Skip to main content
Top
Published in: Seminars in Immunopathology 4/2021

01-08-2021 | Primary Sclerosing Cholangitis | Review

Role of bile acids in inflammatory liver diseases

Authors: Ioannis Evangelakos, Joerg Heeren, Esther Verkade, Folkert Kuipers

Published in: Seminars in Immunopathology | Issue 4/2021

Login to get access

Abstract

Bile acids and their signaling pathways are increasingly recognized as potential therapeutic targets for cholestatic and metabolic liver diseases. This review summarizes new insights in bile acid physiology, focusing on regulatory roles of bile acids in the control of immune regulation and on effects of pharmacological modulators of bile acid signaling pathways in human liver disease. Recent mouse studies have highlighted the importance of the interactions between bile acids and gut microbiome. Interfering with microbiome composition may be beneficial for cholestatic and metabolic liver diseases by modulating formation of secondary bile acids, as different bile acid species have different signaling functions. Bile acid receptors such as FXR, VDR, and TGR5 are expressed in a variety of cells involved in innate as well as adaptive immunity, and specific microbial bile acid metabolites positively modulate immune responses of the host. Identification of Cyp2c70 as the enzyme responsible for the generation of hydrophilic mouse/rat-specific muricholic acids has allowed the generation of murine models with a human-like bile acid composition. These novel mouse models will aid to accelerate translational research on the (patho)physiological roles of bile acids in human liver diseases .
Literature
1.
go back to reference Russell DW (2003) The enzymes, regulation, and genetics of bile acid synthesis. Annu Rev Biochem 72:137–174PubMedCrossRef Russell DW (2003) The enzymes, regulation, and genetics of bile acid synthesis. Annu Rev Biochem 72:137–174PubMedCrossRef
2.
go back to reference Hofmann AF, Hagey LR (2014) Key discoveries in bile acid chemistry and biology and their clinical applications: history of the last eight decades. J Lipid Res 55(8):1553–1595PubMedPubMedCentralCrossRef Hofmann AF, Hagey LR (2014) Key discoveries in bile acid chemistry and biology and their clinical applications: history of the last eight decades. J Lipid Res 55(8):1553–1595PubMedPubMedCentralCrossRef
3.
go back to reference Groen AK, Kuipers F (2013) Bile acid look-alike controls life span in C. elegans. Cell Metab 18(2):151–152PubMedCrossRef Groen AK, Kuipers F (2013) Bile acid look-alike controls life span in C. elegans. Cell Metab 18(2):151–152PubMedCrossRef
4.
go back to reference Lefebvre P, Cariou B, Lien F, Kuipers F, Staels B (2009) Role of bile acids and bile acid receptors in metabolic regulation. Physiol Rev 89(1):147–191PubMedCrossRef Lefebvre P, Cariou B, Lien F, Kuipers F, Staels B (2009) Role of bile acids and bile acid receptors in metabolic regulation. Physiol Rev 89(1):147–191PubMedCrossRef
5.
go back to reference Ahmad TR, Haeusler RA (2019) Bile acids in glucose metabolism and insulin signalling - mechanisms and research needs. Nat Rev Endocrinol 15(12):701–712PubMedPubMedCentralCrossRef Ahmad TR, Haeusler RA (2019) Bile acids in glucose metabolism and insulin signalling - mechanisms and research needs. Nat Rev Endocrinol 15(12):701–712PubMedPubMedCentralCrossRef
7.
go back to reference Fiorucci S, Distrutti E, Carino A, Zampella A, Biagioli M (2021) Bile acids and their receptors in metabolic disorders. Prog Lipid Res 82:101094PubMedCrossRef Fiorucci S, Distrutti E, Carino A, Zampella A, Biagioli M (2021) Bile acids and their receptors in metabolic disorders. Prog Lipid Res 82:101094PubMedCrossRef
8.
go back to reference Keitel V, Stindt J, Haussinger D (2019) Bile acid-activated receptors: GPBAR1 (TGR5) and other G protein-coupled receptors. Handb Exp Pharmacol 256:19–49PubMedCrossRef Keitel V, Stindt J, Haussinger D (2019) Bile acid-activated receptors: GPBAR1 (TGR5) and other G protein-coupled receptors. Handb Exp Pharmacol 256:19–49PubMedCrossRef
9.
go back to reference Shin DJ, Wang L (2019) Bile Acid-Activated Receptors: A Review on FXR and Other Nuclear Receptors. Handb Exp Pharmacol 256:51–72PubMedCrossRef Shin DJ, Wang L (2019) Bile Acid-Activated Receptors: A Review on FXR and Other Nuclear Receptors. Handb Exp Pharmacol 256:51–72PubMedCrossRef
10.
go back to reference Cai X, Young GM, Xie W (2021) The xenobiotic receptors PXR and CAR in liver physiology, an update, Biochimica et biophysica acta. Mol Basis Dis 1867(6):166101CrossRef Cai X, Young GM, Xie W (2021) The xenobiotic receptors PXR and CAR in liver physiology, an update, Biochimica et biophysica acta. Mol Basis Dis 1867(6):166101CrossRef
11.
go back to reference Arab JP, Karpen SJ, Dawson PA, Arrese M, Trauner M (2017) Bile acids and nonalcoholic fatty liver disease: Molecular insights and therapeutic perspectives. Hepatology 65(1):350–362PubMedCrossRef Arab JP, Karpen SJ, Dawson PA, Arrese M, Trauner M (2017) Bile acids and nonalcoholic fatty liver disease: Molecular insights and therapeutic perspectives. Hepatology 65(1):350–362PubMedCrossRef
12.
go back to reference Roberts SB, Ismail M, Kanagalingam G, Mason AL, Swain MG, Vincent C, Yoshida EM, Tsien C, Flemming JA, Janssen HLA, Hirschfield GM, Hansen BE, Gulamhusein AF (2020) D. Canadian Network for Autoimmune Liver, Real-world effectiveness of obeticholic acid in patients with primary biliary cholangitis. Hepatol Commun 4(9):1332–1345PubMedPubMedCentralCrossRef Roberts SB, Ismail M, Kanagalingam G, Mason AL, Swain MG, Vincent C, Yoshida EM, Tsien C, Flemming JA, Janssen HLA, Hirschfield GM, Hansen BE, Gulamhusein AF (2020) D. Canadian Network for Autoimmune Liver, Real-world effectiveness of obeticholic acid in patients with primary biliary cholangitis. Hepatol Commun 4(9):1332–1345PubMedPubMedCentralCrossRef
13.
go back to reference Ali AH, Lindor KD (2016) Obeticholic acid for the treatment of primary biliary cholangitis. Expert Opin Pharmacother 17(13):1809–1815PubMedCrossRef Ali AH, Lindor KD (2016) Obeticholic acid for the treatment of primary biliary cholangitis. Expert Opin Pharmacother 17(13):1809–1815PubMedCrossRef
14.
go back to reference Steiner C, Othman A, Saely CH, Rein P, Drexel H, von Eckardstein A, Rentsch KM (2011) Bile acid metabolites in serum: intraindividual variation and associations with coronary heart disease, metabolic syndrome and diabetes mellitus. PLoS One 6(11):e25006PubMedPubMedCentralCrossRef Steiner C, Othman A, Saely CH, Rein P, Drexel H, von Eckardstein A, Rentsch KM (2011) Bile acid metabolites in serum: intraindividual variation and associations with coronary heart disease, metabolic syndrome and diabetes mellitus. PLoS One 6(11):e25006PubMedPubMedCentralCrossRef
15.
go back to reference Chen L, van den Munckhof ICL, Schraa K, Ter Horst R, Koehorst M, van Faassen M, van der Ley C, Doestzada M, Zhernakova DV, Kurilshikov A, Bloks VW, Groen AK, P. Human Functional Genomics, Riksen NP, Rutten JHW, Joosten LAB, Wijmenga C, Zhernakova A, Netea MG, Fu J, Kuipers F (2020) Genetic and microbial associations to plasma and fecal bile acids in obesity relate to plasma lipids and liver fat content. Cell Rep 33(1):108212PubMedCrossRef Chen L, van den Munckhof ICL, Schraa K, Ter Horst R, Koehorst M, van Faassen M, van der Ley C, Doestzada M, Zhernakova DV, Kurilshikov A, Bloks VW, Groen AK, P. Human Functional Genomics, Riksen NP, Rutten JHW, Joosten LAB, Wijmenga C, Zhernakova A, Netea MG, Fu J, Kuipers F (2020) Genetic and microbial associations to plasma and fecal bile acids in obesity relate to plasma lipids and liver fat content. Cell Rep 33(1):108212PubMedCrossRef
16.
