Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 9/2007

01-09-2007 | Original article

A gradient-based method for segmenting FDG-PET images: methodology and validation

Authors: Xavier Geets, John A. Lee, Anne Bol, Max Lonneux, Vincent Grégoire

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Issue 9/2007

Login to get access

Abstract

Purpose

A new gradient-based method for segmenting FDG-PET images is described and validated.

Methods

The proposed method relies on the watershed transform and hierarchical cluster analysis. To allow a better estimation of the gradient intensity, iteratively reconstructed images were first denoised and deblurred with an edge-preserving filter and a constrained iterative deconvolution algorithm. Validation was first performed on computer-generated 3D phantoms containing spheres, then on a real cylindrical Lucite phantom containing spheres of different volumes ranging from 2.1 to 92.9 ml. Moreover, laryngeal tumours from seven patients were segmented on PET images acquired before laryngectomy by the gradient-based method and the thresholding method based on the source-to-background ratio developed by Daisne (Radiother Oncol 2003;69:247–50). For the spheres, the calculated volumes and radii were compared with the known values; for laryngeal tumours, the volumes were compared with the macroscopic specimens. Volume mismatches were also analysed.

Results

On computer-generated phantoms, the deconvolution algorithm decreased the mis-estimate of volumes and radii. For the Lucite phantom, the gradient-based method led to a slight underestimation of sphere volumes (by 10–20%), corresponding to negligible radius differences (0.5–1.1 mm); for laryngeal tumours, the segmented volumes by the gradient-based method agreed with those delineated on the macroscopic specimens, whereas the threshold-based method overestimated the true volume by 68% (p = 0.014). Lastly, macroscopic laryngeal specimens were totally encompassed by neither the threshold-based nor the gradient-based volumes.

