Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 8/2013

01-08-2013 | Original Article

PET-based delineation of tumour volumes in lung cancer: comparison with pathological findings

Authors: Andrea Schaefer, Yoo Jin Kim, Stephanie Kremp, Sebastian Mai, Jochen Fleckenstein, Hendrik Bohnenberger, Hans-Joachim Schäfers, Jan-Martin Kuhnigk, Rainer M. Bohle, Christian Rübe, Carl-Martin Kirsch, Aleksandar Grgic

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Issue 8/2013

Login to get access

Abstract

Purpose

The objective of the study was to validate an adaptive, contrast-oriented thresholding algorithm (COA) for tumour delineation in 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) for non-small cell lung cancer (NSCLC) in comparison with pathological findings. The impact of tumour localization, tumour size and uptake heterogeneity on PET delineation results was also investigated.

Methods

PET tumour delineation by COA was compared with both CT delineation and pathological findings in 15 patients to investigate its validity. Correlations between anatomical volume, metabolic volume and the pathology reference as well as between the corresponding maximal diameters were determined. Differences between PET delineations and pathological results were investigated with respect to tumour localization and uptake heterogeneity.

Results

The delineated volumes and maximal diameters measured on PET and CT images significantly correlated with the pathology reference (both r > 0.95, p < 0.0001). Both PET and CT contours resulted in overestimation of the pathological volume (PET 32.5 ± 26.5 %, CT 46.6 ± 27.4 %). CT volumes were larger than those delineated on PET images (CT 60.6 ± 86.3 ml, PET 48.3 ± 61.7 ml). Maximal tumour diameters were similar for PET and CT (51.4 ± 19.8 mm for CT versus 53.4 ± 19.1 mm for PET), slightly overestimating the pathological reference (mean difference CT 4.3 ± 3.2 mm, PET 6.2 ± 5.1 mm). PET volumes of lung tumours located in the lower lobe were significantly different from those determined from pathology (p = 0.037), whereas no significant differences were observed for tumours located in the upper lobe (p = 0.066). Only minor correlation was found between pathological tumour size and PET heterogeneity (r = −0.24).

