Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 10/2016

01-09-2016 | Original Article

Dual time-point FDG PET/CT and FDG uptake and related enzymes in lymphadenopathies: preliminary results

Authors: Sofie Bæk Christlieb, Casper Nørgaard Strandholdt, Birgitte Brinkmann Olsen, Karen Juul Mylam, Thomas Stauffer Larsen, Anne Lerberg Nielsen, Max Rohde, Oke Gerke, Karen Ege Olsen, Michael Boe Møller, Bjarne Winther Kristensen, Niels Abildgaard, Abass Alavi, Poul Flemming Høilund-Carlsen

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Issue 10/2016

Login to get access

Abstract

Purpose

The purpose of this study was to determine the ability of dual time-point (DTP) PET/CT with 18F-FDG to discriminate between malignant and benign lymphadenopathies. The relationship between DTP FDG uptake and glucose metabolism/hypoxia markers in lymphadenopathies was also assessed.

Methods

Patients with suspected lymphoma or recently diagnosed treatment-naive lymphoma were prospectively enrolled for DTP FDG PET/CT (scans 60 min and 180 min after FDG administration). FDG-avid nodal lesions were segmented to yield volume and standardized uptake values (SUV), including SUVmax, SUVmean, cSUVmean (with partial volume correction), total lesion glycolysis (TLG) and cTLG (with partial volume correction). Expression of glucose transporter-1 (GLUT-1), hexokinase-II (HK-II), glucose-6-phosphatase (G6Pase) and hypoxia-inducible factor-1alpha (HIF-1alpha) were assessed with immunohistochemistry and enzyme activity was determined for HK and G6Pase.

Results

FDG uptake was assessed in 203 lesions (146 malignant and 57 benign). Besides volume, there were significant increases over time for all parameters, with generally higher levels in the malignant lesions. The retention index (RI) was not able to discriminate between malignant and benign lesions. Volume, SUVmax, TLG and cTLG for both scans were able to discriminate between the two groups statistically, but without complete separation. Glucose metabolism/hypoxia markers were assessed in 15 lesions. TLG and cTLG were correlated with GLUT-1 expression on the 60-min scan. RI-max and RI-mean and SUVmax, SUVmean and cSUVmean on the 60-min scan were significantly correlated with HK-II expression.