go back to reference Haeusler RA, Astiarraga B, Camastra S, Accili D, Ferrannini E (2013) Human insulin resistance is associated with increased plasma levels of 12alpha-hydroxylated bile acids. Diabetes 62(12):4184–4191PubMedPubMedCentralCrossRef Haeusler RA, Astiarraga B, Camastra S, Accili D, Ferrannini E (2013) Human insulin resistance is associated with increased plasma levels of 12alpha-hydroxylated bile acids. Diabetes 62(12):4184–4191PubMedPubMedCentralCrossRef
17.
go back to reference de Boer JF, Bloks VW, Verkade E, Heiner-Fokkema MR, Kuipers F (2018) New insights in the multiple roles of bile acids and their signaling pathways in metabolic control. Curr Opin Lipidol 29(3):194–202PubMedCrossRef de Boer JF, Bloks VW, Verkade E, Heiner-Fokkema MR, Kuipers F (2018) New insights in the multiple roles of bile acids and their signaling pathways in metabolic control. Curr Opin Lipidol 29(3):194–202PubMedCrossRef
18.
go back to reference Ferrell JM, Chiang JYL (2019) Understanding bile acid signaling in diabetes: from pathophysiology to therapeutic targets. Diabetes Metab J 43(3):257–272PubMedPubMedCentralCrossRef Ferrell JM, Chiang JYL (2019) Understanding bile acid signaling in diabetes: from pathophysiology to therapeutic targets. Diabetes Metab J 43(3):257–272PubMedPubMedCentralCrossRef
19.
go back to reference Takahashi S, Fukami T, Masuo Y, Brocker CN, Xie C, Krausz KW, Wolf CR, Henderson CJ, Gonzalez FJ (2016) Cyp2c70 is responsible for the species difference in bile acid metabolism between mice and humans. J Lipid Res 57(12):2130–2137PubMedPubMedCentralCrossRef Takahashi S, Fukami T, Masuo Y, Brocker CN, Xie C, Krausz KW, Wolf CR, Henderson CJ, Gonzalez FJ (2016) Cyp2c70 is responsible for the species difference in bile acid metabolism between mice and humans. J Lipid Res 57(12):2130–2137PubMedPubMedCentralCrossRef
20.
go back to reference de Boer JF, de Vries HD, Palmiotti A, Li R, Doestzada M, Hoogerland JA, Fu J, La Rose AM, Westerterp M, Mulder NL, Hovingh MV, Koehorst M, Kloosterhuis NJ, Wolters JC, Bloks VW, Haas JT, Dombrowicz D, Staels B, van de Sluis B, Kuipers F (2021) Cholangiopathy and biliary fibrosis in Cyp2c70-deficient mice are fully reversed by ursodeoxycholic acid. Cell Mol Gastroenterol Hepatol 11(4):1045–1069PubMedCrossRef de Boer JF, de Vries HD, Palmiotti A, Li R, Doestzada M, Hoogerland JA, Fu J, La Rose AM, Westerterp M, Mulder NL, Hovingh MV, Koehorst M, Kloosterhuis NJ, Wolters JC, Bloks VW, Haas JT, Dombrowicz D, Staels B, van de Sluis B, Kuipers F (2021) Cholangiopathy and biliary fibrosis in Cyp2c70-deficient mice are fully reversed by ursodeoxycholic acid. Cell Mol Gastroenterol Hepatol 11(4):1045–1069PubMedCrossRef
21.
go back to reference Honda A, Miyazaki T, Iwamoto J, Hirayama T, Morishita Y, Monma T, Ueda H, Mizuno S, Sugiyama F, Takahashi S, Ikegami T (2020) Regulation of bile acid metabolism in mouse models with hydrophobic bile acid composition. J Lipid Res 61(1):54–69PubMedCrossRef Honda A, Miyazaki T, Iwamoto J, Hirayama T, Morishita Y, Monma T, Ueda H, Mizuno S, Sugiyama F, Takahashi S, Ikegami T (2020) Regulation of bile acid metabolism in mouse models with hydrophobic bile acid composition. J Lipid Res 61(1):54–69PubMedCrossRef
22.
go back to reference Straniero S, Laskar A, Savva C, Hardfeldt J, Angelin B, Rudling M (2020) Of mice and men: murine bile acids explain species differences in the regulation of bile acid and cholesterol metabolism. J Lipid Res 61(4):480–491PubMedPubMedCentralCrossRef Straniero S, Laskar A, Savva C, Hardfeldt J, Angelin B, Rudling M (2020) Of mice and men: murine bile acids explain species differences in the regulation of bile acid and cholesterol metabolism. J Lipid Res 61(4):480–491PubMedPubMedCentralCrossRef
23.
go back to reference Schubert K, Olde Damink SWM, von Bergen M, Schaap FG (2017) Interactions between bile salts, gut microbiota, and hepatic innate immunity. Immunol Rev 279(1):23–35PubMedCrossRef Schubert K, Olde Damink SWM, von Bergen M, Schaap FG (2017) Interactions between bile salts, gut microbiota, and hepatic innate immunity. Immunol Rev 279(1):23–35PubMedCrossRef
24.
go back to reference Kawamata Y, Fujii R, Hosoya M, Harada M, Yoshida H, Miwa M, Fukusumi S, Habata Y, Itoh T, Shintani Y, Hinuma S, Fujisawa Y, Fujino M (2003) A G protein-coupled receptor responsive to bile acids. J Biol Chem 278(11):9435–9440PubMedCrossRef Kawamata Y, Fujii R, Hosoya M, Harada M, Yoshida H, Miwa M, Fukusumi S, Habata Y, Itoh T, Shintani Y, Hinuma S, Fujisawa Y, Fujino M (2003) A G protein-coupled receptor responsive to bile acids. J Biol Chem 278(11):9435–9440PubMedCrossRef
25.
go back to reference Song X, Sun X, Oh SF, Wu M, Zhang Y, Zheng W, Geva-Zatorsky N, Jupp R, Mathis D, Benoist C, Kasper DL (2020) Microbial bile acid metabolites modulate gut RORgamma(+) regulatory T cell homeostasis. Nature 577(7790):410–415PubMedCrossRef Song X, Sun X, Oh SF, Wu M, Zhang Y, Zheng W, Geva-Zatorsky N, Jupp R, Mathis D, Benoist C, Kasper DL (2020) Microbial bile acid metabolites modulate gut RORgamma(+) regulatory T cell homeostasis. Nature 577(7790):410–415PubMedCrossRef
26.
go back to reference Hang S, Paik D, Yao L, Kim E, Trinath J, Lu J, Ha S, Nelson BN, Kelly SP, Wu L, Zheng Y, Longman RS, Rastinejad F, Devlin AS, Krout MR, Fischbach MA, Littman DR, Huh JR (2019) Bile acid metabolites control TH17 and Treg cell differentiation. Nature 576(7785):143–148PubMedPubMedCentralCrossRef Hang S, Paik D, Yao L, Kim E, Trinath J, Lu J, Ha S, Nelson BN, Kelly SP, Wu L, Zheng Y, Longman RS, Rastinejad F, Devlin AS, Krout MR, Fischbach MA, Littman DR, Huh JR (2019) Bile acid metabolites control TH17 and Treg cell differentiation. Nature 576(7785):143–148PubMedPubMedCentralCrossRef
27.
go back to reference Campbell C, McKenney PT, Konstantinovsky D, Isaeva OI, Schizas M, Verter J, Mai C, Jin WB, Guo CJ, Violante S, Ramos RJ, Cross JR, Kadaveru K, Hambor J, Rudensky AY (2020) Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells. Nature 581(7809):475–479PubMedPubMedCentralCrossRef Campbell C, McKenney PT, Konstantinovsky D, Isaeva OI, Schizas M, Verter J, Mai C, Jin WB, Guo CJ, Violante S, Ramos RJ, Cross JR, Kadaveru K, Hambor J, Rudensky AY (2020) Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells. Nature 581(7809):475–479PubMedPubMedCentralCrossRef
30.