Conclusion

PET tumour delineation by COA showed a good correlation with pathological findings. Tumour localization had an influence on PET delineation results. The impact of tracer uptake heterogeneity on PET delineation should be considered carefully and individually in each patient. Altogether, PET tumour delineation by COA for NSCLC patients is feasible and reliable with the potential for routine clinical application.
Literature
1.
go back to reference Hicks RJ, Kalff V, MacManus MP, Ware RE, Hogg A, McKenzie AF, et al. (18)F-FDG PET provides high-impact and powerful prognostic stratification in staging newly diagnosed non-small cell lung cancer. J Nucl Med 2001;42(11):1596–604. Hicks RJ, Kalff V, MacManus MP, Ware RE, Hogg A, McKenzie AF, et al. (18)F-FDG PET provides high-impact and powerful prognostic stratification in staging newly diagnosed non-small cell lung cancer. J Nucl Med 2001;42(11):1596–604.
2.
go back to reference Baum RP, Hellwig D, Mezzetti M. Position of nuclear medicine modalities in the diagnostic workup of cancer patients: lung cancer. Q J Nucl Med Mol Imaging 2004;48(2):119–42.PubMed Baum RP, Hellwig D, Mezzetti M. Position of nuclear medicine modalities in the diagnostic workup of cancer patients: lung cancer. Q J Nucl Med Mol Imaging 2004;48(2):119–42.PubMed
3.
go back to reference Mac Manus MP, Hicks RJ. The role of positron emission tomography/computed tomography in radiation therapy planning for patients with lung cancer. Semin Nucl Med 2012;42(5):308–19.PubMedCrossRef Mac Manus MP, Hicks RJ. The role of positron emission tomography/computed tomography in radiation therapy planning for patients with lung cancer. Semin Nucl Med 2012;42(5):308–19.PubMedCrossRef
4.
go back to reference Nestle U, Weber W, Hentschel M, Grosu AL. Biological imaging in radiation therapy: role of positron emission tomography. Phys Med Biol 2009;54(1):R1–25.PubMedCrossRef Nestle U, Weber W, Hentschel M, Grosu AL. Biological imaging in radiation therapy: role of positron emission tomography. Phys Med Biol 2009;54(1):R1–25.PubMedCrossRef
5.
go back to reference Bradley J, Bae K, Choi N, Forster K, Siegel BA, Brunetti J, et al. A phase II comparative study of gross tumor volume definition with or without PET/CT fusion in dosimetric planning for non-small-cell lung cancer (NSCLC): primary analysis of Radiation Therapy Oncology Group (RTOG) 0515. Int J Radiat Oncol Biol Phys 2012;82(1):435–441.e1.PubMedCrossRef Bradley J, Bae K, Choi N, Forster K, Siegel BA, Brunetti J, et al. A phase II comparative study of gross tumor volume definition with or without PET/CT fusion in dosimetric planning for non-small-cell lung cancer (NSCLC): primary analysis of Radiation Therapy Oncology Group (RTOG) 0515. Int J Radiat Oncol Biol Phys 2012;82(1):435–441.e1.PubMedCrossRef
6.
go back to reference Chiti A, Kirienko M, Grégoire V. Clinical use of PET-CT data for radiotherapy planning: what are we looking for? Radiother Oncol 2010;96(3):277–9.PubMedCrossRef Chiti A, Kirienko M, Grégoire V. Clinical use of PET-CT data for radiotherapy planning: what are we looking for? Radiother Oncol 2010;96(3):277–9.PubMedCrossRef
7.
go back to reference Bayne M, Hicks RJ, Everitt S, Fimmell N, Ball D, Reynolds J, et al. Reproducibility of “intelligent” contouring of gross tumor volume in non-small-cell lung cancer on PET/CT images using a standardized visual method. Int J Radiat Oncol Biol Phys 2010;77(4):1151–7.PubMedCrossRef Bayne M, Hicks RJ, Everitt S, Fimmell N, Ball D, Reynolds J, et al. Reproducibility of “intelligent” contouring of gross tumor volume in non-small-cell lung cancer on PET/CT images using a standardized visual method. Int J Radiat Oncol Biol Phys 2010;77(4):1151–7.PubMedCrossRef