Conclusion

RI was not able to discriminate between malignant and benign lesions, but some of the SUVs were able to discriminate on the 60-min and 180-min scans. Furthermore, FDG uptake was correlated with GLUT-1 and HK-II expression.
Appendix
Available only for authorised users
Literature
1.
go back to reference Cheson BD, Fisher RI, Barrington SF, Cavalli F, Schwartz LH, Zucca E, et al. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol. 2014;32(27):3059–68. doi:10.1200/jco.2013.54.8800.CrossRefPubMed Cheson BD, Fisher RI, Barrington SF, Cavalli F, Schwartz LH, Zucca E, et al. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol. 2014;32(27):3059–68. doi:10.​1200/​jco.​2013.​54.​8800.CrossRefPubMed
3.
go back to reference Bakheet SM, Powe J. Benign causes of 18-FDG uptake on whole body imaging. Semin Nucl Med. 1998;28(4):352–8.CrossRefPubMed Bakheet SM, Powe J. Benign causes of 18-FDG uptake on whole body imaging. Semin Nucl Med. 1998;28(4):352–8.CrossRefPubMed
4.
go back to reference Hustinx R, Smith RJ, Benard F, Rosenthal DI, Machtay M, Farber LA, et al. Dual time point fluorine-18 fluorodeoxyglucose positron emission tomography: a potential method to differentiate malignancy from inflammation and normal tissue in the head and neck. Eur J Nucl Med. 1999;26(10):1345–8.CrossRefPubMed Hustinx R, Smith RJ, Benard F, Rosenthal DI, Machtay M, Farber LA, et al. Dual time point fluorine-18 fluorodeoxyglucose positron emission tomography: a potential method to differentiate malignancy from inflammation and normal tissue in the head and neck. Eur J Nucl Med. 1999;26(10):1345–8.CrossRefPubMed
5.
go back to reference Zhuang H, Pourdehnad M, Lambright ES, Yamamoto AJ, Lanuti M, Li P, et al. Dual time point 18F-FDG PET imaging for differentiating malignant from inflammatory processes. J Nucl Med. 2001;42(9):1412–7.PubMed Zhuang H, Pourdehnad M, Lambright ES, Yamamoto AJ, Lanuti M, Li P, et al. Dual time point 18F-FDG PET imaging for differentiating malignant from inflammatory processes. J Nucl Med. 2001;42(9):1412–7.PubMed
6.
go back to reference Basu S, Kung J, Houseni M, Zhuang H, Tidmarsh GF, Alavi A. Temporal profile of fluorodeoxyglucose uptake in malignant lesions and normal organs over extended time periods in patients with lung carcinoma: implications for its utilization in assessing malignant lesions. Q J Nucl Med Mol Imaging. 2009;53(1):9–16.PubMed Basu S, Kung J, Houseni M, Zhuang H, Tidmarsh GF, Alavi A. Temporal profile of fluorodeoxyglucose uptake in malignant lesions and normal organs over extended time periods in patients with lung carcinoma: implications for its utilization in assessing malignant lesions. Q J Nucl Med Mol Imaging. 2009;53(1):9–16.PubMed
8.
go back to reference Basu S, Kwee TC, Surti S, Akin EA, Yoo D, Alavi A. Fundamentals of PET and PET/CT imaging. Ann N Y Acad Sci. 2011;1228(1):1–18.CrossRefPubMed Basu S, Kwee TC, Surti S, Akin EA, Yoo D, Alavi A. Fundamentals of PET and PET/CT imaging. Ann N Y Acad Sci. 2011;1228(1):1–18.CrossRefPubMed
9.
go back to reference Pauwels EK, Ribeiro MJ, Stoot JH, McCready VR, Bourguignon M, Maziere B. FDG accumulation and tumor biology. Nucl Med Biol. 1998;25(4):317–22.CrossRefPubMed Pauwels EK, Ribeiro MJ, Stoot JH, McCready VR, Bourguignon M, Maziere B. FDG accumulation and tumor biology. Nucl Med Biol. 1998;25(4):317–22.CrossRefPubMed
10.
go back to reference Gallagher BM, Fowler JS, Gutterson NI, MacGregor RR, Wan CN, Wolf AP. Metabolic trapping as a principle of radiopharmaceutical design: some factors responsible for the biodistribution of [18F] 2-deoxy-2-fluoro-D-glucose. J Nucl Med. 1978;19(10):1154–61.PubMed Gallagher BM, Fowler JS, Gutterson NI, MacGregor RR, Wan CN, Wolf AP. Metabolic trapping as a principle of radiopharmaceutical design: some factors responsible for the biodistribution of [18F] 2-deoxy-2-fluoro-D-glucose. J Nucl Med. 1978;19(10):1154–61.PubMed
