function of Cx43-formed channels is regulated in part by phosphorylation at residues in the carboxy terminus of Cx43. The aim of the present study was (1) to investigate whether Cx43 is also present in IFM, and (2) to characterize its spatial orientation in the inner mitochondrial membrane (IMM). Confirming previous findings, ADP-stimulated respiration was greater in IFM than in SSM from rat ventricles. In preparations from rats and mice not contaminated with sarcolemmal proteins, Cx43 was exclusively detected in SSM, but not in IFM by Western blot analysis (n = 6). SSM were exposed to different proteinase K concentrations to cleave peptide bonds, and Western blot analysis was performed for ATP synthase α (IMM, subunit in the matrix), uncoupling protein 3 (UCP3, IMM, intermembrane space epitope), and manganese superoxide dismutase (MnSOD, matrix). At a proteinase K concentration of 50 μg/ml, immunoreactivities of all the analyzed proteins were completely lost. The use of 5 μg/ml proteinase K resulted in similarly reduced immunoreactivities for Cx43 (19.4 ± 5.8% of untreated mitochondria, n = 6) and UCP3 (23.0 ± 4%, n = 7), whereas the immunoreactivities of ATP synthase α (49.1 ± 6.4%, n = 7) and MnSOD (79.9 ± 17.4%, n = 6) were better preserved, suggesting that the carboxy terminus of Cx43 is directed towards the intermembrane space. The results were confirmed in digitonin-treated mitochondria. Taken together, Cx43 is exclusively localized in SSM, with its carboxy terminus directed towards the intermembrane space. Since loss of mitochondrial Cx43 abolishes IP’s cardioprotection, SSM and IFM apparently differ in their function in the signal transduction of IP.
Literature
1.
go back to reference Adhihetty PJ, Ljubicic V, Menzies KJ, Hood DA (2005) Differential susceptibility of subsarcolemmal and intermyofibrillar mitochondria to apoptotic stimuli. Am J Physiol Cell Physiol 289:C994–C1001PubMedCrossRef Adhihetty PJ, Ljubicic V, Menzies KJ, Hood DA (2005) Differential susceptibility of subsarcolemmal and intermyofibrillar mitochondria to apoptotic stimuli. Am J Physiol Cell Physiol 289:C994–C1001PubMedCrossRef
2.
go back to reference Andrukhiv A, Costa AD, West IC, Garlid KD (2006) Opening mitoKATP increases superoxide generation from complex I of the electron transport chain. Am J Physiol Heart Circ Physiol 291:H2067–H2074PubMedCrossRef Andrukhiv A, Costa AD, West IC, Garlid KD (2006) Opening mitoKATP increases superoxide generation from complex I of the electron transport chain. Am J Physiol Heart Circ Physiol 291:H2067–H2074PubMedCrossRef
3.
go back to reference Axelsen LN, Stahlhut M, Mohammed S, Larsen BD, Nielsen MS, Holstein-Rathlou N-H, Andersen S, Jensen ON, Hennan JK, Kjolbye AL (2006) Identification of ischemia-regulated phosphorylation sites in connexin 43: a possible target for the antiarrhythmic peptide analogue roitgaptide (ZP123). J Mol Cell Cardiol 40:790–798PubMedCrossRef Axelsen LN, Stahlhut M, Mohammed S, Larsen BD, Nielsen MS, Holstein-Rathlou N-H, Andersen S, Jensen ON, Hennan JK, Kjolbye AL (2006) Identification of ischemia-regulated phosphorylation sites in connexin 43: a possible target for the antiarrhythmic peptide analogue roitgaptide (ZP123). J Mol Cell Cardiol 40:790–798PubMedCrossRef
4.