go back to reference Thakare R, Alamoudi JA, Gautam N, Rodrigues AD, Alnouti Y (2018) Species differences in bile acids I. Plasma and urine bile acid composition. J Appl Toxicol 38(10):1323–1335PubMedCrossRef Thakare R, Alamoudi JA, Gautam N, Rodrigues AD, Alnouti Y (2018) Species differences in bile acids I. Plasma and urine bile acid composition. J Appl Toxicol 38(10):1323–1335PubMedCrossRef
31.
go back to reference Perino A, Demagny H, Velazquez-Villegas L, Schoonjans K (2021) Molecular physiology of bile acid signaling in health, disease, and aging. Physiol Rev 101(2):683–731PubMedCrossRef Perino A, Demagny H, Velazquez-Villegas L, Schoonjans K (2021) Molecular physiology of bile acid signaling in health, disease, and aging. Physiol Rev 101(2):683–731PubMedCrossRef
32.
go back to reference Stellaard F, Sackmann M, Berr F, Paumgartner G (1987) Simultaneous determination of pool sizes and fractional turnover rates, of deoxycholic acid, cholic acid and chenodeoxycholic acid in man by isotope dilution with 2H and 13C labels and serum sampling. Biomed Environ Mass Spectrom 14(11):609–611PubMedCrossRef Stellaard F, Sackmann M, Berr F, Paumgartner G (1987) Simultaneous determination of pool sizes and fractional turnover rates, of deoxycholic acid, cholic acid and chenodeoxycholic acid in man by isotope dilution with 2H and 13C labels and serum sampling. Biomed Environ Mass Spectrom 14(11):609–611PubMedCrossRef
33.
go back to reference Koopman BJ, Kuipers F, Bijleveld CM, van der Molen JC, Nagel GT, Vonk RJ, Wolthers BG (1988) Determination of cholic acid and chenodeoxycholic acid pool sizes and fractional turnover rates by means of stable isotope dilution technique, making use of deuterated cholic acid and chenodeoxycholic acid. Clin Chim Acta 175(2):143–155PubMedCrossRef Koopman BJ, Kuipers F, Bijleveld CM, van der Molen JC, Nagel GT, Vonk RJ, Wolthers BG (1988) Determination of cholic acid and chenodeoxycholic acid pool sizes and fractional turnover rates by means of stable isotope dilution technique, making use of deuterated cholic acid and chenodeoxycholic acid. Clin Chim Acta 175(2):143–155PubMedCrossRef
34.
go back to reference Kuipers F, de Boer JF, Staels B (2020) Microbiome modulation of the host adaptive immunity through bile acid modification. Cell Metab 31(3):445–447PubMedCrossRef Kuipers F, de Boer JF, Staels B (2020) Microbiome modulation of the host adaptive immunity through bile acid modification. Cell Metab 31(3):445–447PubMedCrossRef
35.
go back to reference Chen ML, Huang X, Wang H, Hegner C, Liu Y, Shang J, Eliason A, Diao H, Park H, Frey B, Wang G, Mosure SA, Solt LA, Kojetin DJ, Rodriguez-Palacios A, Schady DA, Weaver CT, Pipkin ME, Moore DD, Sundrud MS (2021) CAR directs T cell adaptation to bile acids in the small intestine. Nature 593:147–151PubMedCrossRefPubMedCentral Chen ML, Huang X, Wang H, Hegner C, Liu Y, Shang J, Eliason A, Diao H, Park H, Frey B, Wang G, Mosure SA, Solt LA, Kojetin DJ, Rodriguez-Palacios A, Schady DA, Weaver CT, Pipkin ME, Moore DD, Sundrud MS (2021) CAR directs T cell adaptation to bile acids in the small intestine. Nature 593:147–151PubMedCrossRefPubMedCentral
36.
go back to reference Glaser F, John C, Engel B, Hoh B, Weidemann S, Dieckhoff J, Stein S, Becker N, Casar C, Schuran FA, Wieschendorf B, Preti M, Jessen F, Franke A, Carambia A, Lohse AW, Ittrich H, Herkel J, Heeren J, Schramm C, Schwinge D (2019) Liver infiltrating T cells regulate bile acid metabolism in experimental cholangitis. J Hepatol 71(4):783–792PubMedCrossRef Glaser F, John C, Engel B, Hoh B, Weidemann S, Dieckhoff J, Stein S, Becker N, Casar C, Schuran FA, Wieschendorf B, Preti M, Jessen F, Franke A, Carambia A, Lohse AW, Ittrich H, Herkel J, Heeren J, Schramm C, Schwinge D (2019) Liver infiltrating T cells regulate bile acid metabolism in experimental cholangitis. J Hepatol 71(4):783–792PubMedCrossRef
37.
go back to reference Jansen PL, Strautnieks SS, Jacquemin E, Hadchouel M, Sokal EM, Hooiveld GJ, Koning JH, De Jager-Krikken A, Kuipers F, Stellaard F, Bijleveld CM, Gouw A, Van Goor H, Thompson RJ, Muller M (1999) Hepatocanalicular bile salt export pump deficiency in patients with progressive familial intrahepatic cholestasis. Gastroenterology 117(6):1370–1379PubMedCrossRef Jansen PL, Strautnieks SS, Jacquemin E, Hadchouel M, Sokal EM, Hooiveld GJ, Koning JH, De Jager-Krikken A, Kuipers F, Stellaard F, Bijleveld CM, Gouw A, Van Goor H, Thompson RJ, Muller M (1999) Hepatocanalicular bile salt export pump deficiency in patients with progressive familial intrahepatic cholestasis. Gastroenterology 117(6):1370–1379PubMedCrossRef
39.
go back to reference Zou M, Wang A, Wei J, Cai H, Yu Z, Zhang L, Wang X (2021) An insight into the mechanism and molecular basis of dysfunctional immune response involved in cholestasis. Int Immunopharmacol 92:107328PubMedCrossRef Zou M, Wang A, Wei J, Cai H, Yu Z, Zhang L, Wang X (2021) An insight into the mechanism and molecular basis of dysfunctional immune response involved in cholestasis. Int Immunopharmacol 92:107328PubMedCrossRef
40.
go back to reference Banales JM, Huebert RC, Karlsen T, Strazzabosco M, LaRusso NF, Gores GJ (2019) Cholangiocyte pathobiology, Nature reviews. Gastroenterol Hepatol 16(5):269–281 Banales JM, Huebert RC, Karlsen T, Strazzabosco M, LaRusso NF, Gores GJ (2019) Cholangiocyte pathobiology, Nature reviews. Gastroenterol Hepatol 16(5):269–281
41.
go back to reference Adams DH, Eksteen B (2006) Aberrant homing of mucosal T cells and extra-intestinal manifestations of inflammatory bowel disease. Nat Rev Immunol 6(3):244–251PubMedCrossRef Adams DH, Eksteen B (2006) Aberrant homing of mucosal T cells and extra-intestinal manifestations of inflammatory bowel disease. Nat Rev Immunol 6(3):244–251PubMedCrossRef
42.
go back to reference Gulamhusein AF, Hirschfield GM (2020) Primary biliary cholangitis: pathogenesis and therapeutic opportunities. Nat Rev Gastroenterol Hepatol 17(2):93–110PubMedCrossRef Gulamhusein AF, Hirschfield GM (2020) Primary biliary cholangitis: pathogenesis and therapeutic opportunities. Nat Rev Gastroenterol Hepatol 17(2):93–110PubMedCrossRef
43.
go back to reference Cameron RG, Blendis LM, Neuman MG (2001) Accumulation of macrophages in primary sclerosing cholangitis. Clin Biochem 34(3):195–201PubMedCrossRef Cameron RG, Blendis LM, Neuman MG (2001) Accumulation of macrophages in primary sclerosing cholangitis. Clin Biochem 34(3):195–201PubMedCrossRef
44.
go back to reference Schmucker DL, Ohta M, Kanai S, Sato Y, Kitani K (1990) Hepatic injury induced by bile salts: correlation between biochemical and morphological events. Hepatology 12(5):1216–1221PubMedCrossRef Schmucker DL, Ohta M, Kanai S, Sato Y, Kitani K (1990) Hepatic injury induced by bile salts: correlation between biochemical and morphological events. Hepatology 12(5):1216–1221PubMedCrossRef
45.
go back to reference Afonso MB, Rodrigues PM, Simao AL, Ofengeim D, Carvalho T, Amaral JD, Gaspar MM, Cortez-Pinto H, Castro RE, Yuan J, Rodrigues CM (2016) Activation of necroptosis in human and experimental cholestasis. Cell Death Dis 7(9):e2390PubMedPubMedCentralCrossRef Afonso MB, Rodrigues PM, Simao AL, Ofengeim D, Carvalho T, Amaral JD, Gaspar MM, Cortez-Pinto H, Castro RE, Yuan J, Rodrigues CM (2016) Activation of necroptosis in human and experimental cholestasis. Cell Death Dis 7(9):e2390PubMedPubMedCentralCrossRef
46.