Conclusion

The gradient-based segmentation method applied on denoised and deblurred images proved to be more accurate than the source-to-background ratio method.
Literature
1.
go back to reference Mohan R, Wu Q, Manning M, Schmidt-Ullrich R. Radiobiological consideration in the design of fractionation strategies for intensity-modulated radiation therapy of the head and neck. Int J Radiat Oncol Biol Phys 2000;46:619–30.PubMedCrossRef Mohan R, Wu Q, Manning M, Schmidt-Ullrich R. Radiobiological consideration in the design of fractionation strategies for intensity-modulated radiation therapy of the head and neck. Int J Radiat Oncol Biol Phys 2000;46:619–30.PubMedCrossRef
2.
go back to reference Rasch C, Eisbruch A, Remeiejer P. Irradiation of paranasal sinus tumors: a delineation and dose comparison study. Int J radiat Oncol Biol Phys 2002;52:120–7.PubMedCrossRef Rasch C, Eisbruch A, Remeiejer P. Irradiation of paranasal sinus tumors: a delineation and dose comparison study. Int J radiat Oncol Biol Phys 2002;52:120–7.PubMedCrossRef
3.
go back to reference Ciernik IF, Dizendorf E, Baumert BG, Reiner B, Burger C, Davis JB, et al. Radiation treatment planning with an integrated positron emission and computer tomography (PET/CT): a feasibility study. Int J Radiat Oncol Biol Phys 2003;57:853–63.PubMedCrossRef Ciernik IF, Dizendorf E, Baumert BG, Reiner B, Burger C, Davis JB, et al. Radiation treatment planning with an integrated positron emission and computer tomography (PET/CT): a feasibility study. Int J Radiat Oncol Biol Phys 2003;57:853–63.PubMedCrossRef
4.
go back to reference Nishioka T, Shiga T, Shirato H, Tsukamoto E, Tsuchiya K, Kato T, et al. Image fusion between 18FDG-PET and MRI/CT for radiotherapy planning of oropharyngeal and nasopharyngeal carcinomas. Int J Radiat Oncol Biol Phys 2002;53:1051–7.PubMedCrossRef Nishioka T, Shiga T, Shirato H, Tsukamoto E, Tsuchiya K, Kato T, et al. Image fusion between 18FDG-PET and MRI/CT for radiotherapy planning of oropharyngeal and nasopharyngeal carcinomas. Int J Radiat Oncol Biol Phys 2002;53:1051–7.PubMedCrossRef
5.
go back to reference Paulino AC, Koshy M, Howell R, Schuster D, Davis LW. Comparison of CT- and FDG-PET-defined gross tumor volume in intensity-modulated radiotherapy for head-and-neck cancer. Int J Radiat Oncol Biol Phys 2005;61:1385–92.PubMedCrossRef Paulino AC, Koshy M, Howell R, Schuster D, Davis LW. Comparison of CT- and FDG-PET-defined gross tumor volume in intensity-modulated radiotherapy for head-and-neck cancer. Int J Radiat Oncol Biol Phys 2005;61:1385–92.PubMedCrossRef
6.
go back to reference Gregoire V, Daisne JF, Geets X. Comparison of CT- and FDG-PET-defined GT: in regard to Paulino et al. Int J Radiat Oncol Biol Phys 2005;63:308–9.PubMedCrossRef Gregoire V, Daisne JF, Geets X. Comparison of CT- and FDG-PET-defined GT: in regard to Paulino et al. Int J Radiat Oncol Biol Phys 2005;63:308–9.PubMedCrossRef
7.
go back to reference Daisne JF, Sibomana M, Bol A, Doumont T, Lonneux M, Gregoire V. Tri-dimensional automatic segmentation of PET volumes based on measured source-to-background ratios: influence of reconstruction algorithms. Radiother Oncol 2003;69:247–50.PubMedCrossRef Daisne JF, Sibomana M, Bol A, Doumont T, Lonneux M, Gregoire V. Tri-dimensional automatic segmentation of PET volumes based on measured source-to-background ratios: influence of reconstruction algorithms. Radiother Oncol 2003;69:247–50.PubMedCrossRef
8.
go back to reference Daisne JF, Gregoire V, Duprez T, Lonneux M, Hamoir M, Reychler H, et al. Tumor volume in pharyngolaryngeal squamous cell carcinoma: comparison at CT, MR imaging, and FDG PET and validation with surgical specimen. Radiology 2004;233:93–100.PubMedCrossRef Daisne JF, Gregoire V, Duprez T, Lonneux M, Hamoir M, Reychler H, et al. Tumor volume in pharyngolaryngeal squamous cell carcinoma: comparison at CT, MR imaging, and FDG PET and validation with surgical specimen. Radiology 2004;233:93–100.PubMedCrossRef
9.
go back to reference Elad M. On the origin of the bilateral filter and ways to improve it. IEEE Trans Image Processing 2002; 11:1141–51.CrossRef Elad M. On the origin of the bilateral filter and ways to improve it. IEEE Trans Image Processing 2002; 11:1141–51.CrossRef
10.
go back to reference Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Machine Intell 1990;12(7):629–39.CrossRef Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Machine Intell 1990;12(7):629–39.CrossRef
11.
go back to reference King MA, Penney BC, Glick SJ. An image-dependent Metz filter for nuclear medicine images. J Nucl Med 1988;29:1980–9.PubMed King MA, Penney BC, Glick SJ. An image-dependent Metz filter for nuclear medicine images. J Nucl Med 1988;29:1980–9.PubMed
12.