11.
go back to reference Zagorska A, Dulak J. HIF-1: the knowns and unknowns of hypoxia sensing. Acta Biochim Pol. 2004;51(3):563–85.PubMed Zagorska A, Dulak J. HIF-1: the knowns and unknowns of hypoxia sensing. Acta Biochim Pol. 2004;51(3):563–85.PubMed
12.
13.
go back to reference Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.CrossRefPubMed Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54.CrossRefPubMed
14.
go back to reference Taussky HH, Shorr E. A microcolorimetric method for the determination of inorganic phosphorus. J Biol Chem. 1953;202(2):675–85.PubMed Taussky HH, Shorr E. A microcolorimetric method for the determination of inorganic phosphorus. J Biol Chem. 1953;202(2):675–85.PubMed
15.
go back to reference Meignan M, Gallamini A, Itti E, Barrington S, Haioun C, Polliack A. Report on the Third International Workshop on Interim Positron Emission Tomography in Lymphoma held in Menton, France, 26-27 September 2011 and Menton 2011 consensus. Leuk Lymphoma. 2012;53(10):1876–81. doi:10.3109/10428194.2012.677535.CrossRefPubMed Meignan M, Gallamini A, Itti E, Barrington S, Haioun C, Polliack A. Report on the Third International Workshop on Interim Positron Emission Tomography in Lymphoma held in Menton, France, 26-27 September 2011 and Menton 2011 consensus. Leuk Lymphoma. 2012;53(10):1876–81. doi:10.​3109/​10428194.​2012.​677535.CrossRefPubMed
16.
go back to reference Kim J, Hong J, Kim SG, Hwang KH, Kim M, Ahn HK, et al. Prognostic value of metabolic tumor volume estimated by (18)F-FDG positron emission tomography/computed tomography in patients with diffuse large B-cell lymphoma of stage II or III disease. Nucl Med Mol Imaging. 2014;48(3):187–95. doi:10.1007/s13139-014-0280-6.CrossRefPubMedPubMedCentral Kim J, Hong J, Kim SG, Hwang KH, Kim M, Ahn HK, et al. Prognostic value of metabolic tumor volume estimated by (18)F-FDG positron emission tomography/computed tomography in patients with diffuse large B-cell lymphoma of stage II or III disease. Nucl Med Mol Imaging. 2014;48(3):187–95. doi:10.​1007/​s13139-014-0280-6.CrossRefPubMedPubMedCentral
20.
go back to reference Nakayama M, Okizaki A, Ishitoya S, Sakaguchi M, Sato J, Aburano T. Dual-time-point F-18 FDG PET/CT imaging for differentiating the lymph nodes between malignant lymphoma and benign lesions. Ann Nucl Med. 2013;27(2):163–9. doi:10.1007/s12149-012-0669-1.CrossRefPubMed Nakayama M, Okizaki A, Ishitoya S, Sakaguchi M, Sato J, Aburano T. Dual-time-point F-18 FDG PET/CT imaging for differentiating the lymph nodes between malignant lymphoma and benign lesions. Ann Nucl Med. 2013;27(2):163–9. doi:10.​1007/​s12149-012-0669-1.CrossRefPubMed
21.
go back to reference Khandani AH, Dunphy CH, Meteesatien P, Dufault DL, Ivanovic M, Shea TC. Glut1 and Glut3 expression in lymphoma and their association with tumor intensity on 18F-fluorodeoxyglucose positron emission tomography. Nucl Med Commun. 2009;30(8):594–601.CrossRefPubMed Khandani AH, Dunphy CH, Meteesatien P, Dufault DL, Ivanovic M, Shea TC. Glut1 and Glut3 expression in lymphoma and their association with tumor intensity on 18F-fluorodeoxyglucose positron emission tomography. Nucl Med Commun. 2009;30(8):594–601.CrossRefPubMed
22.
go back to reference Watanabe Y, Suefuji H, Hirose Y, Kaida H, Suzuki G, Uozumi J, et al. 18F-FDG uptake in primary gastric malignant lymphoma correlates with glucose transporter 1 expression and histologic malignant potential. Int J Hematol. 2013;97(1):43–9.CrossRefPubMed Watanabe Y, Suefuji H, Hirose Y, Kaida H, Suzuki G, Uozumi J, et al. 18F-FDG uptake in primary gastric malignant lymphoma correlates with glucose transporter 1 expression and histologic malignant potential. Int J Hematol. 2013;97(1):43–9.CrossRefPubMed