47.
go back to reference Calmus Y, Arvieux C, Gane P, Boucher E, Nordlinger B, Rouger P, Poupon R (1992) Cholestasis induces major histocompatibility complex class I expression in hepatocytes. Gastroenterology 102(4 Pt 1):1371–1377PubMedCrossRef Calmus Y, Arvieux C, Gane P, Boucher E, Nordlinger B, Rouger P, Poupon R (1992) Cholestasis induces major histocompatibility complex class I expression in hepatocytes. Gastroenterology 102(4 Pt 1):1371–1377PubMedCrossRef
48.
go back to reference Allen K, Jaeschke H, Copple BL (2011) Bile acids induce inflammatory genes in hepatocytes: a novel mechanism of inflammation during obstructive cholestasis. Am J Pathol 178(1):175–186PubMedPubMedCentralCrossRef Allen K, Jaeschke H, Copple BL (2011) Bile acids induce inflammatory genes in hepatocytes: a novel mechanism of inflammation during obstructive cholestasis. Am J Pathol 178(1):175–186PubMedPubMedCentralCrossRef
49.
go back to reference Gujral JS, Liu J, Farhood A, Jaeschke H (2004) Reduced oncotic necrosis in Fas receptor-deficient C57BL/6J-lpr mice after bile duct ligation. Hepatology 40(4):998–1007PubMedCrossRef Gujral JS, Liu J, Farhood A, Jaeschke H (2004) Reduced oncotic necrosis in Fas receptor-deficient C57BL/6J-lpr mice after bile duct ligation. Hepatology 40(4):998–1007PubMedCrossRef
50.
go back to reference Polzien F, Ramadori G (1996) Increased intercellular adhesion molecule-1 serum concentration in cholestasis. J Hepatol 25(6):877–886PubMedCrossRef Polzien F, Ramadori G (1996) Increased intercellular adhesion molecule-1 serum concentration in cholestasis. J Hepatol 25(6):877–886PubMedCrossRef
51.
go back to reference Podevin P, Calmus Y, Bonnefis MT, Veyrunes C, Chereau C, Poupon R (1995) Effect of cholestasis and bile acids on interferon-induced 2',5'-adenylate synthetase and NK cell activities. Gastroenterology 108(4):1192–1198PubMedCrossRef Podevin P, Calmus Y, Bonnefis MT, Veyrunes C, Chereau C, Poupon R (1995) Effect of cholestasis and bile acids on interferon-induced 2',5'-adenylate synthetase and NK cell activities. Gastroenterology 108(4):1192–1198PubMedCrossRef
52.
53.
go back to reference Sturm E, Havinga R, Baller JF, Wolters H, van Rooijen N, Kamps JA, Verkade HJ, Karpen SJ, Kuipers F (2005) Kupffer cell depletion with liposomal clodronate prevents suppression of Ntcp expression in endotoxin-treated rats. J Hepatol 42(1):102–109PubMedCrossRef Sturm E, Havinga R, Baller JF, Wolters H, van Rooijen N, Kamps JA, Verkade HJ, Karpen SJ, Kuipers F (2005) Kupffer cell depletion with liposomal clodronate prevents suppression of Ntcp expression in endotoxin-treated rats. J Hepatol 42(1):102–109PubMedCrossRef
54.
go back to reference Harms MH, van Buuren HR, Corpechot C, Thorburn D, Janssen HLA, Lindor KD, Hirschfield GM, Pares A, Floreani A, Mayo MJ, Invernizzi P, Battezzati PM, Nevens F, Ponsioen CY, Mason AL, Kowdley KV, Lammers WJ, Hansen BE, van der Meer AJ (2019) Ursodeoxycholic acid therapy and liver transplant-free survival in patients with primary biliary cholangitis. J Hepatol 71(2):357–365PubMedCrossRef Harms MH, van Buuren HR, Corpechot C, Thorburn D, Janssen HLA, Lindor KD, Hirschfield GM, Pares A, Floreani A, Mayo MJ, Invernizzi P, Battezzati PM, Nevens F, Ponsioen CY, Mason AL, Kowdley KV, Lammers WJ, Hansen BE, van der Meer AJ (2019) Ursodeoxycholic acid therapy and liver transplant-free survival in patients with primary biliary cholangitis. J Hepatol 71(2):357–365PubMedCrossRef
55.
go back to reference Pares A, Caballeria L, Rodes J (2006) Excellent long-term survival in patients with primary biliary cirrhosis and biochemical response to ursodeoxycholic Acid. Gastroenterology 130(3):715–720PubMedCrossRef Pares A, Caballeria L, Rodes J (2006) Excellent long-term survival in patients with primary biliary cirrhosis and biochemical response to ursodeoxycholic Acid. Gastroenterology 130(3):715–720PubMedCrossRef
56.
go back to reference Vesterhus M, Karlsen TH (2020) Emerging therapies in primary sclerosing cholangitis: pathophysiological basis and clinical opportunities. J Gastroenterol 55(6):588–614PubMedPubMedCentralCrossRef Vesterhus M, Karlsen TH (2020) Emerging therapies in primary sclerosing cholangitis: pathophysiological basis and clinical opportunities. J Gastroenterol 55(6):588–614PubMedPubMedCentralCrossRef
57.
go back to reference Lindor KD, Kowdley KV, Luketic VA, Harrison ME, McCashland T, Befeler AS, Harnois D, Jorgensen R, Petz J, Keach J, Mooney J, Sargeant C, Braaten J, Bernard T, King D, Miceli E, Schmoll J, Hoskin T, Thapa P, Enders F (2009) High-dose ursodeoxycholic acid for the treatment of primary sclerosing cholangitis. Hepatology 50(3):808–814PubMedCrossRef Lindor KD, Kowdley KV, Luketic VA, Harrison ME, McCashland T, Befeler AS, Harnois D, Jorgensen R, Petz J, Keach J, Mooney J, Sargeant C, Braaten J, Bernard T, King D, Miceli E, Schmoll J, Hoskin T, Thapa P, Enders F (2009) High-dose ursodeoxycholic acid for the treatment of primary sclerosing cholangitis. Hepatology 50(3):808–814PubMedCrossRef
58.
go back to reference Beuers U, Spengler U, Zwiebel FM, Pauletzki J, Fischer S, Paumgartner G (1992) Effect of ursodeoxycholic acid on the kinetics of the major hydrophobic bile acids in health and in chronic cholestatic liver disease. Hepatology 15(4):603–608PubMedCrossRef Beuers U, Spengler U, Zwiebel FM, Pauletzki J, Fischer S, Paumgartner G (1992) Effect of ursodeoxycholic acid on the kinetics of the major hydrophobic bile acids in health and in chronic cholestatic liver disease. Hepatology 15(4):603–608PubMedCrossRef
59.