8.
go back to reference Zaidi H, El Naqa I. PET-guided delineation of radiation therapy treatment volumes: a survey of image segmentation techniques. Eur J Nucl Med Mol Imaging 2010;37(11):2165–87.PubMedCrossRef Zaidi H, El Naqa I. PET-guided delineation of radiation therapy treatment volumes: a survey of image segmentation techniques. Eur J Nucl Med Mol Imaging 2010;37(11):2165–87.PubMedCrossRef
9.
go back to reference Thorwarth D, Schaefer A. Functional target volume delineation for radiation therapy on the basis of positron emission tomography and the correlation with histopathology. Q J Nucl Med Mol Imaging 2010;54(5):490–9.PubMed Thorwarth D, Schaefer A. Functional target volume delineation for radiation therapy on the basis of positron emission tomography and the correlation with histopathology. Q J Nucl Med Mol Imaging 2010;54(5):490–9.PubMed
10.
go back to reference Lee JA. Segmentation of positron emission tomography images: some recommendations for target delineation in radiation oncology. Radiother Oncol 2010;96(3):302–7.PubMedCrossRef Lee JA. Segmentation of positron emission tomography images: some recommendations for target delineation in radiation oncology. Radiother Oncol 2010;96(3):302–7.PubMedCrossRef
11.
go back to reference Erdi YE, Mawlawi O, Larson SM, Imbriaco M, Yeung H, Finn R, et al. Segmentation of lung lesion volume by adaptive positron emission tomography image thresholding. Cancer 1997;80(12 Suppl):2505–9.PubMedCrossRef Erdi YE, Mawlawi O, Larson SM, Imbriaco M, Yeung H, Finn R, et al. Segmentation of lung lesion volume by adaptive positron emission tomography image thresholding. Cancer 1997;80(12 Suppl):2505–9.PubMedCrossRef
12.
go back to reference Daisne JF, Sibomana M, Bol A, Doumont T, Lonneux M, Grégoire V. Tri-dimensional automatic segmentation of PET volumes based on measured source-to-background ratios: influence of reconstruction algorithms. Radiother Oncol 2003;69(3):247–50.PubMedCrossRef Daisne JF, Sibomana M, Bol A, Doumont T, Lonneux M, Grégoire V. Tri-dimensional automatic segmentation of PET volumes based on measured source-to-background ratios: influence of reconstruction algorithms. Radiother Oncol 2003;69(3):247–50.PubMedCrossRef
13.
go back to reference El Naqa I, Yang D, Apte A, Khullar D, Mutic S, Zheng J, et al. Concurrent multimodality image segmentation by active contours for radiotherapy treatment planning. Med Phys 2007;34(12):4738–49.PubMedCrossRef El Naqa I, Yang D, Apte A, Khullar D, Mutic S, Zheng J, et al. Concurrent multimodality image segmentation by active contours for radiotherapy treatment planning. Med Phys 2007;34(12):4738–49.PubMedCrossRef
14.
go back to reference Geets X, Lee JA, Bol A, Lonneux M, Grégoire V. A gradient-based method for segmenting FDG-PET images: methodology and validation. Eur J Nucl Med Mol Imaging 2007;34(9):1427–38.PubMedCrossRef Geets X, Lee JA, Bol A, Lonneux M, Grégoire V. A gradient-based method for segmenting FDG-PET images: methodology and validation. Eur J Nucl Med Mol Imaging 2007;34(9):1427–38.PubMedCrossRef
15.
go back to reference Hatt M, Cheze le Rest C, Turzo A, Roux C, Visvikis D. A fuzzy locally adaptive Bayesian segmentation approach for volume determination in PET. IEEE Trans Med Imaging 2009;28(6):881–93.PubMedCrossRef Hatt M, Cheze le Rest C, Turzo A, Roux C, Visvikis D. A fuzzy locally adaptive Bayesian segmentation approach for volume determination in PET. IEEE Trans Med Imaging 2009;28(6):881–93.PubMedCrossRef