go back to reference Baines CP, Zhang J, Wang G-W, Zheng Y-T, Xiu JX, Cardwell EM, Bolli R, Ping P (2002) Mitochondrial PKCε and MAPK form signaling modules in the murine heart. Circ Res 90:390–397PubMedCrossRef Baines CP, Zhang J, Wang G-W, Zheng Y-T, Xiu JX, Cardwell EM, Bolli R, Ping P (2002) Mitochondrial PKCε and MAPK form signaling modules in the murine heart. Circ Res 90:390–397PubMedCrossRef
5.
go back to reference Boengler K, Dodoni G, Ruiz-Meana M, Cabestrero A, Rodriguez-Sinovas A, Garcia-Dorado D, Gres P, Di Lisa F, Heusch G, Schulz R (2005) Connexin 43 in cardiomyocyte mitochondria and its increase by ischemic preconditioning. Cardiovasc Res 67:234–244PubMedCrossRef Boengler K, Dodoni G, Ruiz-Meana M, Cabestrero A, Rodriguez-Sinovas A, Garcia-Dorado D, Gres P, Di Lisa F, Heusch G, Schulz R (2005) Connexin 43 in cardiomyocyte mitochondria and its increase by ischemic preconditioning. Cardiovasc Res 67:234–244PubMedCrossRef
6.
go back to reference Bowling N, Huang X, Sandusky GE, Fouts RL, Mintze K, Esterman M, Allen PD, Maddi R, McCall E, Vlahos CJ (2001) Protein kinase C-α and -ε modulate connexin-43 phosphorylation in human heart. J Mol Cell Cardiol 33:789–798PubMedCrossRef Bowling N, Huang X, Sandusky GE, Fouts RL, Mintze K, Esterman M, Allen PD, Maddi R, McCall E, Vlahos CJ (2001) Protein kinase C-α and -ε modulate connexin-43 phosphorylation in human heart. J Mol Cell Cardiol 33:789–798PubMedCrossRef
7.
go back to reference Chen Q, Lesnefsky EJ (2006) Depletion of cardiolipin and cytochrome c during ischemia increases hydrogen peroxide production from the electron transport chain. Free Radic Biol Med 40:976–982PubMedCrossRef Chen Q, Lesnefsky EJ (2006) Depletion of cardiolipin and cytochrome c during ischemia increases hydrogen peroxide production from the electron transport chain. Free Radic Biol Med 40:976–982PubMedCrossRef
8.
go back to reference Cohen MV, Yang XM, Downey JM (2008) Acidosis, oxygen, and interference with mitochondrial permeability transition pore formation in the early minutes of reperfusion are critical to postconditioning’s success. Basic Res Cardiol 103:464–471PubMedCrossRef Cohen MV, Yang XM, Downey JM (2008) Acidosis, oxygen, and interference with mitochondrial permeability transition pore formation in the early minutes of reperfusion are critical to postconditioning’s success. Basic Res Cardiol 103:464–471PubMedCrossRef
9.
go back to reference Costa ADT, Garlid KD, West IC, Lincoln TM, Downey JM, Cohen MV, Critz SD (2005) Protein kinase G transmits the cardioprotective signal from cytososl to mitochondria. Circ Res 97:329–336PubMedCrossRef Costa ADT, Garlid KD, West IC, Lincoln TM, Downey JM, Cohen MV, Critz SD (2005) Protein kinase G transmits the cardioprotective signal from cytososl to mitochondria. Circ Res 97:329–336PubMedCrossRef
10.
go back to reference Doble BW, Ping P, Fandrich RR, Cattani PA, Kardami E (2001) Protein kinase C-epsilon mediates phorbol ester-induced phosphorylation of connexin-43. Cell Commun Adhes 8:253–256PubMedCrossRef Doble BW, Ping P, Fandrich RR, Cattani PA, Kardami E (2001) Protein kinase C-epsilon mediates phorbol ester-induced phosphorylation of connexin-43. Cell Commun Adhes 8:253–256PubMedCrossRef
11.