go back to reference Beuers U, Hohenester S, de Buy Wenniger LJ, Kremer AE, Jansen PL, Elferink RP (2010) The biliary HCO(3)(-) umbrella: a unifying hypothesis on pathogenetic and therapeutic aspects of fibrosing cholangiopathies. Hepatology 52(4):1489–1496PubMedCrossRef Beuers U, Hohenester S, de Buy Wenniger LJ, Kremer AE, Jansen PL, Elferink RP (2010) The biliary HCO(3)(-) umbrella: a unifying hypothesis on pathogenetic and therapeutic aspects of fibrosing cholangiopathies. Hepatology 52(4):1489–1496PubMedCrossRef
60.
go back to reference Gurantz D, Schteingart CD, Hagey LR, Steinbach JH, Grotmol T, Hofmann AF (1991) Hypercholeresis induced by unconjugated bile acid infusion correlates with recovery in bile of unconjugated bile acids. Hepatology 13(3):540–550PubMed Gurantz D, Schteingart CD, Hagey LR, Steinbach JH, Grotmol T, Hofmann AF (1991) Hypercholeresis induced by unconjugated bile acid infusion correlates with recovery in bile of unconjugated bile acids. Hepatology 13(3):540–550PubMed
61.
go back to reference Ozcan U, Yilmaz E, Ozcan L, Furuhashi M, Vaillancourt E, Smith RO, Gorgun CZ, Hotamisligil GS (2006) Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science 313(5790):1137–1140PubMedPubMedCentralCrossRef Ozcan U, Yilmaz E, Ozcan L, Furuhashi M, Vaillancourt E, Smith RO, Gorgun CZ, Hotamisligil GS (2006) Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science 313(5790):1137–1140PubMedPubMedCentralCrossRef
62.
go back to reference Terasaki S, Nakanuma Y, Ogino H, Unoura M, Kobayashi K (1991) Hepatocellular and biliary expression of HLA antigens in primary biliary cirrhosis before and after ursodeoxycholic acid therapy. Am J Gastroenterol 86(9):1194–1199PubMed Terasaki S, Nakanuma Y, Ogino H, Unoura M, Kobayashi K (1991) Hepatocellular and biliary expression of HLA antigens in primary biliary cirrhosis before and after ursodeoxycholic acid therapy. Am J Gastroenterol 86(9):1194–1199PubMed
63.
go back to reference Poupon R (2012) Ursodeoxycholic acid and bile-acid mimetics as therapeutic agents for cholestatic liver diseases: an overview of their mechanisms of action. Clin Res Hepatol Gastroenterol 36(Suppl 1):S3–S12PubMedCrossRef Poupon R (2012) Ursodeoxycholic acid and bile-acid mimetics as therapeutic agents for cholestatic liver diseases: an overview of their mechanisms of action. Clin Res Hepatol Gastroenterol 36(Suppl 1):S3–S12PubMedCrossRef
64.
go back to reference Nishigaki Y, Ohnishi H, Moriwaki H, Muto Y (1996) Ursodeoxycholic acid corrects defective natural killer activity by inhibiting prostaglandin E2 production in primary biliary cirrhosis. Dig Dis Sci 41(7):1487–1493PubMedCrossRef Nishigaki Y, Ohnishi H, Moriwaki H, Muto Y (1996) Ursodeoxycholic acid corrects defective natural killer activity by inhibiting prostaglandin E2 production in primary biliary cirrhosis. Dig Dis Sci 41(7):1487–1493PubMedCrossRef
65.
go back to reference Verbeke L, Farre R, Verbinnen B, Covens K, Vanuytsel T, Verhaegen J, Komuta M, Roskams T, Chatterjee S, Annaert P, Vander Elst I, Windmolders P, Trebicka J, Nevens F, Laleman W (2015) The FXR agonist obeticholic acid prevents gut barrier dysfunction and bacterial translocation in cholestatic rats. Am J Pathol 185(2):409–419PubMedCrossRef Verbeke L, Farre R, Verbinnen B, Covens K, Vanuytsel T, Verhaegen J, Komuta M, Roskams T, Chatterjee S, Annaert P, Vander Elst I, Windmolders P, Trebicka J, Nevens F, Laleman W (2015) The FXR agonist obeticholic acid prevents gut barrier dysfunction and bacterial translocation in cholestatic rats. Am J Pathol 185(2):409–419PubMedCrossRef
66.
go back to reference Hirschfield GM, Mason A, Luketic V, Lindor K, Gordon SC, Mayo M, Kowdley KV, Vincent C, Bodhenheimer HC Jr, Pares A, Trauner M, Marschall HU, Adorini L, Sciacca C, Beecher-Jones T, Castelloe E, Bohm O, Shapiro D (2015) Efficacy of obeticholic acid in patients with primary biliary cirrhosis and inadequate response to ursodeoxycholic acid. Gastroenterology 148(4):751–61.e8PubMedCrossRef Hirschfield GM, Mason A, Luketic V, Lindor K, Gordon SC, Mayo M, Kowdley KV, Vincent C, Bodhenheimer HC Jr, Pares A, Trauner M, Marschall HU, Adorini L, Sciacca C, Beecher-Jones T, Castelloe E, Bohm O, Shapiro D (2015) Efficacy of obeticholic acid in patients with primary biliary cirrhosis and inadequate response to ursodeoxycholic acid. Gastroenterology 148(4):751–61.e8PubMedCrossRef
67.
go back to reference Kowdley KV, Luketic V, Chapman R, Hirschfield GM, Poupon R, Schramm C, Vincent C, Rust C, Pares A, Mason A, Marschall HU, Shapiro D, Adorini L, Sciacca C, Beecher-Jones T, Bohm O, Pencek R, Jones D, P.B.C.M.S.G. Obeticholic Acid (2018, 1890-1902) A randomized trial of obeticholic acid monotherapy in patients with primary biliary cholangitis. Hepatology 67(5) Kowdley KV, Luketic V, Chapman R, Hirschfield GM, Poupon R, Schramm C, Vincent C, Rust C, Pares A, Mason A, Marschall HU, Shapiro D, Adorini L, Sciacca C, Beecher-Jones T, Bohm O, Pencek R, Jones D, P.B.C.M.S.G. Obeticholic Acid (2018, 1890-1902) A randomized trial of obeticholic acid monotherapy in patients with primary biliary cholangitis. Hepatology 67(5)
68.
go back to reference Eslam M, Sanyal AJ, George J, P. International Consensus (2020) MAFLD: A Consensus-Driven Proposed Nomenclature for Metabolic Associated Fatty Liver Disease. Gastroenterology 158(7):1999–2014.e1PubMedCrossRef Eslam M, Sanyal AJ, George J, P. International Consensus (2020) MAFLD: A Consensus-Driven Proposed Nomenclature for Metabolic Associated Fatty Liver Disease. Gastroenterology 158(7):1999–2014.e1PubMedCrossRef
69.
go back to reference Loomba R, Sanyal AJ (2013) The global NAFLD epidemic. Nat Rev Gastroenterol Hepatol 10(11):686–690PubMedCrossRef Loomba R, Sanyal AJ (2013) The global NAFLD epidemic. Nat Rev Gastroenterol Hepatol 10(11):686–690PubMedCrossRef
71.
go back to reference Bechmann LP, Hannivoort RA, Gerken G, Hotamisligil GS, Trauner M, Canbay A (2012) The interaction of hepatic lipid and glucose metabolism in liver diseases. J Hepatol 56(4):952–964PubMedCrossRef Bechmann LP, Hannivoort RA, Gerken G, Hotamisligil GS, Trauner M, Canbay A (2012) The interaction of hepatic lipid and glucose metabolism in liver diseases. J Hepatol 56(4):952–964PubMedCrossRef
72.
go back to reference Molinaro A, Wahlstrom A, Marschall HU (2018) Role of Bile Acids in Metabolic Control. Trends Endocrinol Metab 29(1):31–41PubMedCrossRef Molinaro A, Wahlstrom A, Marschall HU (2018) Role of Bile Acids in Metabolic Control. Trends Endocrinol Metab 29(1):31–41PubMedCrossRef
73.
