Skip to main content
Top
Published in: Clinical Research in Cardiology 8/2019

01-08-2019 | Stroke | Original Paper

Hemodynamics of paradoxical severe aortic stenosis: insight from a pressure–volume loop analysis

Authors: Michael Gotzmann, Sabine Hauptmann, Maximilian Hogeweg, Dinah S. Choudhury, Fabian Schiedat, Johannes W. Dietrich, Timm H. Westhoff, Martin Bergbauer, Andreas Mügge

Published in: Clinical Research in Cardiology | Issue 8/2019

Login to get access

Abstract

Background

Controversy exists about the pathophysiology of different hemodynamic subgroups of AS. In particular, the mechanism of the paradoxical low-flow, low-gradient (PLFLG) AS with preserved ejection fraction (EF) is unclear.

Methods

A total of 41 patients with severe, symptomatic AS were divided into the following 4 subgroups based on the echocardiographically determined hemodynamics: (1) normal-flow, high-gradient (NFHG) AS; (2) low-flow, high-gradient AS; (3) paradoxical low-flow, low-gradient (PLFLG) AS with preserved EF and (4) low-flow, low-gradient (LFLG) AS with reduced EF. As part of the comprehensive invasive examinations, the analyses of the PV loops were performed with the IntraCardiac Analyzer (CD-Leycom, The Netherlands).

Results

PLFLG was characterized by small left ventricular volumes as well as a decreased cardiac index, a decreased systolic contractility and a lower stroke work, than the conventional NFHG AS. Alterations in effective arterial elastance (2.36 ± 0.67 mmHg/ml in NFHG versus 3.01 ± 0.79 mmHg/ml in PLFLG, p = 0.036) and end-systolic elastance (3.72 ± 1.84 mmHg/ml in NFHG versus 5.53 ± 2.3 mmHg/ml in PLFLG, p = 0.040) indicated impaired vascular function and increased chamber stiffness.