go back to reference Doble BW, Ping P, Kardami E (2000) The ε subtype of protein kinase C is required for cardiomyocyte connexin-43 phosphorylation. Circ Res 86:293–301PubMed Doble BW, Ping P, Kardami E (2000) The ε subtype of protein kinase C is required for cardiomyocyte connexin-43 phosphorylation. Circ Res 86:293–301PubMed
12.
go back to reference Dost T, Cohen MV, Downey JM (2008) Redox signaling triggers protection during the reperfusion rather than the ischemic phase of preconditioning. Basic Res Cardiol 103:378–384PubMedCrossRef Dost T, Cohen MV, Downey JM (2008) Redox signaling triggers protection during the reperfusion rather than the ischemic phase of preconditioning. Basic Res Cardiol 103:378–384PubMedCrossRef
13.
go back to reference Ek-Vitorin JF, King TJ, Heyman NS, Lampe PD, Burt JM (2006) Selectivity of connexin 43 channels is regulated through protein kinase C-dependent phosphorylation. Circ Res 98:1498–1505PubMedCrossRef Ek-Vitorin JF, King TJ, Heyman NS, Lampe PD, Burt JM (2006) Selectivity of connexin 43 channels is regulated through protein kinase C-dependent phosphorylation. Circ Res 98:1498–1505PubMedCrossRef
14.
go back to reference Forbes RA, Steenbergen C, Murphy E (2001) Diazoxide-induced cardioprotection requires signaling through a redox-sensitive mechanism. Circ Res 88:802–809PubMedCrossRef Forbes RA, Steenbergen C, Murphy E (2001) Diazoxide-induced cardioprotection requires signaling through a redox-sensitive mechanism. Circ Res 88:802–809PubMedCrossRef
15.
go back to reference Garcia-Dorado D, Rodriguez-Sinovas A, Ruiz-Meana M, Agulló L, Cabestrero A (2006) The end-effectors of preconditioning protection against myocardial cell death secondary to ischemia-reperfusion. Cardiovasc Res 70:274–285PubMedCrossRef Garcia-Dorado D, Rodriguez-Sinovas A, Ruiz-Meana M, Agulló L, Cabestrero A (2006) The end-effectors of preconditioning protection against myocardial cell death secondary to ischemia-reperfusion. Cardiovasc Res 70:274–285PubMedCrossRef
16.
go back to reference Hausenloy DJ, Maddock HL, Baxter GF, Yellon DM (2002) Inhibiting mitochondrial permeability transition pore opening: a new paradigm for myocardial preconditoining? Cardiovasc Res 55:534–543PubMedCrossRef Hausenloy DJ, Maddock HL, Baxter GF, Yellon DM (2002) Inhibiting mitochondrial permeability transition pore opening: a new paradigm for myocardial preconditoining? Cardiovasc Res 55:534–543PubMedCrossRef
17.
go back to reference Hausenloy DJ, Wynne AM, Yellon DM (2007) Ischemic preconditioning targets the reperfusion phase. Basic Res Cardiol 102:445–452PubMedCrossRef Hausenloy DJ, Wynne AM, Yellon DM (2007) Ischemic preconditioning targets the reperfusion phase. Basic Res Cardiol 102:445–452PubMedCrossRef
18.
go back to reference Heinzel FR, Luo Y, Li X, Boengler K, Buechert A, García-Dorado D, Di Lisa F, Schulz R, Heusch G (2005) Impairment of diazoxide-induced formation of reactive oxygen species and loss of cardioprotection in connexin 43 deficient mice. Circ Res 97:583–586PubMedCrossRef Heinzel FR, Luo Y, Li X, Boengler K, Buechert A, García-Dorado D, Di Lisa F, Schulz R, Heusch G (2005) Impairment of diazoxide-induced formation of reactive oxygen species and loss of cardioprotection in connexin 43 deficient mice. Circ Res 97:583–586PubMedCrossRef
19.