74.
go back to reference Staels B, Fonseca VA (2009) Bile acids and metabolic regulation: mechanisms and clinical responses to bile acid sequestration. Diabetes Care 32(Suppl 2):S237–S245PubMedPubMedCentralCrossRef Staels B, Fonseca VA (2009) Bile acids and metabolic regulation: mechanisms and clinical responses to bile acid sequestration. Diabetes Care 32(Suppl 2):S237–S245PubMedPubMedCentralCrossRef
75.
go back to reference Tanaka N, Matsubara T, Krausz KW, Patterson AD, Gonzalez FJ (2012) Disruption of phospholipid and bile acid homeostasis in mice with nonalcoholic steatohepatitis. Hepatology 56(1):118–129PubMedCrossRef Tanaka N, Matsubara T, Krausz KW, Patterson AD, Gonzalez FJ (2012) Disruption of phospholipid and bile acid homeostasis in mice with nonalcoholic steatohepatitis. Hepatology 56(1):118–129PubMedCrossRef
76.
go back to reference Suga T, Yamaguchi H, Ogura J, Shoji S, Maekawa M, Mano N (2019) Altered bile acid composition and disposition in a mouse model of non-alcoholic steatohepatitis. Toxicol Appl Pharmacol 379:114664PubMedCrossRef Suga T, Yamaguchi H, Ogura J, Shoji S, Maekawa M, Mano N (2019) Altered bile acid composition and disposition in a mouse model of non-alcoholic steatohepatitis. Toxicol Appl Pharmacol 379:114664PubMedCrossRef
77.
go back to reference Ferslew BC, Xie G, Johnston CK, Su M, Stewart PW, Jia W, Brouwer KL, Barritt AST (2015) Altered Bile Acid Metabolome in Patients with Nonalcoholic Steatohepatitis. Dig Dis Sci 60(11):3318–3328PubMedPubMedCentralCrossRef Ferslew BC, Xie G, Johnston CK, Su M, Stewart PW, Jia W, Brouwer KL, Barritt AST (2015) Altered Bile Acid Metabolome in Patients with Nonalcoholic Steatohepatitis. Dig Dis Sci 60(11):3318–3328PubMedPubMedCentralCrossRef
78.
go back to reference Bechmann LP, Kocabayoglu P, Sowa JP, Sydor S, Best J, Schlattjan M, Beilfuss A, Schmitt J, Hannivoort RA, Kilicarslan A, Rust C, Berr F, Tschopp O, Gerken G, Friedman SL, Geier A, Canbay A (2013) Free fatty acids repress small heterodimer partner (SHP) activation and adiponectin counteracts bile acid-induced liver injury in superobese patients with nonalcoholic steatohepatitis. Hepatology 57(4):1394–1406PubMedCrossRef Bechmann LP, Kocabayoglu P, Sowa JP, Sydor S, Best J, Schlattjan M, Beilfuss A, Schmitt J, Hannivoort RA, Kilicarslan A, Rust C, Berr F, Tschopp O, Gerken G, Friedman SL, Geier A, Canbay A (2013) Free fatty acids repress small heterodimer partner (SHP) activation and adiponectin counteracts bile acid-induced liver injury in superobese patients with nonalcoholic steatohepatitis. Hepatology 57(4):1394–1406PubMedCrossRef
79.
go back to reference Dasarathy S, Yang Y, McCullough AJ, Marczewski S, Bennett C, Kalhan SC (2011) Elevated hepatic fatty acid oxidation, high plasma fibroblast growth factor 21, and fasting bile acids in nonalcoholic steatohepatitis. Eur J Gastroenterol Hepatol 23(5):382–388PubMedPubMedCentralCrossRef Dasarathy S, Yang Y, McCullough AJ, Marczewski S, Bennett C, Kalhan SC (2011) Elevated hepatic fatty acid oxidation, high plasma fibroblast growth factor 21, and fasting bile acids in nonalcoholic steatohepatitis. Eur J Gastroenterol Hepatol 23(5):382–388PubMedPubMedCentralCrossRef
80.
go back to reference Kalhan SC, Guo L, Edmison J, Dasarathy S, McCullough AJ, Hanson RW, Milburn M (2011) Plasma metabolomic profile in nonalcoholic fatty liver disease. Metab Clin Exp 60(3):404–413PubMedCrossRef Kalhan SC, Guo L, Edmison J, Dasarathy S, McCullough AJ, Hanson RW, Milburn M (2011) Plasma metabolomic profile in nonalcoholic fatty liver disease. Metab Clin Exp 60(3):404–413PubMedCrossRef
81.
go back to reference Puri P, Daita K, Joyce A, Mirshahi F, Santhekadur PK, Cazanave S, Luketic VA, Siddiqui MS, Boyett S, Min HK, Kumar DP, Kohli R, Zhou H, Hylemon PB, Contos MJ, Idowu M, Sanyal AJ (2018) The presence and severity of nonalcoholic steatohepatitis is associated with specific changes in circulating bile acids. Hepatology 67(2):534–548PubMedCrossRef Puri P, Daita K, Joyce A, Mirshahi F, Santhekadur PK, Cazanave S, Luketic VA, Siddiqui MS, Boyett S, Min HK, Kumar DP, Kohli R, Zhou H, Hylemon PB, Contos MJ, Idowu M, Sanyal AJ (2018) The presence and severity of nonalcoholic steatohepatitis is associated with specific changes in circulating bile acids. Hepatology 67(2):534–548PubMedCrossRef
82.
go back to reference Nimer N, Choucair I, Wang Z, Nemet I, Li L, Gukasyan J, Weeks TL, Alkhouri N, Zein N, Tang WHW, Fischbach MA, Brown JM, Allayee H, Dasarathy S, Gogonea V, Hazen SL (2021) Bile acids profile, histopathological indices and genetic variants for non-alcoholic fatty liver disease progression. Metab Clin Exp 116:154457PubMedCrossRef Nimer N, Choucair I, Wang Z, Nemet I, Li L, Gukasyan J, Weeks TL, Alkhouri N, Zein N, Tang WHW, Fischbach MA, Brown JM, Allayee H, Dasarathy S, Gogonea V, Hazen SL (2021) Bile acids profile, histopathological indices and genetic variants for non-alcoholic fatty liver disease progression. Metab Clin Exp 116:154457PubMedCrossRef
83.
go back to reference Aranha MM, Cortez-Pinto H, Costa A, da Silva IB, Camilo ME, de Moura MC, Rodrigues CM (2008) Bile acid levels are increased in the liver of patients with steatohepatitis. Eur J Gastroenterol Hepatol 20(6):519–525PubMedCrossRef Aranha MM, Cortez-Pinto H, Costa A, da Silva IB, Camilo ME, de Moura MC, Rodrigues CM (2008) Bile acid levels are increased in the liver of patients with steatohepatitis. Eur J Gastroenterol Hepatol 20(6):519–525PubMedCrossRef
84.
go back to reference Lake AD, Novak P, Shipkova P, Aranibar N, Robertson D, Reily MD, Lu Z, Lehman-McKeeman LD, Cherrington NJ (2013) Decreased hepatotoxic bile acid composition and altered synthesis in progressive human nonalcoholic fatty liver disease. Toxicol Appl Pharmacol 268(2):132–140PubMedPubMedCentralCrossRef Lake AD, Novak P, Shipkova P, Aranibar N, Robertson D, Reily MD, Lu Z, Lehman-McKeeman LD, Cherrington NJ (2013) Decreased hepatotoxic bile acid composition and altered synthesis in progressive human nonalcoholic fatty liver disease. Toxicol Appl Pharmacol 268(2):132–140PubMedPubMedCentralCrossRef
85.
go back to reference Mouzaki M, Wang AY, Bandsma R, Comelli EM, Arendt BM, Zhang L, Fung S, Fischer SE, McGilvray IG, Allard JP (2016) Bile Acids and Dysbiosis in Non-Alcoholic Fatty Liver Disease. PLoS One 11(5):e0151829PubMedPubMedCentralCrossRef Mouzaki M, Wang AY, Bandsma R, Comelli EM, Arendt BM, Zhang L, Fung S, Fischer SE, McGilvray IG, Allard JP (2016) Bile Acids and Dysbiosis in Non-Alcoholic Fatty Liver Disease. PLoS One 11(5):e0151829PubMedPubMedCentralCrossRef
86.