16.
go back to reference Thorwarth D, Beyer T, Boellaard R, de Ruysscher D, Grgic A, Lee JA, et al. Integration of FDG-PET/CT into external beam radiation therapy planning: technical aspects and recommendations on methodological approaches. Nuklearmedizin 2012;51(4):140–53.PubMedCrossRef Thorwarth D, Beyer T, Boellaard R, de Ruysscher D, Grgic A, Lee JA, et al. Integration of FDG-PET/CT into external beam radiation therapy planning: technical aspects and recommendations on methodological approaches. Nuklearmedizin 2012;51(4):140–53.PubMedCrossRef
17.
go back to reference Somer EJ, Pike LC, Marsden PK. Recommendations for the use of PET and PET-CT for radiotherapy planning in research projects. Br J Radiol 2012;85(1016):e544–8.PubMedCrossRef Somer EJ, Pike LC, Marsden PK. Recommendations for the use of PET and PET-CT for radiotherapy planning in research projects. Br J Radiol 2012;85(1016):e544–8.PubMedCrossRef
18.
go back to reference Schaefer A, Kremp S, Hellwig D, Rübe C, Kirsch CM, Nestle U. A contrast-oriented algorithm for FDG-PET-based delineation of tumour volumes for the radiotherapy of lung cancer: derivation from phantom measurements and validation in patient data. Eur J Nucl Med Mol Imaging 2008;35(11):1989–99.PubMedCrossRef Schaefer A, Kremp S, Hellwig D, Rübe C, Kirsch CM, Nestle U. A contrast-oriented algorithm for FDG-PET-based delineation of tumour volumes for the radiotherapy of lung cancer: derivation from phantom measurements and validation in patient data. Eur J Nucl Med Mol Imaging 2008;35(11):1989–99.PubMedCrossRef
19.
go back to reference Fleckenstein J, Hellwig D, Kremp S, Grgic A, Gröschel A, Kirsch CM, et al. F-18-FDG-PET confined radiotherapy of locally advanced NSCLC with concomitant chemotherapy: results of the PET-PLAN pilot trial. Int J Radiat Oncol Biol Phys 2011;81(4):e283–9.PubMedCrossRef Fleckenstein J, Hellwig D, Kremp S, Grgic A, Gröschel A, Kirsch CM, et al. F-18-FDG-PET confined radiotherapy of locally advanced NSCLC with concomitant chemotherapy: results of the PET-PLAN pilot trial. Int J Radiat Oncol Biol Phys 2011;81(4):e283–9.PubMedCrossRef
20.
go back to reference Bailey DL, Young H, Bloomfield PM, Meikle SR, Glass D, Myers MJ, et al. ECAT ART—a continuously rotating PET camera: performance characteristics, initial clinical studies, and installation considerations in a nuclear medicine department. Eur J Nucl Med 1997;24(1):6–15.PubMedCrossRef Bailey DL, Young H, Bloomfield PM, Meikle SR, Glass D, Myers MJ, et al. ECAT ART—a continuously rotating PET camera: performance characteristics, initial clinical studies, and installation considerations in a nuclear medicine department. Eur J Nucl Med 1997;24(1):6–15.PubMedCrossRef
21.
go back to reference Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging 1994;13:601–9.PubMedCrossRef Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging 1994;13:601–9.PubMedCrossRef
22.
go back to reference Schaefer A, Nestle U, Kremp S, Hellwig D, Grgic A, Buchholz HG, et al. Multi-centre calibration of an adaptive thresholding method for PET-based delineation of tumour volumes in radiotherapy planning of lung cancer. Nuklearmedizin 2012;51(3):101–10. Schaefer A, Nestle U, Kremp S, Hellwig D, Grgic A, Buchholz HG, et al. Multi-centre calibration of an adaptive thresholding method for PET-based delineation of tumour volumes in radiotherapy planning of lung cancer. Nuklearmedizin 2012;51(3):101–10.
23.