23.
go back to reference Shim HK, Lee WW, Park SY, Kim H, Kim SE. Relationship between FDG uptake and expressions of glucose transporter type 1, type 3, and hexokinase-II in Reed-Sternberg cells of Hodgkin lymphoma. Oncol Res. 2009;17(7):331–7.CrossRefPubMed Shim HK, Lee WW, Park SY, Kim H, Kim SE. Relationship between FDG uptake and expressions of glucose transporter type 1, type 3, and hexokinase-II in Reed-Sternberg cells of Hodgkin lymphoma. Oncol Res. 2009;17(7):331–7.CrossRefPubMed
24.
go back to reference Torigian DA, Lopez RF, Alapati S, Bodapati G, Hofheinz F, van den Hoff J, et al. Feasibility and performance of novel software to quantify metabolically active volumes and 3D partial volume corrected SUV and metabolic volumetric products of spinal bone marrow metastases on 18F-FDG-PET/CT. Hell J Nucl Med. 2011;14(1):8–14.PubMed Torigian DA, Lopez RF, Alapati S, Bodapati G, Hofheinz F, van den Hoff J, et al. Feasibility and performance of novel software to quantify metabolically active volumes and 3D partial volume corrected SUV and metabolic volumetric products of spinal bone marrow metastases on 18F-FDG-PET/CT. Hell J Nucl Med. 2011;14(1):8–14.PubMed
26.
go back to reference Chong EA, Torigian D, Svoboda J, Dwivedy Nasta S, Alavi A, Schuster SJ. Dual time point FDG-PET/CT imaging can distinguish between Hodgkin lymphoma and diffuse large B-cell lymphoma. Blood. 2014;124(21):1613. Chong EA, Torigian D, Svoboda J, Dwivedy Nasta S, Alavi A, Schuster SJ. Dual time point FDG-PET/CT imaging can distinguish between Hodgkin lymphoma and diffuse large B-cell lymphoma. Blood. 2014;124(21):1613.
27.
go back to reference Yamada T, Uchida M, Kwang-Lee K, Kitamura N, Yoshimura T. Correlation of metabolism/hypoxia markers and fluorodeoxyglucose uptake in oral squamous cell carcinomas. Oral Surg Oral Med Oral Pathol Oral Radiol. 2012;113(4):464–71.CrossRefPubMed Yamada T, Uchida M, Kwang-Lee K, Kitamura N, Yoshimura T. Correlation of metabolism/hypoxia markers and fluorodeoxyglucose uptake in oral squamous cell carcinomas. Oral Surg Oral Med Oral Pathol Oral Radiol. 2012;113(4):464–71.CrossRefPubMed
28.
go back to reference Takahashi Y, Akahane T, Yamamoto D, Nakamura H, Sawa H, Nitta K, et al. Correlation between positron emission tomography findings and glucose transporter 1, 3 and L-type amino acid transporter 1 mRNA expression in primary central nervous system lymphomas. Mol Clin Oncol. 2014;2(4):525–9.PubMedPubMedCentral Takahashi Y, Akahane T, Yamamoto D, Nakamura H, Sawa H, Nitta K, et al. Correlation between positron emission tomography findings and glucose transporter 1, 3 and L-type amino acid transporter 1 mRNA expression in primary central nervous system lymphomas. Mol Clin Oncol. 2014;2(4):525–9.PubMedPubMedCentral
29.
go back to reference Hirose Y, Suefuji H, Kaida H, Hayakawa M, Hattori S, Kurata S, et al. Relationship between 2-deoxy-2-[(18)F]-fluoro-d-glucose uptake and clinicopathological factors in patients with diffuse large B-cell lymphoma. Leuk Lymphoma. 2014;55(3):520–5. doi:10.3109/10428194.2013.807509.CrossRefPubMed Hirose Y, Suefuji H, Kaida H, Hayakawa M, Hattori S, Kurata S, et al. Relationship between 2-deoxy-2-[(18)F]-fluoro-d-glucose uptake and clinicopathological factors in patients with diffuse large B-cell lymphoma. Leuk Lymphoma. 2014;55(3):520–5. doi:10.​3109/​10428194.​2013.​807509.CrossRefPubMed
30.