go back to reference Legry V, Francque S, Haas JT, Verrijken A, Caron S, Chavez-Talavera O, Vallez E, Vonghia L, Dirinck E, Verhaegen A, Kouach M, Lestavel S, Lefebvre P, Van Gaal L, Tailleux A, Paumelle R, Staels B (2017) Bile Acid Alterations Are Associated With Insulin Resistance, but Not With NASH, in Obese Subjects. J Clin Endocrinol Metab 102(10):3783–3794PubMedCrossRef Legry V, Francque S, Haas JT, Verrijken A, Caron S, Chavez-Talavera O, Vallez E, Vonghia L, Dirinck E, Verhaegen A, Kouach M, Lestavel S, Lefebvre P, Van Gaal L, Tailleux A, Paumelle R, Staels B (2017) Bile Acid Alterations Are Associated With Insulin Resistance, but Not With NASH, in Obese Subjects. J Clin Endocrinol Metab 102(10):3783–3794PubMedCrossRef
87.
go back to reference Lee G, You HJ, Bajaj JS, Joo SK, Yu J, Park S, Kang H, Park JH, Kim JH, Lee DH, Lee S, Kim W, Ko G (2020) Distinct signatures of gut microbiome and metabolites associated with significant fibrosis in non-obese NAFLD. Nat Commun 11(1):4982PubMedPubMedCentralCrossRef Lee G, You HJ, Bajaj JS, Joo SK, Yu J, Park S, Kang H, Park JH, Kim JH, Lee DH, Lee S, Kim W, Ko G (2020) Distinct signatures of gut microbiome and metabolites associated with significant fibrosis in non-obese NAFLD. Nat Commun 11(1):4982PubMedPubMedCentralCrossRef
88.
go back to reference Heeren J, Scheja L (2018) Brown adipose tissue and lipid metabolism. Curr Opin Lipidol 29(3):180–185PubMedCrossRef Heeren J, Scheja L (2018) Brown adipose tissue and lipid metabolism. Curr Opin Lipidol 29(3):180–185PubMedCrossRef
89.
go back to reference Raselli T, Hearn T, Wyss A, Atrott K, Peter A, Frey-Wagner I, Spalinger MR, Maggio EM, Sailer AW, Schmitt J, Schreiner P, Moncsek A, Mertens J, Scharl M, Griffiths WJ, Bueter M, Geier A, Rogler G, Wang Y, Misselwitz B (2019) Elevated oxysterol levels in human and mouse livers reflect nonalcoholic steatohepatitis. J Lipid Res 60(7):1270–1283PubMedPubMedCentralCrossRef Raselli T, Hearn T, Wyss A, Atrott K, Peter A, Frey-Wagner I, Spalinger MR, Maggio EM, Sailer AW, Schmitt J, Schreiner P, Moncsek A, Mertens J, Scharl M, Griffiths WJ, Bueter M, Geier A, Rogler G, Wang Y, Misselwitz B (2019) Elevated oxysterol levels in human and mouse livers reflect nonalcoholic steatohepatitis. J Lipid Res 60(7):1270–1283PubMedPubMedCentralCrossRef
90.
go back to reference Worthmann A, John C, Ruhlemann MC, Baguhl M, Heinsen FA, Schaltenberg N, Heine M, Schlein C, Evangelakos I, Mineo C, Fischer M, Dandri M, Kremoser C, Scheja L, Franke A, Shaul PW, Heeren J (2017) Cold-induced conversion of cholesterol to bile acids in mice shapes the gut microbiome and promotes adaptive thermogenesis. Nat Med 23(7):839–849PubMedCrossRef Worthmann A, John C, Ruhlemann MC, Baguhl M, Heinsen FA, Schaltenberg N, Heine M, Schlein C, Evangelakos I, Mineo C, Fischer M, Dandri M, Kremoser C, Scheja L, Franke A, Shaul PW, Heeren J (2017) Cold-induced conversion of cholesterol to bile acids in mice shapes the gut microbiome and promotes adaptive thermogenesis. Nat Med 23(7):839–849PubMedCrossRef
91.
go back to reference Jiao N, Baker SS, Chapa-Rodriguez A, Liu W, Nugent CA, Tsompana M, Mastrandrea L, Buck MJ, Baker RD, Genco RJ, Zhu R, Zhu L (2018) Suppressed hepatic bile acid signalling despite elevated production of primary and secondary bile acids in NAFLD. Gut 67(10):1881–1891PubMedCrossRef Jiao N, Baker SS, Chapa-Rodriguez A, Liu W, Nugent CA, Tsompana M, Mastrandrea L, Buck MJ, Baker RD, Genco RJ, Zhu R, Zhu L (2018) Suppressed hepatic bile acid signalling despite elevated production of primary and secondary bile acids in NAFLD. Gut 67(10):1881–1891PubMedCrossRef
92.
go back to reference Govaere O, Cockell S, Tiniakos D, Queen R, Younes R, Vacca M, Alexander L, Ravaioli F, Palmer J, Petta S, Boursier J, Rosso C, Johnson K, Wonders K, Day CP, Ekstedt M, Oresic M, Darlay R, Cordell HJ, Marra F, Vidal-Puig A, Bedossa P, Schattenberg JM, Clement K, Allison M, Bugianesi E, Ratziu V, Daly AK, Anstee QM (2020) Transcriptomic profiling across the nonalcoholic fatty liver disease spectrum reveals gene signatures for steatohepatitis and fibrosis. Sci Transl Med 12(572) Govaere O, Cockell S, Tiniakos D, Queen R, Younes R, Vacca M, Alexander L, Ravaioli F, Palmer J, Petta S, Boursier J, Rosso C, Johnson K, Wonders K, Day CP, Ekstedt M, Oresic M, Darlay R, Cordell HJ, Marra F, Vidal-Puig A, Bedossa P, Schattenberg JM, Clement K, Allison M, Bugianesi E, Ratziu V, Daly AK, Anstee QM (2020) Transcriptomic profiling across the nonalcoholic fatty liver disease spectrum reveals gene signatures for steatohepatitis and fibrosis. Sci Transl Med 12(572)
93.
go back to reference Liu H, Pathak P, Boehme S, Chiang JY (2016) Cholesterol 7alpha-hydroxylase protects the liver from inflammation and fibrosis by maintaining cholesterol homeostasis. J Lipid Res 57(10):1831–1844PubMedPubMedCentralCrossRef Liu H, Pathak P, Boehme S, Chiang JY (2016) Cholesterol 7alpha-hydroxylase protects the liver from inflammation and fibrosis by maintaining cholesterol homeostasis. J Lipid Res 57(10):1831–1844PubMedPubMedCentralCrossRef
94.
go back to reference Bjursell M, Wedin M, Admyre T, Hermansson M, Bottcher G, Goransson M, Linden D, Bamberg K, Oscarsson J, Bohlooly YM (2013) Ageing Fxr deficient mice develop increased energy expenditure, improved glucose control and liver damage resembling NASH. PLoS One 8(5):e64721PubMedPubMedCentralCrossRef Bjursell M, Wedin M, Admyre T, Hermansson M, Bottcher G, Goransson M, Linden D, Bamberg K, Oscarsson J, Bohlooly YM (2013) Ageing Fxr deficient mice develop increased energy expenditure, improved glucose control and liver damage resembling NASH. PLoS One 8(5):e64721PubMedPubMedCentralCrossRef
95.
go back to reference Ferrell JM, Pathak P, Boehme S, Gilliland T, Chiang JYL (2019) Deficiency of both farnesoid X receptor and Takeda G protein-coupled receptor 5 exacerbated liver fibrosis in mice. Hepatology 70(3):955–970PubMedCrossRef Ferrell JM, Pathak P, Boehme S, Gilliland T, Chiang JYL (2019) Deficiency of both farnesoid X receptor and Takeda G protein-coupled receptor 5 exacerbated liver fibrosis in mice. Hepatology 70(3):955–970PubMedCrossRef
96.
go back to reference Schmitt J, Kong B, Stieger B, Tschopp O, Schultze SM, Rau M, Weber A, Mullhaupt B, Guo GL, Geier A (2015) Protective effects of farnesoid X receptor (FXR) on hepatic lipid accumulation are mediated by hepatic FXR and independent of intestinal FGF15 signal. Liver Int 35(4):1133–1144PubMedCrossRef Schmitt J, Kong B, Stieger B, Tschopp O, Schultze SM, Rau M, Weber A, Mullhaupt B, Guo GL, Geier A (2015) Protective effects of farnesoid X receptor (FXR) on hepatic lipid accumulation are mediated by hepatic FXR and independent of intestinal FGF15 signal. Liver Int 35(4):1133–1144PubMedCrossRef
97.