go back to reference Turkington TG, DeGrado T, Sampson WH. Small spheres for lesion detection phantoms. IEEE Nucl Sci Symp Conf Rec 2001;4–10:2234–7. Turkington TG, DeGrado T, Sampson WH. Small spheres for lesion detection phantoms. IEEE Nucl Sci Symp Conf Rec 2001;4–10:2234–7.
24.
go back to reference Bazañez-Borgert M, Bundschuh RA, Herz M, Martínez MJ, Schwaiger M, Ziegler SI. Radioactive spheres without inactive wall for lesion simulation in PET. Z Med Phys 2008;18(1):37–42.PubMedCrossRef Bazañez-Borgert M, Bundschuh RA, Herz M, Martínez MJ, Schwaiger M, Ziegler SI. Radioactive spheres without inactive wall for lesion simulation in PET. Z Med Phys 2008;18(1):37–42.PubMedCrossRef
25.
go back to reference Bornemann L, Kuhnigk JM, Dicken V, Zidowitz S, Kuemmerlen B, Krass S, et al. Informatics in radiology (infoRAD): new tools for computer assistance in thoracic CT part 2. Therapy monitoring of pulmonary metastases. Radiographics 2005;25(3):841–8.PubMedCrossRef Bornemann L, Kuhnigk JM, Dicken V, Zidowitz S, Kuemmerlen B, Krass S, et al. Informatics in radiology (infoRAD): new tools for computer assistance in thoracic CT part 2. Therapy monitoring of pulmonary metastases. Radiographics 2005;25(3):841–8.PubMedCrossRef
26.
go back to reference Grgic A, Ballek E, Fleckenstein J, Moca N, Kremp S, Schaefer A, et al. Impact of rigid and nonrigid registration on the determination of 18F-FDG PET-based tumour volume and standardized uptake value in patients with lung cancer. Eur J Nucl Med Mol Imaging 2011;38(5):856–64.PubMedCrossRef Grgic A, Ballek E, Fleckenstein J, Moca N, Kremp S, Schaefer A, et al. Impact of rigid and nonrigid registration on the determination of 18F-FDG PET-based tumour volume and standardized uptake value in patients with lung cancer. Eur J Nucl Med Mol Imaging 2011;38(5):856–64.PubMedCrossRef
27.
go back to reference van Baardwijk A, Bosmans G, Boersma L, Buijsen J, Wanders S, Hochstenbag M, et al. PET-CT-based auto-contouring in non-small-cell lung cancer correlates with pathology and reduces interobserver variability in the delineation of the primary tumor and involved nodal volumes. Int J Radiat Oncol Biol Phys 2007;68(3):771–8.PubMedCrossRef van Baardwijk A, Bosmans G, Boersma L, Buijsen J, Wanders S, Hochstenbag M, et al. PET-CT-based auto-contouring in non-small-cell lung cancer correlates with pathology and reduces interobserver variability in the delineation of the primary tumor and involved nodal volumes. Int J Radiat Oncol Biol Phys 2007;68(3):771–8.PubMedCrossRef
28.
go back to reference Hatt M, Cheze-le Rest C, van Baardwijk A, Lambin P, Pradier O, Visvikis D. Impact of tumor size and tracer uptake heterogeneity in (18)F-FDG PET and CT non-small cell lung cancer tumor delineation. J Nucl Med 2011;52(11):1690–7.PubMedCrossRef Hatt M, Cheze-le Rest C, van Baardwijk A, Lambin P, Pradier O, Visvikis D. Impact of tumor size and tracer uptake heterogeneity in (18)F-FDG PET and CT non-small cell lung cancer tumor delineation. J Nucl Med 2011;52(11):1690–7.PubMedCrossRef
29.
go back to reference Wu K, Ung YC, Hornby J, Freeman M, Hwang D, Tsao MS, et al. PET CT thresholds for radiotherapy target definition in non-small-cell lung cancer: how close are we to the pathologic findings? Int J Radiat Oncol Biol Phys 2010;77(3):699–706.PubMedCrossRef Wu K, Ung YC, Hornby J, Freeman M, Hwang D, Tsao MS, et al. PET CT thresholds for radiotherapy target definition in non-small-cell lung cancer: how close are we to the pathologic findings? Int J Radiat Oncol Biol Phys 2010;77(3):699–706.PubMedCrossRef
30.