go back to reference Herholz K. Non-stationary spatial filtering and accelerated curve fitting for parametric imaging with dynamic PET. Eur J Nucl Med 1988;14:477–84.PubMedCrossRef Herholz K. Non-stationary spatial filtering and accelerated curve fitting for parametric imaging with dynamic PET. Eur J Nucl Med 1988;14:477–84.PubMedCrossRef
13.
go back to reference Carasso AS. Linear and nonlinear image deblurring: a documented study. SIAM J Numer Anal 1999;36:1659–89.CrossRef Carasso AS. Linear and nonlinear image deblurring: a documented study. SIAM J Numer Anal 1999;36:1659–89.CrossRef
15.
go back to reference Landweber L. An iteration formula for Fredholm integral equations of the 1rst kind. Am J Math 1951;73:615–24.CrossRef Landweber L. An iteration formula for Fredholm integral equations of the 1rst kind. Am J Math 1951;73:615–24.CrossRef
16.
go back to reference Lagendijk RL, Biemond J. Iterative identification and restoration of images. Norwell, MA: Kluwer Academic, 1991. Lagendijk RL, Biemond J. Iterative identification and restoration of images. Norwell, MA: Kluwer Academic, 1991.
17.
go back to reference Beucher S. The watershed transformation applied to image segmentation. Scanning Microscopy International 1992;Suppl 6:299–314. Beucher S. The watershed transformation applied to image segmentation. Scanning Microscopy International 1992;Suppl 6:299–314.
18.
go back to reference Vincent L, Soille P. Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans Pattern Anal Machine Intell 1991; 13(6):583–98.CrossRef Vincent L, Soille P. Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans Pattern Anal Machine Intell 1991; 13(6):583–98.CrossRef
19.
go back to reference Mariano-Goulart D, Collet H, Kotzki P-O, Zanca M. Semi-automatic segmentation of gated blood pool emission tomographic images by watersheds: application to the determination of right and left ejection fractions. Eur J Nucl Med 1998;25:1300–7.PubMedCrossRef Mariano-Goulart D, Collet H, Kotzki P-O, Zanca M. Semi-automatic segmentation of gated blood pool emission tomographic images by watersheds: application to the determination of right and left ejection fractions. Eur J Nucl Med 1998;25:1300–7.PubMedCrossRef
20.
go back to reference Sijbers J, Scheunders P, Verhoye M, Van der Linden A, Van Dyck D, Raman E. Watershed-based segmentation of 3D MR data for volume quantization. Magn Reson Imaging 1997;15:679–88.PubMedCrossRef Sijbers J, Scheunders P, Verhoye M, Van der Linden A, Van Dyck D, Raman E. Watershed-based segmentation of 3D MR data for volume quantization. Magn Reson Imaging 1997;15:679–88.PubMedCrossRef
21.
go back to reference Jain AK, Murty MN, Flynn PJ. Data clustering: a review. ACM Computer Surveys 1999;31:264–323.CrossRef Jain AK, Murty MN, Flynn PJ. Data clustering: a review. ACM Computer Surveys 1999;31:264–323.CrossRef
22.
go back to reference Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging 1994;13:601–9.CrossRef Hudson HM, Larkin RS. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging 1994;13:601–9.CrossRef
23.
go back to reference Geets X, Daisne JF, Gregoire V, Hamoir M, Lonneux M. Role of 11-C-methionine positron emission tomography for the delineation of the tumor volume in pharyngo-laryngeal squamous cell carcinoma: comparison with FDG-PET and CT. Radiother Oncol 2004;71:267–73.PubMedCrossRef Geets X, Daisne JF, Gregoire V, Hamoir M, Lonneux M. Role of 11-C-methionine positron emission tomography for the delineation of the tumor volume in pharyngo-laryngeal squamous cell carcinoma: comparison with FDG-PET and CT. Radiother Oncol 2004;71:267–73.PubMedCrossRef
24.
go back to reference Geets X, Daisne JF, Tomsej M, Duprez T, Lonneux M, Gregoire V. Impact of the type of imaging modality on target volumes delineation and dose distribution in pharyngo-laryngeal squamous cell carcinoma: comparison between pre- and per-treatment studies. Radiother Oncol 2006;78:291–7.PubMedCrossRef Geets X, Daisne JF, Tomsej M, Duprez T, Lonneux M, Gregoire V. Impact of the type of imaging modality on target volumes delineation and dose distribution in pharyngo-laryngeal squamous cell carcinoma: comparison between pre- and per-treatment studies. Radiother Oncol 2006;78:291–7.PubMedCrossRef
25.
go back to reference Vauclin S, Doyeux K, Hapdey S, Vassal M, Vera P, Gardin I. Comparison of three thresholding methods for tumor volume determination in 18F-FDG PET imaging. Eur J Nucl Med 2006;33(Suppl 2):S148. Vauclin S, Doyeux K, Hapdey S, Vassal M, Vera P, Gardin I. Comparison of three thresholding methods for tumor volume determination in 18F-FDG PET imaging. Eur J Nucl Med 2006;33(Suppl 2):S148.
26.
go back to reference Devroye L. Non-uniform random variate generation. New York: Springer, 1986. Devroye L. Non-uniform random variate generation. New York: Springer, 1986.
27.