go back to reference Heusch G, Boengler K, Schulz R (2008) Cardioprotection: nitric oxide, protein kinases, and mitochondria. Circulation 118:1915–1919PubMedCrossRef Heusch G, Boengler K, Schulz R (2008) Cardioprotection: nitric oxide, protein kinases, and mitochondria. Circulation 118:1915–1919PubMedCrossRef
20.
go back to reference Heusch G, Büchert A, Feldhaus S, Schulz R (2006) No loss of cardioprotection by postconditioning in connexin 43-deficient mice. Basic Res Cardiol 101:354–356PubMedCrossRef Heusch G, Büchert A, Feldhaus S, Schulz R (2006) No loss of cardioprotection by postconditioning in connexin 43-deficient mice. Basic Res Cardiol 101:354–356PubMedCrossRef
21.
go back to reference Jaburek M, Costa AD, Burton JR, Costa CL, Garlid KD (2006) Mitochondrial PKC epsilon and mitochondrial ATP-sensitive K+ channel copurify and coreconstitute to form a functioning signaling module in proteoliposomes. Circ Res 99:878–883PubMedCrossRef Jaburek M, Costa AD, Burton JR, Costa CL, Garlid KD (2006) Mitochondrial PKC epsilon and mitochondrial ATP-sensitive K+ channel copurify and coreconstitute to form a functioning signaling module in proteoliposomes. Circ Res 99:878–883PubMedCrossRef
22.
go back to reference Javadov SA, Clarke S, Das M, Griffiths EJ, Lim KH, Halestrap AP (2003) Ischaemic preconditioning inhibits opening of mitochondrial permeability transition pores in the reperfused rat heart. J Physiol 549:513–524PubMedCrossRef Javadov SA, Clarke S, Das M, Griffiths EJ, Lim KH, Halestrap AP (2003) Ischaemic preconditioning inhibits opening of mitochondrial permeability transition pores in the reperfused rat heart. J Physiol 549:513–524PubMedCrossRef
23.
go back to reference Judge S, Jang YM, Smith A, Hagen T, Leeuwenburgh C (2005) Age-associated increases in oxidative stress and antioxidant enzyme activities in cardiac interfibrillar mitochondria: implications for the mitochondrial theory of aging. Faseb J 19:419–421PubMed Judge S, Jang YM, Smith A, Hagen T, Leeuwenburgh C (2005) Age-associated increases in oxidative stress and antioxidant enzyme activities in cardiac interfibrillar mitochondria: implications for the mitochondrial theory of aging. Faseb J 19:419–421PubMed
24.
go back to reference Lampe PD, Lau AF (2000) Regulation of gap junctions by phosphorylation of connexins. Arch Biochem Biophys 384:205–215PubMedCrossRef Lampe PD, Lau AF (2000) Regulation of gap junctions by phosphorylation of connexins. Arch Biochem Biophys 384:205–215PubMedCrossRef
25.
go back to reference Li X, Heinzel FR, Boengler K, Schulz R, Heusch G (2004) Role of connexin 43 in ischemic preconditioning does not involve intercellular communications through gap junctions. J Mol Cell Cardiol 36:161–163PubMedCrossRef Li X, Heinzel FR, Boengler K, Schulz R, Heusch G (2004) Role of connexin 43 in ischemic preconditioning does not involve intercellular communications through gap junctions. J Mol Cell Cardiol 36:161–163PubMedCrossRef
26.
go back to reference Liu Y, Yang XM, Iliodromitis EK, Kremastinos DT, Dost T, Cohen MV, Downey JM (2008) Redox signaling at reperfusion is required for protection from ischemic preconditioning but not from a direct PKC activator. Basic Res Cardiol 103:54–59PubMedCrossRef Liu Y, Yang XM, Iliodromitis EK, Kremastinos DT, Dost T, Cohen MV, Downey JM (2008) Redox signaling at reperfusion is required for protection from ischemic preconditioning but not from a direct PKC activator. Basic Res Cardiol 103:54–59PubMedCrossRef
27.