go back to reference Erasmus JJ, Gladish GW, Broemeling L, Sabloff BS, Truong MT, Herbst RS, et al. Interobserver and intraobserver variability in measurement of non-small-cell carcinoma lung lesions: implications for assessment of tumor response. J Clin Oncol 2003;21(13):2574–82.PubMedCrossRef Erasmus JJ, Gladish GW, Broemeling L, Sabloff BS, Truong MT, Herbst RS, et al. Interobserver and intraobserver variability in measurement of non-small-cell carcinoma lung lesions: implications for assessment of tumor response. J Clin Oncol 2003;21(13):2574–82.PubMedCrossRef
31.
go back to reference Steenbakkers RJ, Duppen JC, Fitton I, Deurloo KE, Zijp L, Uitterhoeve AL, et al. Observer variation in target volume delineation of lung cancer related to radiation oncologist-computer interaction: a ‘Big Brother’ evaluation. Radiother Oncol 2005;77(2):182–90.PubMedCrossRef Steenbakkers RJ, Duppen JC, Fitton I, Deurloo KE, Zijp L, Uitterhoeve AL, et al. Observer variation in target volume delineation of lung cancer related to radiation oncologist-computer interaction: a ‘Big Brother’ evaluation. Radiother Oncol 2005;77(2):182–90.PubMedCrossRef
32.
go back to reference Bolte H, Jahnke T, Schäfer FK, Wenke R, Hoffmann B, Freitag-Wolf S, et al. Interobserver-variability of lung nodule volumetry considering different segmentation algorithms and observer training levels. Eur J Radiol 2007;64(2):285–95.PubMedCrossRef Bolte H, Jahnke T, Schäfer FK, Wenke R, Hoffmann B, Freitag-Wolf S, et al. Interobserver-variability of lung nodule volumetry considering different segmentation algorithms and observer training levels. Eur J Radiol 2007;64(2):285–95.PubMedCrossRef
33.
go back to reference Daisne JF, Duprez T, Weynand B, Lonneux M, Hamoir M, Reychler H, et al. Tumor volume in pharyngolaryngeal squamous cell carcinoma: comparison at CT, MR imaging, and FDG PET and validation with surgical specimen. Radiology 2004;233(1):93–100.PubMedCrossRef Daisne JF, Duprez T, Weynand B, Lonneux M, Hamoir M, Reychler H, et al. Tumor volume in pharyngolaryngeal squamous cell carcinoma: comparison at CT, MR imaging, and FDG PET and validation with surgical specimen. Radiology 2004;233(1):93–100.PubMedCrossRef
34.
go back to reference Nestle U, Kremp S, Schaefer-Schuler A, Sebastian-Welsch C, Hellwig D, Rübe C, et al. Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-small cell lung cancer. J Nucl Med 2005;46(8):1342–8.PubMed Nestle U, Kremp S, Schaefer-Schuler A, Sebastian-Welsch C, Hellwig D, Rübe C, et al. Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-small cell lung cancer. J Nucl Med 2005;46(8):1342–8.PubMed
35.
go back to reference Cheebsumon P, Boellaard R, de Ruysscher D, van Elmpf W, van Baardwijk A, Yaqub M, et al. Assessment of tumour size in PET/CT lung cancer studies: PET- and CT-based methods compared to pathology. EJNMMI Res 2012;2(1):56.PubMedCrossRef Cheebsumon P, Boellaard R, de Ruysscher D, van Elmpf W, van Baardwijk A, Yaqub M, et al. Assessment of tumour size in PET/CT lung cancer studies: PET- and CT-based methods compared to pathology. EJNMMI Res 2012;2(1):56.PubMedCrossRef
36.
go back to reference Cheebsumon P, Yaqub M, van Velden FH, Hoekstra OS, Lammertsma AA, Boellaard R. Impact of [(18)F]FDG PET imaging parameters on automatic tumour delineation: need for improved tumour delineation methodology. Eur J Nucl Med Mol Imaging 2011;38(12):2136–44.PubMedCrossRef Cheebsumon P, Yaqub M, van Velden FH, Hoekstra OS, Lammertsma AA, Boellaard R. Impact of [(18)F]FDG PET imaging parameters on automatic tumour delineation: need for improved tumour delineation methodology. Eur J Nucl Med Mol Imaging 2011;38(12):2136–44.PubMedCrossRef
37.