Conclusions

The present study suggests that the hemodynamics of PLFLG AS can be explained by two mechanisms: (1) stiffness of the small left ventricle with reduced contractility, and (2) increased afterload due to the impairment of vascular function. Both mechanisms have similarities to those of heart failure with preserved EF. This type of remodeling may explain the poor prognosis of PLFLG AS.
Appendix
Available only for authorised users
Literature
1.
go back to reference Kim WK, Hamm CW (2018) Transcatheter aortic valve implantation in Germany. Clin Res Cardiol 107(Suppl 2):81–87CrossRefPubMed Kim WK, Hamm CW (2018) Transcatheter aortic valve implantation in Germany. Clin Res Cardiol 107(Suppl 2):81–87CrossRefPubMed
3.
go back to reference Nishimura RA, Otto CM, Bonow RO, American College of Cardiology/American Heart Association Task Force on Practice Guidelines et al (2014) AHA/ACC guideline for the management of patients with valvular heart disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 63:2438–2488CrossRef Nishimura RA, Otto CM, Bonow RO, American College of Cardiology/American Heart Association Task Force on Practice Guidelines et al (2014) AHA/ACC guideline for the management of patients with valvular heart disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 63:2438–2488CrossRef
4.
go back to reference Otto CM, Prendergast B (2014) Aortic-valve stenosis—from patients at risk to severe valve obstruction. N Engl J Med 371:744–756CrossRefPubMed Otto CM, Prendergast B (2014) Aortic-valve stenosis—from patients at risk to severe valve obstruction. N Engl J Med 371:744–756CrossRefPubMed
6.
go back to reference Jander N, Minners J, Holme I et al (2011) Outcome of patients with low-gradient “severe” aortic stenosis and preserved ejection fraction. Circulation 123:887–895 (Erratum in: Circulation. 2011;124:e336) CrossRefPubMed Jander N, Minners J, Holme I et al (2011) Outcome of patients with low-gradient “severe” aortic stenosis and preserved ejection fraction. Circulation 123:887–895 (Erratum in: Circulation. 2011;124:e336) CrossRefPubMed
7.
go back to reference Chhabra L (2016) Inconsistency of hemodynamic data in low-gradient severe aortic stenosis. J Am Coll Cardiol 67:2446–2447CrossRefPubMed Chhabra L (2016) Inconsistency of hemodynamic data in low-gradient severe aortic stenosis. J Am Coll Cardiol 67:2446–2447CrossRefPubMed
8.
go back to reference Clavel MA, Dumesnil JG, Capoulade R, Mathieu P, Sénéchal M, Pibarot P (2012) Outcome of patients with aortic stenosis, small valve area, and low-flow, low-gradient despite preserved left ventricular ejection fraction. J Am Coll Cardiol 60:1259–1267CrossRefPubMed Clavel MA, Dumesnil JG, Capoulade R, Mathieu P, Sénéchal M, Pibarot P (2012) Outcome of patients with aortic stenosis, small valve area, and low-flow, low-gradient despite preserved left ventricular ejection fraction. J Am Coll Cardiol 60:1259–1267CrossRefPubMed
9.
go back to reference Dayan V, Vignolo G, Magne J, Clavel MA, Mohty D, Pibarot P (2015) Outcome and impact of aortic valve replacement in patients with preserved LVEF and low-gradient aortic stenosis. J Am Coll Cardiol 66:2594–2603CrossRefPubMed Dayan V, Vignolo G, Magne J, Clavel MA, Mohty D, Pibarot P (2015) Outcome and impact of aortic valve replacement in patients with preserved LVEF and low-gradient aortic stenosis. J Am Coll Cardiol 66:2594–2603CrossRefPubMed
10.
go back to reference Chin CWL, Ding ZP, Lam CSP, Ling LH (2016) Paradoxical low-gradient aortic stenosis: the HFpEF of aortic stenosis. J Am Coll Cardiol 67:2447–2448CrossRefPubMed Chin CWL, Ding ZP, Lam CSP, Ling LH (2016) Paradoxical low-gradient aortic stenosis: the HFpEF of aortic stenosis. J Am Coll Cardiol 67:2447–2448CrossRefPubMed
12.
go back to reference Baumgartner H, Hung J, Bermejo J et al (2017) Recommendations on the echocardiographic assessment of aortic valve stenosis: a focused update from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. J Am Soc Echocardiogr 30:372–392CrossRefPubMed Baumgartner H, Hung J, Bermejo J et al (2017) Recommendations on the echocardiographic assessment of aortic valve stenosis: a focused update from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. J Am Soc Echocardiogr 30:372–392CrossRefPubMed
13.
go back to reference Lang RM, Badano LP, Mor-Avi V et al (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 28:1–39.e14CrossRef Lang RM, Badano LP, Mor-Avi V et al (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 28:1–39.e14CrossRef
14.
go back to reference Lancellotti P, Tribouilloy C, Hagendorff A, Scientific Document Committee of the European Association of Cardiovascular Imaging et al (2013) Recommendations for the echocardiographic assessment of native valvular regurgitation: an executive summary from the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging 14:611–644CrossRef Lancellotti P, Tribouilloy C, Hagendorff A, Scientific Document Committee of the European Association of Cardiovascular Imaging et al (2013) Recommendations for the echocardiographic assessment of native valvular regurgitation: an executive summary from the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging 14:611–644CrossRef
15.
go back to reference Briand M, Dumesnil JG, Kadem L et al (2005) Reduced systemic arterial compliance impacts significantly on left ventricular afterload and function in aortic stenosis: implications for diagnosis and treatment. J Am Coll Cardiol 46:291–298CrossRefPubMed Briand M, Dumesnil JG, Kadem L et al (2005) Reduced systemic arterial compliance impacts significantly on left ventricular afterload and function in aortic stenosis: implications for diagnosis and treatment. J Am Coll Cardiol 46:291–298CrossRefPubMed
16.
go back to reference Baan J, Jong TT, Kerkhof PL et al (1981) Continuous stroke volume and cardiac output from intra-ventricular dimensions obtained with impedance catheter. Cardiovasc Res 15:328–334CrossRefPubMed Baan J, Jong TT, Kerkhof PL et al (1981) Continuous stroke volume and cardiac output from intra-ventricular dimensions obtained with impedance catheter. Cardiovasc Res 15:328–334CrossRefPubMed
17.