go back to reference Shim HK, Lee WW, Park SY, Kim H, So Y, Kim SE. Expressions of glucose transporter types 1 and 3 and hexokinase-II in diffuse large B-cell lymphoma and other B-cell non-Hodgkin’s lymphomas. Nucl Med Biol. 2009;36(2):191–7.CrossRefPubMed Shim HK, Lee WW, Park SY, Kim H, So Y, Kim SE. Expressions of glucose transporter types 1 and 3 and hexokinase-II in diffuse large B-cell lymphoma and other B-cell non-Hodgkin’s lymphomas. Nucl Med Biol. 2009;36(2):191–7.CrossRefPubMed
31.
go back to reference Koga H, Matsuo Y, Sasaki M, Nakagawa M, Kaneko K, Hayashi K, et al. Differential FDG accumulation associated with GLUT-1 expression in a patient with lymphoma. Ann Nucl Med. 2003;17(4):327–31.CrossRefPubMed Koga H, Matsuo Y, Sasaki M, Nakagawa M, Kaneko K, Hayashi K, et al. Differential FDG accumulation associated with GLUT-1 expression in a patient with lymphoma. Ann Nucl Med. 2003;17(4):327–31.CrossRefPubMed
32.
go back to reference Fang J, Luo XM, Yao HT, Zhou SH, Ruan LX, Yan SX. Expression of glucose transporter-1, hypoxia-inducible factor-1alpha, phosphatidylinositol 3-kinase and protein kinase B (Akt) in relation to [(18)F]fluorodeoxyglucose uptake in nasopharyngeal diffuse large B-cell lymphoma: a case report and literature review. J Int Med Res. 2010;38(6):2160–8.CrossRefPubMed Fang J, Luo XM, Yao HT, Zhou SH, Ruan LX, Yan SX. Expression of glucose transporter-1, hypoxia-inducible factor-1alpha, phosphatidylinositol 3-kinase and protein kinase B (Akt) in relation to [(18)F]fluorodeoxyglucose uptake in nasopharyngeal diffuse large B-cell lymphoma: a case report and literature review. J Int Med Res. 2010;38(6):2160–8.CrossRefPubMed
33.
go back to reference Pinto A, Gattei V, Zagonel V, Aldinucci D, Degan M, De Iuliis A, et al. Hodgkin’s disease: a disorder of dysregulated cellular cross-talk. Biotherapy. 1998;10(4):309–20.CrossRefPubMed Pinto A, Gattei V, Zagonel V, Aldinucci D, Degan M, De Iuliis A, et al. Hodgkin’s disease: a disorder of dysregulated cellular cross-talk. Biotherapy. 1998;10(4):309–20.CrossRefPubMed
34.
go back to reference Petrasch S, Kosco M, Perez-Alvarez C, Schmitz J, Brittinger G. Proliferation of non-Hodgkin-lymphoma lymphocytes in vitro is dependent upon follicular dendritic cell interactions. Br J Haematol. 1992;80(1):21–6.CrossRefPubMed Petrasch S, Kosco M, Perez-Alvarez C, Schmitz J, Brittinger G. Proliferation of non-Hodgkin-lymphoma lymphocytes in vitro is dependent upon follicular dendritic cell interactions. Br J Haematol. 1992;80(1):21–6.CrossRefPubMed
35.
go back to reference Higashi T, Saga T, Nakamoto Y, Ishimori T, Mamede MH, Wada M, et al. Relationship between retention index in dual-phase 18F-FDG PET, and hexokinase-II and glucose transporter-1 expression in pancreatic cancer. J Nucl Med. 2002;43(2):173–80.PubMed Higashi T, Saga T, Nakamoto Y, Ishimori T, Mamede MH, Wada M, et al. Relationship between retention index in dual-phase 18F-FDG PET, and hexokinase-II and glucose transporter-1 expression in pancreatic cancer. J Nucl Med. 2002;43(2):173–80.PubMed
Metadata
Title
Dual time-point FDG PET/CT and FDG uptake and related enzymes in lymphadenopathies: preliminary results
Authors
Sofie Bæk Christlieb
Casper Nørgaard Strandholdt
Birgitte Brinkmann Olsen
Karen Juul Mylam
Thomas Stauffer Larsen
Anne Lerberg Nielsen
Max Rohde
Oke Gerke
Karen Ege Olsen
Michael Boe Møller
Bjarne Winther Kristensen
Niels Abildgaard
Abass Alavi
Poul Flemming Høilund-Carlsen
Publication date
01-09-2016
Publisher
Springer Berlin Heidelberg
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue 10/2016
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-016-3385-6

Other articles of this Issue 10/2016

European Journal of Nuclear Medicine and Molecular Imaging 10/2016 Go to the issue