go back to reference Miro-Casas E, Ruiz-Meana M, Agullo E, Torre I, Cabestrero A, Rodriguez-Sinovas A, Morente M, Boengler K, Schulz R, Heusch G, Garcia-Dorado D (2007) Mitochondrial connexin 43 hemichannels. J Mol Cell Cardiol 42:S120CrossRef Miro-Casas E, Ruiz-Meana M, Agullo E, Torre I, Cabestrero A, Rodriguez-Sinovas A, Morente M, Boengler K, Schulz R, Heusch G, Garcia-Dorado D (2007) Mitochondrial connexin 43 hemichannels. J Mol Cell Cardiol 42:S120CrossRef
28.
go back to reference Murphy E, Steenbergen C (2007) Preconditioning: the mitochondrial connection. Annu Rev Physiol 69:51–67PubMedCrossRef Murphy E, Steenbergen C (2007) Preconditioning: the mitochondrial connection. Annu Rev Physiol 69:51–67PubMedCrossRef
29.
go back to reference Mykytenko J, Reeves JG, Kin H, Wang NP, Zatta AJ, Jiang R, Guyton RA, Vinten-Johansen J, Zhao ZQ (2008) Persistent beneficial effect of postconditioning against infarct size: role of mitochondrial K-ATP channels during reperfusion. Basic Res Cardiol 103:472–484PubMedCrossRef Mykytenko J, Reeves JG, Kin H, Wang NP, Zatta AJ, Jiang R, Guyton RA, Vinten-Johansen J, Zhao ZQ (2008) Persistent beneficial effect of postconditioning against infarct size: role of mitochondrial K-ATP channels during reperfusion. Basic Res Cardiol 103:472–484PubMedCrossRef
30.
go back to reference Padilla F, Garcia-Dorado D, Rodriguez-Sinovas A, Ruiz-Meana M, Inserte J, Soler-Soler J (2003) Protection afforded by ischemic preconditioning is not mediated by effects on cell-to-cell electrical coupling during myocardial ischemia-reperfusion. Am J Physiol Heart Circ Physiol 285:H1909–H1916PubMed Padilla F, Garcia-Dorado D, Rodriguez-Sinovas A, Ruiz-Meana M, Inserte J, Soler-Soler J (2003) Protection afforded by ischemic preconditioning is not mediated by effects on cell-to-cell electrical coupling during myocardial ischemia-reperfusion. Am J Physiol Heart Circ Physiol 285:H1909–H1916PubMed
31.
go back to reference Pain T, Yang XM, Critz SD, Yue Y, Nakano A, Liu GS, Heusch G, Cohen MV, Downey JM (2000) Opening of mitochondrial K(ATP) channels triggers the preconditioned state by generating free radicals. Circ Res 87:460–466PubMed Pain T, Yang XM, Critz SD, Yue Y, Nakano A, Liu GS, Heusch G, Cohen MV, Downey JM (2000) Opening of mitochondrial K(ATP) channels triggers the preconditioned state by generating free radicals. Circ Res 87:460–466PubMed
32.
go back to reference Palmer JW, Tandler B, Hoppel CL (1977) Biochemical properties of subsarcolemmal and inter-fibrillar mitochondria isolated from rat cardiac-muscle. J Biol Chem 252:8731–8739PubMed Palmer JW, Tandler B, Hoppel CL (1977) Biochemical properties of subsarcolemmal and inter-fibrillar mitochondria isolated from rat cardiac-muscle. J Biol Chem 252:8731–8739PubMed
33.
go back to reference Palmer JW, Tandler B, Hoppel CL (1986) Heterogeneous response of subsarcolemmal heart-mitochondria to calcium. Am J Physiol 250:H741–H748PubMed Palmer JW, Tandler B, Hoppel CL (1986) Heterogeneous response of subsarcolemmal heart-mitochondria to calcium. Am J Physiol 250:H741–H748PubMed
34.