go back to reference Wang YD, Chen WD, Yu D, Forman BM, Huang W (2011) The G-protein-coupled bile acid receptor, Gpbar1 (TGR5), negatively regulates hepatic inflammatory response through antagonizing nuclear factor kappa light-chain enhancer of activated B cells (NF-kappaB) in mice. Hepatology 54(4):1421–1432PubMedCrossRef Wang YD, Chen WD, Yu D, Forman BM, Huang W (2011) The G-protein-coupled bile acid receptor, Gpbar1 (TGR5), negatively regulates hepatic inflammatory response through antagonizing nuclear factor kappa light-chain enhancer of activated B cells (NF-kappaB) in mice. Hepatology 54(4):1421–1432PubMedCrossRef
98.
go back to reference Schaap FG, Trauner M, Jansen PL (2014) Bile acid receptors as targets for drug development, Nature reviews. Gastroenterol Hepatol 11(1):55–67 Schaap FG, Trauner M, Jansen PL (2014) Bile acid receptors as targets for drug development, Nature reviews. Gastroenterol Hepatol 11(1):55–67
99.
go back to reference Thomas C, Pellicciari R, Pruzanski M, Auwerx J, Schoonjans K (2008) Targeting bile-acid signalling for metabolic diseases. Nat Rev Drug Discov 7(8):678–693PubMedCrossRef Thomas C, Pellicciari R, Pruzanski M, Auwerx J, Schoonjans K (2008) Targeting bile-acid signalling for metabolic diseases. Nat Rev Drug Discov 7(8):678–693PubMedCrossRef
100.
go back to reference Neuschwander-Tetri BA, Loomba R, Sanyal AJ, Lavine JE, Van Natta ML, Abdelmalek MF, Chalasani N, Dasarathy S, Diehl AM, Hameed B, Kowdley KV, McCullough A, Terrault N, Clark JM, Tonascia J, Brunt EM, Kleiner DE, Doo E, Network NCR (2015) Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial. Lancet 385(9972):956–965PubMedCrossRef Neuschwander-Tetri BA, Loomba R, Sanyal AJ, Lavine JE, Van Natta ML, Abdelmalek MF, Chalasani N, Dasarathy S, Diehl AM, Hameed B, Kowdley KV, McCullough A, Terrault N, Clark JM, Tonascia J, Brunt EM, Kleiner DE, Doo E, Network NCR (2015) Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial. Lancet 385(9972):956–965PubMedCrossRef
101.
go back to reference Mudaliar S, Henry RR, Sanyal AJ, Morrow L, Marschall HU, Kipnes M, Adorini L, Sciacca CI, Clopton P, Castelloe E, Dillon P, Pruzanski M, Shapiro D (2013) Efficacy and safety of the farnesoid X receptor agonist obeticholic acid in patients with type 2 diabetes and nonalcoholic fatty liver disease. Gastroenterology 145(3):574–82.e1PubMedCrossRef Mudaliar S, Henry RR, Sanyal AJ, Morrow L, Marschall HU, Kipnes M, Adorini L, Sciacca CI, Clopton P, Castelloe E, Dillon P, Pruzanski M, Shapiro D (2013) Efficacy and safety of the farnesoid X receptor agonist obeticholic acid in patients with type 2 diabetes and nonalcoholic fatty liver disease. Gastroenterology 145(3):574–82.e1PubMedCrossRef
102.
go back to reference Younossi ZM, Ratziu V, Loomba R, Rinella M, Anstee QM, Goodman Z, Bedossa P, Geier A, Beckebaum S, Newsome PN, Sheridan D, Sheikh MY, Trotter J, Knapple W, Lawitz E, Abdelmalek MF, Kowdley KV, Montano-Loza AJ, Boursier J, Mathurin P, Bugianesi E, Mazzella G, Olveira A, Cortez-Pinto H, Graupera I, Orr D, Gluud LL, Dufour JF, Shapiro D, Campagna J, Zaru L, MacConell L, Shringarpure R, Harrison S, Sanyal AJ, R.S. Investigators (2019) Obeticholic acid for the treatment of non-alcoholic steatohepatitis: interim analysis from a multicentre, randomised, placebo-controlled phase 3 trial. Lancet 394(10215):2184–2196PubMedCrossRef Younossi ZM, Ratziu V, Loomba R, Rinella M, Anstee QM, Goodman Z, Bedossa P, Geier A, Beckebaum S, Newsome PN, Sheridan D, Sheikh MY, Trotter J, Knapple W, Lawitz E, Abdelmalek MF, Kowdley KV, Montano-Loza AJ, Boursier J, Mathurin P, Bugianesi E, Mazzella G, Olveira A, Cortez-Pinto H, Graupera I, Orr D, Gluud LL, Dufour JF, Shapiro D, Campagna J, Zaru L, MacConell L, Shringarpure R, Harrison S, Sanyal AJ, R.S. Investigators (2019) Obeticholic acid for the treatment of non-alcoholic steatohepatitis: interim analysis from a multicentre, randomised, placebo-controlled phase 3 trial. Lancet 394(10215):2184–2196PubMedCrossRef
103.
go back to reference Li R, Andreu-Sanchez S, Kuipers F, Fu J (2021) Gut microbiome and bile acids in obesity-related diseases, Best practice & research. Clin Endocrinol Metab 101493 Li R, Andreu-Sanchez S, Kuipers F, Fu J (2021) Gut microbiome and bile acids in obesity-related diseases, Best practice & research. Clin Endocrinol Metab 101493
104.
go back to reference Liwinski T, Zenouzi R, John C, Ehlken H, Ruhlemann MC, Bang C, Groth S, Lieb W, Kantowski M, Andersen N, Schachschal G, Karlsen TH, Hov JR, Rosch T, Lohse AW, Heeren J, Franke A, Schramm C (2020) Alterations of the bile microbiome in primary sclerosing cholangitis. Gut 69(4):665–672PubMedCrossRef Liwinski T, Zenouzi R, John C, Ehlken H, Ruhlemann MC, Bang C, Groth S, Lieb W, Kantowski M, Andersen N, Schachschal G, Karlsen TH, Hov JR, Rosch T, Lohse AW, Heeren J, Franke A, Schramm C (2020) Alterations of the bile microbiome in primary sclerosing cholangitis. Gut 69(4):665–672PubMedCrossRef
105.
go back to reference Fickert P, Hirschfield GM, Denk G, Marschall HU, Altorjay I, Farkkila M, Schramm C, Spengler U, Chapman R, Bergquist A, Schrumpf E, Nevens F, Trivedi P, Reiter FP, Tornai I, Halilbasic E, Greinwald R, Prols M, Manns MP, Trauner M, P.S.C.n.S.G. European (2017) norUrsodeoxycholic acid improves cholestasis in primary sclerosing cholangitis. J Hepatol 67(3):549–558PubMedCrossRef Fickert P, Hirschfield GM, Denk G, Marschall HU, Altorjay I, Farkkila M, Schramm C, Spengler U, Chapman R, Bergquist A, Schrumpf E, Nevens F, Trivedi P, Reiter FP, Tornai I, Halilbasic E, Greinwald R, Prols M, Manns MP, Trauner M, P.S.C.n.S.G. European (2017) norUrsodeoxycholic acid improves cholestasis in primary sclerosing cholangitis. J Hepatol 67(3):549–558PubMedCrossRef
Metadata
Title
Role of bile acids in inflammatory liver diseases
Authors
Ioannis Evangelakos
Joerg Heeren
Esther Verkade
Folkert Kuipers
Publication date
01-08-2021
Publisher
Springer Berlin Heidelberg
Published in
Seminars in Immunopathology / Issue 4/2021
Print ISSN: 1863-2297
Electronic ISSN: 1863-2300
DOI
https://doi.org/10.1007/s00281-021-00869-6

Other articles of this Issue 4/2021

Seminars in Immunopathology 4/2021 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine