Skip to main content
Top
Published in: Pediatric Radiology 11/2022

12-04-2021 | Artificial Intelligence | Artificial intelligence in pediatric radiology

Current and emerging artificial intelligence applications for pediatric abdominal imaging

Authors: Jonathan R. Dillman, Elan Somasundaram, Samuel L. Brady, Lili He

Published in: Pediatric Radiology | Issue 11/2022

Login to get access

Abstract

Artificial intelligence (AI) uses computers to mimic cognitive functions of the human brain, allowing inferences to be made from generally large datasets. Traditional machine learning (e.g., decision tree analysis, support vector machines) and deep learning (e.g., convolutional neural networks) are two commonly employed AI approaches both outside and within the field of medicine. Such techniques can be used to evaluate medical images for the purposes of automated detection and segmentation, classification tasks (including diagnosis, lesion or tissue characterization, and prediction), and image reconstruction. In this review article we highlight recent literature describing current and emerging AI methods applied to abdominal imaging (e.g., CT, MRI and US) and suggest potential future applications of AI in the pediatric population.
Literature
1.
go back to reference Thrall JH, Li X, Li Q et al (2018) Artificial intelligence and machine learning in radiology: opportunities, challenges, pitfalls, and criteria for success. J Am Coll Radiol 15:504–508PubMedCrossRef Thrall JH, Li X, Li Q et al (2018) Artificial intelligence and machine learning in radiology: opportunities, challenges, pitfalls, and criteria for success. J Am Coll Radiol 15:504–508PubMedCrossRef
2.
go back to reference Mitchell T (1997) Machine learning. McGraw Hill, New York Mitchell T (1997) Machine learning. McGraw Hill, New York
3.
4.
go back to reference Choy G, Khalilzadeh O, Michalski M et al (2018) Current applications and future impact of machine learning in radiology. Radiology 288:318–328PubMedCrossRef Choy G, Khalilzadeh O, Michalski M et al (2018) Current applications and future impact of machine learning in radiology. Radiology 288:318–328PubMedCrossRef
6.
go back to reference Litjens G, Kooi T, Bejnordi BE et al (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88PubMedCrossRef Litjens G, Kooi T, Bejnordi BE et al (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88PubMedCrossRef
8.
go back to reference Avanzo M, Wei L, Stancanello J et al (2020) Machine and deep learning methods for radiomics. Med Phys 47:e185–e202PubMedCrossRef Avanzo M, Wei L, Stancanello J et al (2020) Machine and deep learning methods for radiomics. Med Phys 47:e185–e202PubMedCrossRef
9.
go back to reference Lambin P, Rios-Velazquez E, Leijenaar R et al (2012) Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 48:441–446PubMedCrossRefPubMedCentral Lambin P, Rios-Velazquez E, Leijenaar R et al (2012) Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 48:441–446PubMedCrossRefPubMedCentral
10.
11.
go back to reference Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res 3:1157–1182 Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res 3:1157–1182
12.
go back to reference Saeys Y, Inza I, Larrañaga P (2007) A review of feature selection techniques in bioinformatics. Bioinform 23:2507–2517CrossRef Saeys Y, Inza I, Larrañaga P (2007) A review of feature selection techniques in bioinformatics. Bioinform 23:2507–2517CrossRef
13.
go back to reference Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc 58:267–288 Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc 58:267–288
14.
15.
go back to reference Ho TK (1995) Random decision forests. Proc ICDAR 1:278–282 Ho TK (1995) Random decision forests. Proc ICDAR 1:278–282
16.
go back to reference Najafabadi MM, Villanustre F, Khoshgoftaar TM et al (2015) Deep learning applications and challenges in big data analytics. J Big Data 2, article 1 Najafabadi MM, Villanustre F, Khoshgoftaar TM et al (2015) Deep learning applications and challenges in big data analytics. J Big Data 2, article 1
17.