go back to reference Papa S, Sardanelli AM, Scacco S, Technikova-Dobrova Z (1999) cAMP-dependent protein kinase and phosphoproteins in mammalian mitochondria. An extension of the cAMP-mediated intracellular signal transduction. FEBS Lett 444:245–249PubMedCrossRef Papa S, Sardanelli AM, Scacco S, Technikova-Dobrova Z (1999) cAMP-dependent protein kinase and phosphoproteins in mammalian mitochondria. An extension of the cAMP-mediated intracellular signal transduction. FEBS Lett 444:245–249PubMedCrossRef
35.
go back to reference Riva A, Tandler B, Loffredo F, Vazquez E, Hoppel C (2005) Structural differences in two biochemically defined populations of cardiac mitochondria. Am J Physiol Heart Circ Physiol 289:H868–H872PubMedCrossRef Riva A, Tandler B, Loffredo F, Vazquez E, Hoppel C (2005) Structural differences in two biochemically defined populations of cardiac mitochondria. Am J Physiol Heart Circ Physiol 289:H868–H872PubMedCrossRef
36.
go back to reference Rodriguez-Sinovas A, Boengler K, Cabestrero A, Gres P, Morente M, Ruiz-Meana M, Konietzka I, Miró E, Totzeck A, Heusch G, Schulz R, Garcia-Dorado D (2006) Translocation of connexin 43 to the inner mitochondrial membrane of cardiomyocytes through the heat shock protein 90-dependent TOM pathway and its importance for cardioprotection. Circ Res 99:93–101PubMedCrossRef Rodriguez-Sinovas A, Boengler K, Cabestrero A, Gres P, Morente M, Ruiz-Meana M, Konietzka I, Miró E, Totzeck A, Heusch G, Schulz R, Garcia-Dorado D (2006) Translocation of connexin 43 to the inner mitochondrial membrane of cardiomyocytes through the heat shock protein 90-dependent TOM pathway and its importance for cardioprotection. Circ Res 99:93–101PubMedCrossRef
37.
go back to reference Ruiz-Meana M, Abellan A, Miro-Casas E, Garcia-Dorado D (2007) Opening of mitochondrial permeability transition pore induces hypercontracture in Ca2+ overloaded cardiac myocytes. Basic Res Cardiol 102:542–552PubMedCrossRef Ruiz-Meana M, Abellan A, Miro-Casas E, Garcia-Dorado D (2007) Opening of mitochondrial permeability transition pore induces hypercontracture in Ca2+ overloaded cardiac myocytes. Basic Res Cardiol 102:542–552PubMedCrossRef
38.
go back to reference Saez JC, Retamal MA, Basilio D, Bukausas FF, Bennettt MVL (2005) Connexin-based gap junction hemichannels: gating mechanisms. Biochem Biophys Acta 1711:215–224PubMedCrossRef Saez JC, Retamal MA, Basilio D, Bukausas FF, Bennettt MVL (2005) Connexin-based gap junction hemichannels: gating mechanisms. Biochem Biophys Acta 1711:215–224PubMedCrossRef
39.
go back to reference Schulz R, Boengler K, Totzeck A, Luo Y, Garcia-Dorado D, Heusch G (2007) Connexin 43 in ischemic pre- and postconditioning. Heart Fail Rev 12:261–266PubMedCrossRef Schulz R, Boengler K, Totzeck A, Luo Y, Garcia-Dorado D, Heusch G (2007) Connexin 43 in ischemic pre- and postconditioning. Heart Fail Rev 12:261–266PubMedCrossRef
40.
go back to reference Schulz R, Heusch G (2006) Connexin43 and ischemic preconditioning. Cardiovasc Gap Junctions 42:213–227CrossRef Schulz R, Heusch G (2006) Connexin43 and ischemic preconditioning. Cardiovasc Gap Junctions 42:213–227CrossRef
41.