go back to reference Daisne JF, Sibomana M, Bol A, Cosnard G, Lonneux M, Gregoire V. Evaluation of a multimodality image (CT, MRI and PET) coregistration procedure on phantom and head and neck cancer patients: accuracy, reproducibility and consistency. Radiother Oncol 2003;69:237–45.PubMedCrossRef Daisne JF, Sibomana M, Bol A, Cosnard G, Lonneux M, Gregoire V. Evaluation of a multimodality image (CT, MRI and PET) coregistration procedure on phantom and head and neck cancer patients: accuracy, reproducibility and consistency. Radiother Oncol 2003;69:237–45.PubMedCrossRef
28.
go back to reference Black QC, Grills IS, Kestin LL, Wong CY, Wong JW, Martinez AA, et al. Defining a radiotherapy target with positron emission tomography. Int J Rad Oncol Biol Phys 2004;60:1272–82.CrossRef Black QC, Grills IS, Kestin LL, Wong CY, Wong JW, Martinez AA, et al. Defining a radiotherapy target with positron emission tomography. Int J Rad Oncol Biol Phys 2004;60:1272–82.CrossRef
29.
go back to reference Nestle U, Kremp S, Schaefer-Schuler A, Sebastian-Welsch C, Hellwig D, Rube C, et al. Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-small cell lung cancer. J Nucl Med 2005;46:1342–8.PubMed Nestle U, Kremp S, Schaefer-Schuler A, Sebastian-Welsch C, Hellwig D, Rube C, et al. Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-small cell lung cancer. J Nucl Med 2005;46:1342–8.PubMed
30.
go back to reference Wienhard K, Dahlbom M, Heiss WD, Michel C, Bruckbauer T, Pietrzyk U, et al. The ECAT EXACT HR: performance of a new high resolution positron scanner. J Comput Assist Tomogr 1994;18:110–8.PubMedCrossRef Wienhard K, Dahlbom M, Heiss WD, Michel C, Bruckbauer T, Pietrzyk U, et al. The ECAT EXACT HR: performance of a new high resolution positron scanner. J Comput Assist Tomogr 1994;18:110–8.PubMedCrossRef
31.
go back to reference Chen CH, Muzic RF, Nelson D, Adler LP. Simultaneous recovery of size and radioactivity concentration of small spheroids with PET data. J Nucl Med 1999;40:118–30.PubMed Chen CH, Muzic RF, Nelson D, Adler LP. Simultaneous recovery of size and radioactivity concentration of small spheroids with PET data. J Nucl Med 1999;40:118–30.PubMed
32.
go back to reference Gilbeau L, Octave-Prignot M, Loncol T, Renard L, Scalliet P, Gregoire V. Comparison of setup accuracy of three different thermoplastic masks for the treatment of brain and head and neck tumors. Radiother Oncol 2001;58:155–62.PubMedCrossRef Gilbeau L, Octave-Prignot M, Loncol T, Renard L, Scalliet P, Gregoire V. Comparison of setup accuracy of three different thermoplastic masks for the treatment of brain and head and neck tumors. Radiother Oncol 2001;58:155–62.PubMedCrossRef
33.
go back to reference Hamlet S, Ezzell G, Aref A. Larynx motion associated with swallowing during radiotherapy. Int J Radiat Oncol Biol Phys 1994;28:467–70.PubMed Hamlet S, Ezzell G, Aref A. Larynx motion associated with swallowing during radiotherapy. Int J Radiat Oncol Biol Phys 1994;28:467–70.PubMed
34.
go back to reference Hong TS, Tome WA, Chappell RJ, Harari PM. Variations in target delineation for head and neck IMRT: an international multi-institutional study. Int J Radiat Oncol Biol Phys 2004;60:157–8.CrossRef Hong TS, Tome WA, Chappell RJ, Harari PM. Variations in target delineation for head and neck IMRT: an international multi-institutional study. Int J Radiat Oncol Biol Phys 2004;60:157–8.CrossRef
35.
go back to reference Urie MM, Goitein M, Wong JW, Kutcher JG, LoSasso T, Mohan R, et al. The role of uncertainty analysis in treatment planning. Int J Radiat Oncol Biol Phys 1991;21:91–107.PubMed Urie MM, Goitein M, Wong JW, Kutcher JG, LoSasso T, Mohan R, et al. The role of uncertainty analysis in treatment planning. Int J Radiat Oncol Biol Phys 1991;21:91–107.PubMed
36.
go back to reference Doshi NK, Shao Y, Silverman RW, Cherry SR. Design and evaluation of an LSO PET detector for the breast cancer imaging. Med Phys 2000;27:1535–43.PubMedCrossRef Doshi NK, Shao Y, Silverman RW, Cherry SR. Design and evaluation of an LSO PET detector for the breast cancer imaging. Med Phys 2000;27:1535–43.PubMedCrossRef
37.
go back to reference Leahy R, Qi J. Statistical approaches in quantitative positron emission tomography. Stat Comput 2000;10:147–65.CrossRef Leahy R, Qi J. Statistical approaches in quantitative positron emission tomography. Stat Comput 2000;10:147–65.CrossRef
Metadata
Title
A gradient-based method for segmenting FDG-PET images: methodology and validation
Authors
Xavier Geets
John A. Lee
Anne Bol
Max Lonneux
Vincent Grégoire
Publication date
01-09-2007
Publisher
Springer-Verlag
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue 9/2007
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-006-0363-4

Other articles of this Issue 9/2007

European Journal of Nuclear Medicine and Molecular Imaging 9/2007 Go to the issue