go back to reference Sahiner B, Pezeshk A, Hadjiiski LM et al (2019) Deep learning in medical imaging and radiation therapy. Med Phys 46:e1–e36PubMedCrossRef Sahiner B, Pezeshk A, Hadjiiski LM et al (2019) Deep learning in medical imaging and radiation therapy. Med Phys 46:e1–e36PubMedCrossRef
19.
go back to reference Pan SJ, Yang Q (2010) A survey on transfer learning. IEEE Trans Knowl Data Eng 22:1345–1359CrossRef Pan SJ, Yang Q (2010) A survey on transfer learning. IEEE Trans Knowl Data Eng 22:1345–1359CrossRef
20.
go back to reference Weiss K, Khoshgoftaar TM, Wang D (2016) A survey of transfer learning. J Big Data 3, article 9 Weiss K, Khoshgoftaar TM, Wang D (2016) A survey of transfer learning. J Big Data 3, article 9
21.
go back to reference Li H, Parikh NA, He L (2018) A novel transfer learning approach to enhance deep neural network classification of brain functional connectomes. Front Neurosci 12:491PubMedCrossRefPubMedCentral Li H, Parikh NA, He L (2018) A novel transfer learning approach to enhance deep neural network classification of brain functional connectomes. Front Neurosci 12:491PubMedCrossRefPubMedCentral
22.
go back to reference He L, Li H, Wang J et al (2020) A multi-task, multi-stage deep transfer learning model for early prediction of neurodevelopment in very preterm infants. Sci Rep 10:15072PubMedCrossRefPubMedCentral He L, Li H, Wang J et al (2020) A multi-task, multi-stage deep transfer learning model for early prediction of neurodevelopment in very preterm infants. Sci Rep 10:15072PubMedCrossRefPubMedCentral
23.
go back to reference Samala RK, Chan HP, Hadjiiski LM et al (2018) Evolutionary pruning of transfer learned deep convolutional neural network for breast cancer diagnosis in digital breast tomosynthesis. Phys Med Biol 63:095005PubMedCrossRefPubMedCentral Samala RK, Chan HP, Hadjiiski LM et al (2018) Evolutionary pruning of transfer learned deep convolutional neural network for breast cancer diagnosis in digital breast tomosynthesis. Phys Med Biol 63:095005PubMedCrossRefPubMedCentral
24.
go back to reference Azizi S, Mousavi P, Yan P et al (2017) Transfer learning from RF to B-mode temporal enhanced ultrasound features for prostate cancer detection. Int J Comput Assist Radiol Surg 12:1111–1121PubMedCrossRefPubMedCentral Azizi S, Mousavi P, Yan P et al (2017) Transfer learning from RF to B-mode temporal enhanced ultrasound features for prostate cancer detection. Int J Comput Assist Radiol Surg 12:1111–1121PubMedCrossRefPubMedCentral
25.
go back to reference Shorten C, Khoshgoftaar TM (2019) A survey on image data augmentation for deep learning. J Big Data 6, article 60 Shorten C, Khoshgoftaar TM (2019) A survey on image data augmentation for deep learning. J Big Data 6, article 60
26.
go back to reference Haixiang G, Yijing L, Shang J et al (2017) Learning from class-imbalanced data: review of methods and applications. Expert Syst Appl 73:220–239CrossRef Haixiang G, Yijing L, Shang J et al (2017) Learning from class-imbalanced data: review of methods and applications. Expert Syst Appl 73:220–239CrossRef
27.
go back to reference Krawczyk B (2016) Learning from imbalanced data: open challenges and future directions. Prog Artif Intell 5:221–232CrossRef Krawczyk B (2016) Learning from imbalanced data: open challenges and future directions. Prog Artif Intell 5:221–232CrossRef
29.
go back to reference Lundervold AS, Lundervold A (2019) An overview of deep learning in medical imaging focusing on MRI. Z Med Phys 29:102–127PubMedCrossRef Lundervold AS, Lundervold A (2019) An overview of deep learning in medical imaging focusing on MRI. Z Med Phys 29:102–127PubMedCrossRef
30.
go back to reference Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: Navab N, Hornegger J, Wells W, Frangi A (eds) Medical image computing and computer-assisted intervention — MICCAI 2015. Springer, Cham Ronneberger O, Fischer P, Brox T (2015) U-net: convolutional networks for biomedical image segmentation. In: Navab N, Hornegger J, Wells W, Frangi A (eds) Medical image computing and computer-assisted intervention — MICCAI 2015. Springer, Cham
31.
go back to reference Milletari F, Navab N, Ahmadi S (2016) V-net: fully convolutional neural networks for volumetric medical image segmentation. In: Fourth International Conference on 3D Vision (3DV), pp 565–571 Milletari F, Navab N, Ahmadi S (2016) V-net: fully convolutional neural networks for volumetric medical image segmentation. In: Fourth International Conference on 3D Vision (3DV), pp 565–571
32.
go back to reference Çiçek Ö, Abdulkadir A, Lienkamp SS et al (2016) 3D U-net: learning dense volumetric segmentation from sparse annotation. In: Ourselin S, Joskowicz L, Sabuncu M et al (eds) Medical image computing and computer-assisted intervention — MICCAI 2016. Springer, Cham Çiçek Ö, Abdulkadir A, Lienkamp SS et al (2016) 3D U-net: learning dense volumetric segmentation from sparse annotation. In: Ourselin S, Joskowicz L, Sabuncu M et al (eds) Medical image computing and computer-assisted intervention — MICCAI 2016. Springer, Cham
33.
go back to reference Dou Q, Yu L, Chen H et al (2017) 3D deeply supervised network for automated segmentation of volumetric medical images. Med Image Anal 41:40–54PubMedCrossRef Dou Q, Yu L, Chen H et al (2017) 3D deeply supervised network for automated segmentation of volumetric medical images. Med Image Anal 41:40–54PubMedCrossRef
34.
go back to reference Isensee F, Petersen J, Klein A et al (2018) nnU-net: self-adapting framework for U-net-based medical image segmentation. arXiv preprint arXiv:180910486 Isensee F, Petersen J, Klein A et al (2018) nnU-net: self-adapting framework for U-net-based medical image segmentation. arXiv preprint arXiv:180910486
35.
go back to reference Azer SA (2019) Deep learning with convolutional neural networks for identification of liver masses and hepatocellular carcinoma: a systematic review. World J Gastrointest Oncol 11:1218–1230PubMedCrossRefPubMedCentral Azer SA (2019) Deep learning with convolutional neural networks for identification of liver masses and hepatocellular carcinoma: a systematic review. World J Gastrointest Oncol 11:1218–1230PubMedCrossRefPubMedCentral
36.
go back to reference Moon H, Huo Y, Abramson RG et al (2019) Acceleration of spleen segmentation with end-to-end deep learning method and automated pipeline. Comput Biol Med 107:109–117PubMedCrossRefPubMedCentral Moon H, Huo Y, Abramson RG et al (2019) Acceleration of spleen segmentation with end-to-end deep learning method and automated pipeline. Comput Biol Med 107:109–117PubMedCrossRefPubMedCentral
37.
go back to reference Oktay O, Schlemper J, Folgoc LL et al (2018) Attention U-net: learning where to look for the pancreas. ArXiv abs/1804.03999 Oktay O, Schlemper J, Folgoc LL et al (2018) Attention U-net: learning where to look for the pancreas. ArXiv abs/1804.03999
38.
go back to reference McCleary BM, Trout AT, Dillman JR et al (2020) Validation of threshold values for pancreas thickness and T1-weighted signal intensity ratio in the pediatric pancreas. Pediatr Radiol 50:1381–1386PubMedCrossRef McCleary BM, Trout AT, Dillman JR et al (2020) Validation of threshold values for pancreas thickness and T1-weighted signal intensity ratio in the pediatric pancreas. Pediatr Radiol 50:1381–1386PubMedCrossRef
39.
go back to reference McCleary BM, Trout AT, Fei L et al (2020) Healthy pancreatic parenchymal volume and its relationship to exocrine function. Pediatr Radiol 50:684–688PubMedCrossRef McCleary BM, Trout AT, Fei L et al (2020) Healthy pancreatic parenchymal volume and its relationship to exocrine function. Pediatr Radiol 50:684–688PubMedCrossRef
40.
go back to reference Sharma K, Rupprecht C, Caroli A et al (2017) Automatic segmentation of kidneys using deep learning for total kidney volume quantification in autosomal dominant polycystic kidney disease. Sci Rep 7:1–10 Sharma K, Rupprecht C, Caroli A et al (2017) Automatic segmentation of kidneys using deep learning for total kidney volume quantification in autosomal dominant polycystic kidney disease. Sci Rep 7:1–10
41.
go back to reference Hu P, Wu F, Peng J et al (2017) Automatic abdominal multi-organ segmentation using deep convolutional neural network and time-implicit level sets. Int J Comput Assist Radiol Surg 12:399–411PubMedCrossRef Hu P, Wu F, Peng J et al (2017) Automatic abdominal multi-organ segmentation using deep convolutional neural network and time-implicit level sets. Int J Comput Assist Radiol Surg 12:399–411PubMedCrossRef
42.
43.
go back to reference Zhou X (2020) Automatic segmentation of multiple organs on 3D CT images by using deep learning approaches. Adv Exp Med Biol 1213:135–147PubMedCrossRef Zhou X (2020) Automatic segmentation of multiple organs on 3D CT images by using deep learning approaches. Adv Exp Med Biol 1213:135–147PubMedCrossRef
44.
go back to reference Langner T, Hedström A, Mörwald K et al (2019) Fully convolutional networks for automated segmentation of abdominal adipose tissue depots in multicenter water-fat MRI. Magn Reson Med 81:2736–2745PubMedCrossRef Langner T, Hedström A, Mörwald K et al (2019) Fully convolutional networks for automated segmentation of abdominal adipose tissue depots in multicenter water-fat MRI. Magn Reson Med 81:2736–2745PubMedCrossRef
45.
go back to reference Gilligan LA, Towbin AJ, Dillman JR et al (2020) Quantification of skeletal muscle mass: sarcopenia as a marker of overall health in children and adults. Pediatr Radiol 50:455–464PubMedCrossRef Gilligan LA, Towbin AJ, Dillman JR et al (2020) Quantification of skeletal muscle mass: sarcopenia as a marker of overall health in children and adults. Pediatr Radiol 50:455–464PubMedCrossRef
46.
go back to reference He L, Li H, Dudley JA et al (2019) Machine learning prediction of liver stiffness using clinical and T2-weighted MRI radiomic data. AJR Am J Roentgenol 213:592–601PubMedCrossRef He L, Li H, Dudley JA et al (2019) Machine learning prediction of liver stiffness using clinical and T2-weighted MRI radiomic data. AJR Am J Roentgenol 213:592–601PubMedCrossRef
48.
go back to reference Yasaka K, Akai H, Kunimatsu A et al (2018) Liver fibrosis: deep convolutional neural network for staging by using gadoxetic acid-enhanced hepatobiliary phase MR images. Radiology 287:146–155PubMedCrossRef Yasaka K, Akai H, Kunimatsu A et al (2018) Liver fibrosis: deep convolutional neural network for staging by using gadoxetic acid-enhanced hepatobiliary phase MR images. Radiology 287:146–155PubMedCrossRef
49.
go back to reference Tabari A, Kilcoyne A, Jeck WR et al (2019) Texture analysis of magnetic resonance enterography contrast enhancement can detect fibrosis in Crohn disease strictures. J Pediatr Gastroenterol Nutr 69:533–538PubMedCrossRef Tabari A, Kilcoyne A, Jeck WR et al (2019) Texture analysis of magnetic resonance enterography contrast enhancement can detect fibrosis in Crohn disease strictures. J Pediatr Gastroenterol Nutr 69:533–538PubMedCrossRef
52.
go back to reference Zabihollahy F, Schieda N, Krishna S, Ukwatta E (2020) Automated classification of solid renal masses on contrast-enhanced computed tomography images using convolutional neural network with decision fusion. Eur Radiol 30:5183–5190PubMedCrossRef Zabihollahy F, Schieda N, Krishna S, Ukwatta E (2020) Automated classification of solid renal masses on contrast-enhanced computed tomography images using convolutional neural network with decision fusion. Eur Radiol 30:5183–5190PubMedCrossRef
53.
go back to reference Yang R, Wu J, Sun L et al (2020) Radiomics of small renal masses on multiphasic CT: accuracy of machine learning-based classification models for the differentiation of renal cell carcinoma and angiomyolipoma without visible fat. Eur Radiol 30:1254–1263PubMedCrossRef Yang R, Wu J, Sun L et al (2020) Radiomics of small renal masses on multiphasic CT: accuracy of machine learning-based classification models for the differentiation of renal cell carcinoma and angiomyolipoma without visible fat. Eur Radiol 30:1254–1263PubMedCrossRef
54.
go back to reference Otjen JP, Stanescu AL, Alessio AM, Parisi MT (2020) Ovarian torsion: developing a machine-learned algorithm for diagnosis. Pediatr Radiol 50:706–714PubMedCrossRef Otjen JP, Stanescu AL, Alessio AM, Parisi MT (2020) Ovarian torsion: developing a machine-learned algorithm for diagnosis. Pediatr Radiol 50:706–714PubMedCrossRef
55.
go back to reference Shan H, Padole A, Homayounieh F et al (2019) Competitive performance of a modularized deep neural network compared to commercial algorithms for low-dose CT image reconstruction. Nat Mach Intell 1:269–276PubMedCrossRefPubMedCentral Shan H, Padole A, Homayounieh F et al (2019) Competitive performance of a modularized deep neural network compared to commercial algorithms for low-dose CT image reconstruction. Nat Mach Intell 1:269–276PubMedCrossRefPubMedCentral
56.
go back to reference Akagi M, Nakamura Y, Higaki T et al (2019) Deep learning reconstruction improves image quality of abdominal ultra-high-resolution CT. Eur Radiol 29:6163–6171PubMedCrossRef Akagi M, Nakamura Y, Higaki T et al (2019) Deep learning reconstruction improves image quality of abdominal ultra-high-resolution CT. Eur Radiol 29:6163–6171PubMedCrossRef
57.
go back to reference Jensen CT, Liu X, Tamm EP et al (2020) Image quality assessment of abdominal CT by use of new deep learning image reconstruction: initial experience. AJR Am J Roentgenol 215:50–57PubMedCrossRef Jensen CT, Liu X, Tamm EP et al (2020) Image quality assessment of abdominal CT by use of new deep learning image reconstruction: initial experience. AJR Am J Roentgenol 215:50–57PubMedCrossRef
58.
go back to reference Brady SL, Trout AT, Somasundaram E et al (2020) Improving image quality and reducing radiation dose for pediatric CT using deep learning reconstruction. Radiology 298:180–188PubMedCrossRef Brady SL, Trout AT, Somasundaram E et al (2020) Improving image quality and reducing radiation dose for pediatric CT using deep learning reconstruction. Radiology 298:180–188PubMedCrossRef
59.
go back to reference Greffier J, Hamard A, Pereira F et al (2020) Image quality and dose reduction opportunity of deep learning image reconstruction algorithm for CT: a phantom study. Eur Radiol 30:3951–3959PubMedCrossRef Greffier J, Hamard A, Pereira F et al (2020) Image quality and dose reduction opportunity of deep learning image reconstruction algorithm for CT: a phantom study. Eur Radiol 30:3951–3959PubMedCrossRef
60.
go back to reference Shin YJ, Chang W, Ye JC et al (2020) Low-dose abdominal CT using a deep learning-based denoising algorithm: a comparison with CT reconstructed with filtered back projection or iterative reconstruction algorithm. Korean J Radiol 21:356–364PubMedCrossRefPubMedCentral Shin YJ, Chang W, Ye JC et al (2020) Low-dose abdominal CT using a deep learning-based denoising algorithm: a comparison with CT reconstructed with filtered back projection or iterative reconstruction algorithm. Korean J Radiol 21:356–364PubMedCrossRefPubMedCentral
61.
go back to reference Brady SL, Moore BM, Yee BS, Kaufman RA (2014) Pediatric CT: implementation of ASIR for substantial radiation dose reduction while maintaining pre-ASIR image noise. Radiology 270:223–231PubMedCrossRef Brady SL, Moore BM, Yee BS, Kaufman RA (2014) Pediatric CT: implementation of ASIR for substantial radiation dose reduction while maintaining pre-ASIR image noise. Radiology 270:223–231PubMedCrossRef
62.
go back to reference Khawaja RD, Singh S, Otrakji A et al (2015) Dose reduction in pediatric abdominal CT: use of iterative reconstruction techniques across different CT platforms. Pediatr Radiol 45:1046–1055PubMedCrossRef Khawaja RD, Singh S, Otrakji A et al (2015) Dose reduction in pediatric abdominal CT: use of iterative reconstruction techniques across different CT platforms. Pediatr Radiol 45:1046–1055PubMedCrossRef
63.
go back to reference Smith EA, Dillman JR, Goodsitt MM et al (2014) Model-based iterative reconstruction: effect on patient radiation dose and image quality in pediatric body CT. Radiology 270:526–534PubMedCrossRefPubMedCentral Smith EA, Dillman JR, Goodsitt MM et al (2014) Model-based iterative reconstruction: effect on patient radiation dose and image quality in pediatric body CT. Radiology 270:526–534PubMedCrossRefPubMedCentral
64.
go back to reference Mileto A, Guimaraes LS, McCollough CH et al (2019) State of the art in abdominal CT: the limits of iterative reconstruction algorithms. Radiology 293:491–503PubMedCrossRef Mileto A, Guimaraes LS, McCollough CH et al (2019) State of the art in abdominal CT: the limits of iterative reconstruction algorithms. Radiology 293:491–503PubMedCrossRef
65.
go back to reference Chen F, Taviani V, Malkiel I et al (2018) Variable-density single-shot fast spin-echo MRI with deep learning reconstruction by using variational networks. Radiology 289:366–373PubMedCrossRef Chen F, Taviani V, Malkiel I et al (2018) Variable-density single-shot fast spin-echo MRI with deep learning reconstruction by using variational networks. Radiology 289:366–373PubMedCrossRef
66.
go back to reference Akçakaya M, Moeller S, Weingärtner S, Uğurbil K (2019) Scan-specific robust artificial-neural-networks for k-space interpolation (RAKI) reconstruction: database-free deep learning for fast imaging. Magn Reson Med 81:439–453PubMedCrossRef Akçakaya M, Moeller S, Weingärtner S, Uğurbil K (2019) Scan-specific robust artificial-neural-networks for k-space interpolation (RAKI) reconstruction: database-free deep learning for fast imaging. Magn Reson Med 81:439–453PubMedCrossRef
67.
go back to reference Wang S, Su Z, Ying L et al (2016) Accelerating magnetic resonance imaging via deep learning. Proc IEEE Int Symp Biomed Imaging 2016:514–517PubMedPubMedCentral Wang S, Su Z, Ying L et al (2016) Accelerating magnetic resonance imaging via deep learning. Proc IEEE Int Symp Biomed Imaging 2016:514–517PubMedPubMedCentral
Metadata
Title
Current and emerging artificial intelligence applications for pediatric abdominal imaging
Authors
Jonathan R. Dillman
Elan Somasundaram
Samuel L. Brady
Lili He
Publication date
12-04-2021
Publisher
Springer Berlin Heidelberg
Published in
Pediatric Radiology / Issue 11/2022
Print ISSN: 0301-0449
Electronic ISSN: 1432-1998
DOI
https://doi.org/10.1007/s00247-021-05057-0

Other articles of this Issue 11/2022

Pediatric Radiology 11/2022 Go to the issue