go back to reference Schwanke U, Konietzka I, Duschin A, Li X, Schulz R, Heusch G (2002) No ischemic preconditioning in heterozygous connexin 43-deficient mice. Am J Physiol Heart Circ Physiol 283:H1740–H1742PubMed Schwanke U, Konietzka I, Duschin A, Li X, Schulz R, Heusch G (2002) No ischemic preconditioning in heterozygous connexin 43-deficient mice. Am J Physiol Heart Circ Physiol 283:H1740–H1742PubMed
42.
go back to reference Schwanke U, Li X, Schulz R, Heusch G (2003) No ischemic preconditioning in heterozygous connexin 43-deficient mice: a further in vivo study. Basic Res Cardiol 98:181–182PubMed Schwanke U, Li X, Schulz R, Heusch G (2003) No ischemic preconditioning in heterozygous connexin 43-deficient mice: a further in vivo study. Basic Res Cardiol 98:181–182PubMed
43.
go back to reference Shah MM, Martinez AM, Fletcher WH (2002) The connexin 43 gap junction protein is phosphorylated by protein kinase A and protein kinase C: in vivo and in vitro studies. Mol Cell Biochem 238:57–68PubMedCrossRef Shah MM, Martinez AM, Fletcher WH (2002) The connexin 43 gap junction protein is phosphorylated by protein kinase A and protein kinase C: in vivo and in vitro studies. Mol Cell Biochem 238:57–68PubMedCrossRef
44.
go back to reference Tanaka-Esposito C, Chen Q, Moghaddas S, Lesnefsky EJ (2007) Ischemic preconditioning does not protect via blockade of electron transport. J Appl Physiol 103:623–628PubMedCrossRef Tanaka-Esposito C, Chen Q, Moghaddas S, Lesnefsky EJ (2007) Ischemic preconditioning does not protect via blockade of electron transport. J Appl Physiol 103:623–628PubMedCrossRef
45.
go back to reference Totzeck A, Boengler K, van de SA, Konietzka I, Gres P, Garcia-Dorado D, Heusch G, Schulz R (2008) No impact of protein phosphatases on connexin 43 phosphorylation in ischemic preconditioning. Am J Physiol Heart Circ Physiol 295:H2106-H2112 Totzeck A, Boengler K, van de SA, Konietzka I, Gres P, Garcia-Dorado D, Heusch G, Schulz R (2008) No impact of protein phosphatases on connexin 43 phosphorylation in ischemic preconditioning. Am J Physiol Heart Circ Physiol 295:H2106-H2112
46.
go back to reference Townsend PA, Davidson SM, Clarke SJ, Khaliulin I, Carroll CJ, Scarabelli TM, Knight RA, Stephanou A, Latchman DS, Halestrap AP (2007) Urocortin prevents mitochondrial permeability transition in response to reperfusion injury indirectly by reducing oxidative stress. Am J Physiol Heart Circ Physiol 293:H928–H938PubMedCrossRef Townsend PA, Davidson SM, Clarke SJ, Khaliulin I, Carroll CJ, Scarabelli TM, Knight RA, Stephanou A, Latchman DS, Halestrap AP (2007) Urocortin prevents mitochondrial permeability transition in response to reperfusion injury indirectly by reducing oxidative stress. Am J Physiol Heart Circ Physiol 293:H928–H938PubMedCrossRef
Metadata
Title
Presence of connexin 43 in subsarcolemmal, but not in interfibrillar cardiomyocyte mitochondria
Authors
Kerstin Boengler
Sabine Stahlhofen
Anita van de Sand
Petra Gres
Marisol Ruiz-Meana
David Garcia-Dorado
Gerd Heusch
Rainer Schulz
Publication date
01-03-2009
Publisher
D. Steinkopff-Verlag
Published in
Basic Research in Cardiology / Issue 2/2009
Print ISSN: 0300-8428
Electronic ISSN: 1435-1803
DOI
https://doi.org/10.1007/s00395-009-0007-5

Other articles of this Issue 2/2009

Basic Research in Cardiology 2/2009 Go to the issue