go back to reference Hofheinz F, Dittrich S, Pötzsch C, Hoff J. Effects of cold sphere walls in PET phantom measurements on the volume reproducing threshold. Phys Med Biol 2010;55(4):1099–113.PubMedCrossRef Hofheinz F, Dittrich S, Pötzsch C, Hoff J. Effects of cold sphere walls in PET phantom measurements on the volume reproducing threshold. Phys Med Biol 2010;55(4):1099–113.PubMedCrossRef
38.
go back to reference Aristophanous M, Berbeco RI, Killoran JH, Yap JT, Sher DJ, Allen AM, et al. Clinical utility of 4D FDG-PET/CT scans in radiation treatment planning. Int J Radiat Oncol Biol Phys 2012;82(1):e99–105.PubMedCrossRef Aristophanous M, Berbeco RI, Killoran JH, Yap JT, Sher DJ, Allen AM, et al. Clinical utility of 4D FDG-PET/CT scans in radiation treatment planning. Int J Radiat Oncol Biol Phys 2012;82(1):e99–105.PubMedCrossRef
39.
go back to reference Basu S, Kwee TC, Gatenby R, Saboury B, Torigian DA, Alavi A. Evolving role of molecular imaging with PET in detecting and characterizing heterogeneity of cancer tissue at the primary and metastatic sites, a plausible explanation for failed attempts to cure malignant disorders. Eur J Nucl Med Mol Imaging 2011;38(6):987–91.PubMedCrossRef Basu S, Kwee TC, Gatenby R, Saboury B, Torigian DA, Alavi A. Evolving role of molecular imaging with PET in detecting and characterizing heterogeneity of cancer tissue at the primary and metastatic sites, a plausible explanation for failed attempts to cure malignant disorders. Eur J Nucl Med Mol Imaging 2011;38(6):987–91.PubMedCrossRef
40.
go back to reference Tixier F, Le Rest CC, Hatt M, Albarghach N, Pradier O, Metges JP, et al. Intratumor heterogeneity characterized by textural features on baseline 18F-FDG PET images predicts response to concomitant radiochemotherapy in esophageal cancer. J Nucl Med 2011;52(3):369–78.PubMedCrossRef Tixier F, Le Rest CC, Hatt M, Albarghach N, Pradier O, Metges JP, et al. Intratumor heterogeneity characterized by textural features on baseline 18F-FDG PET images predicts response to concomitant radiochemotherapy in esophageal cancer. J Nucl Med 2011;52(3):369–78.PubMedCrossRef
41.
go back to reference Vansteenkiste JF. PET scan in the staging of non-small cell lung cancer. Lung Cancer 2003;42 Suppl 1:S27–37.PubMedCrossRef Vansteenkiste JF. PET scan in the staging of non-small cell lung cancer. Lung Cancer 2003;42 Suppl 1:S27–37.PubMedCrossRef
42.
go back to reference Geets X, Daisne JF, Gregoire V, Hamoir M, Lonneux M. Role of 11-C-methionine positron emission tomography for the delineation of the tumor volume in pharyngo-laryngeal squamous cell carcinoma: comparison with FDG-PET and CT. Radiother Oncol 2004;71(3):267–73.PubMedCrossRef Geets X, Daisne JF, Gregoire V, Hamoir M, Lonneux M. Role of 11-C-methionine positron emission tomography for the delineation of the tumor volume in pharyngo-laryngeal squamous cell carcinoma: comparison with FDG-PET and CT. Radiother Oncol 2004;71(3):267–73.PubMedCrossRef
Metadata
Title
PET-based delineation of tumour volumes in lung cancer: comparison with pathological findings
Authors
Andrea Schaefer
Yoo Jin Kim
Stephanie Kremp
Sebastian Mai
Jochen Fleckenstein
Hendrik Bohnenberger
Hans-Joachim Schäfers
Jan-Martin Kuhnigk
Rainer M. Bohle
Christian Rübe
Carl-Martin Kirsch
Aleksandar Grgic
Publication date
01-08-2013
Publisher
Springer Berlin Heidelberg
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue 8/2013
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-013-2407-x

Other articles of this Issue 8/2013

European Journal of Nuclear Medicine and Molecular Imaging 8/2013 Go to the issue