go back to reference Baan J, van der Velde ET, de Bruin HG et al (1984) Continuous measurement of left ventricular volume in animals and humans by conductance catheter. Circulation 70:812–823CrossRefPubMed Baan J, van der Velde ET, de Bruin HG et al (1984) Continuous measurement of left ventricular volume in animals and humans by conductance catheter. Circulation 70:812–823CrossRefPubMed
18.
go back to reference ten Brinke EA, Klautz RJ, Verwey HF et al (2010) Single-beat estimation of the left ventricular end-systolic pressure-volume relationship in patients with heart failure. Acta Physiol (Oxf) 198:37–46CrossRef ten Brinke EA, Klautz RJ, Verwey HF et al (2010) Single-beat estimation of the left ventricular end-systolic pressure-volume relationship in patients with heart failure. Acta Physiol (Oxf) 198:37–46CrossRef
19.
go back to reference Burkhoff D, Mirsky I, Suga H (2005) Assessment of systolic and diastolic ventricular properties via pressure-volume analysis: a guide for clinical, translational, and basic researchers. Am J Physiol Heart Circ Physiol 289:H501–H512CrossRefPubMed Burkhoff D, Mirsky I, Suga H (2005) Assessment of systolic and diastolic ventricular properties via pressure-volume analysis: a guide for clinical, translational, and basic researchers. Am J Physiol Heart Circ Physiol 289:H501–H512CrossRefPubMed
20.
go back to reference Tribouilloy C, Lévy F, Rusinaru D et al (2009) Outcome after aortic valve replacement for low-flow/low-gradient aortic stenosis without contractile reserve on dobutamine stress echocardiography. J Am Coll Cardiol 53:1865–1873CrossRefPubMed Tribouilloy C, Lévy F, Rusinaru D et al (2009) Outcome after aortic valve replacement for low-flow/low-gradient aortic stenosis without contractile reserve on dobutamine stress echocardiography. J Am Coll Cardiol 53:1865–1873CrossRefPubMed
21.
go back to reference Schymik G, Tzamalis P, Herzberger V et al (2017) Transcatheter aortic valve implantation in patients with a reduced left ventricular ejection fraction: a single-centre experience in 2000 patients (TAVIK Registry). Clin Res Cardiol 106:1018–1025CrossRefPubMed Schymik G, Tzamalis P, Herzberger V et al (2017) Transcatheter aortic valve implantation in patients with a reduced left ventricular ejection fraction: a single-centre experience in 2000 patients (TAVIK Registry). Clin Res Cardiol 106:1018–1025CrossRefPubMed
22.
go back to reference Hachicha Z, Dumesnil JG, Bogaty P, Pibarot P (2007) Paradoxical low-flow, low-gradient severe aortic stenosis despite preserved ejection fraction is associated with higher afterload and reduced survival. Circulation 115:2856–2864CrossRefPubMed Hachicha Z, Dumesnil JG, Bogaty P, Pibarot P (2007) Paradoxical low-flow, low-gradient severe aortic stenosis despite preserved ejection fraction is associated with higher afterload and reduced survival. Circulation 115:2856–2864CrossRefPubMed
23.
go back to reference Zheng Q, Djohan AH, Lim E et al (2017) Effects of aortic valve replacement on severe aortic stenosis and preserved systolic function: systematic review and network meta-analysis. Sci Rep 7:5092CrossRefPubMedPubMedCentral Zheng Q, Djohan AH, Lim E et al (2017) Effects of aortic valve replacement on severe aortic stenosis and preserved systolic function: systematic review and network meta-analysis. Sci Rep 7:5092CrossRefPubMedPubMedCentral
24.
go back to reference Adda J, Mielot C, Giorgi R et al (2012) Low-flow, low-gradient severe aortic stenosis despite normal ejection fraction is associated with severe left ventricular dysfunction as assessed by speckle-tracking echocardiography: a multicenter study. Circ Cardiovasc Imaging 5:27–35CrossRefPubMed Adda J, Mielot C, Giorgi R et al (2012) Low-flow, low-gradient severe aortic stenosis despite normal ejection fraction is associated with severe left ventricular dysfunction as assessed by speckle-tracking echocardiography: a multicenter study. Circ Cardiovasc Imaging 5:27–35CrossRefPubMed
25.
go back to reference Herrmann S, Störk S, Niemann M et al (2011) Low-gradient aortic valve stenosis myocardial fibrosis and its influence on function and outcome. J Am Coll Cardiol 58:402–412CrossRefPubMed Herrmann S, Störk S, Niemann M et al (2011) Low-gradient aortic valve stenosis myocardial fibrosis and its influence on function and outcome. J Am Coll Cardiol 58:402–412CrossRefPubMed
26.
go back to reference Kawaguchi M, Hay I, Fetics B, Kass DA (2003) Combined ventricular systolic and arterial stiffening in patients with heart failure and preserved ejection fraction: implications for systolic and diastolic reserve limitations. Circulation 107:714–720CrossRefPubMed Kawaguchi M, Hay I, Fetics B, Kass DA (2003) Combined ventricular systolic and arterial stiffening in patients with heart failure and preserved ejection fraction: implications for systolic and diastolic reserve limitations. Circulation 107:714–720CrossRefPubMed
27.
go back to reference Borlaug BA, Paulus WJ (2011) Heart failure with preserved ejection fraction: pathophysiology, diagnosis, and treatment. Eur Heart J 32:670–679CrossRefPubMed Borlaug BA, Paulus WJ (2011) Heart failure with preserved ejection fraction: pathophysiology, diagnosis, and treatment. Eur Heart J 32:670–679CrossRefPubMed
28.
go back to reference Gotzmann M (2018) Renin-angiotensin system blockade after TAVI: is there a link between regression of left ventricular hypertrophy and prognosis? Heart 104:628–629CrossRefPubMed Gotzmann M (2018) Renin-angiotensin system blockade after TAVI: is there a link between regression of left ventricular hypertrophy and prognosis? Heart 104:628–629CrossRefPubMed
Metadata
Title
Hemodynamics of paradoxical severe aortic stenosis: insight from a pressure–volume loop analysis
Authors
Michael Gotzmann
Sabine Hauptmann
Maximilian Hogeweg
Dinah S. Choudhury
Fabian Schiedat
Johannes W. Dietrich
Timm H. Westhoff
Martin Bergbauer
Andreas Mügge
Publication date
01-08-2019
Publisher
Springer Berlin Heidelberg
Published in
Clinical Research in Cardiology / Issue 8/2019
Print ISSN: 1861-0684
Electronic ISSN: 1861-0692
DOI
https://doi.org/10.1007/s00392-019-01423-z

Other articles of this Issue 8/2019

Clinical Research in Cardiology 8/2019 Go to the issue