Skip to main content
Top
Published in: Pediatric Radiology 11/2022

Open Access 22-12-2021 | Magnetic Resonance Imaging | Artificial intelligence in pediatric radiology

The role of artificial intelligence in paediatric cardiovascular magnetic resonance imaging

Author: Andrew M. Taylor

Published in: Pediatric Radiology | Issue 11/2022

Login to get access

Abstract

Artificial intelligence (AI) offers the potential to change many aspects of paediatric cardiac imaging. At present, there are only a few clinically validated examples of AI applications in this field. This review focuses on the use of AI in paediatric cardiovascular MRI, using examples from paediatric cardiovascular MRI, adult cardiovascular MRI and other radiologic experience.
Literature
1.
go back to reference Secinaro S, Calandra D, Secinaro A et al (2021) The role of artificial intelligence in healthcare: a structured literature review. BMC Med Inform Decis Mak 21:125CrossRef Secinaro S, Calandra D, Secinaro A et al (2021) The role of artificial intelligence in healthcare: a structured literature review. BMC Med Inform Decis Mak 21:125CrossRef
2.
go back to reference Chang A (2020) Intelligence-based medicine: artificial intelligence and human cognition in clinical medicine and healthcare. Academic Press, London Chang A (2020) Intelligence-based medicine: artificial intelligence and human cognition in clinical medicine and healthcare. Academic Press, London
3.
go back to reference Lacson R, Laroya R, Wang A et al (2018) Integrity of clinical information in computerized order requisitions for diagnostic imaging. J Am Med Inform Assoc 25:1651–1656CrossRef Lacson R, Laroya R, Wang A et al (2018) Integrity of clinical information in computerized order requisitions for diagnostic imaging. J Am Med Inform Assoc 25:1651–1656CrossRef
4.
go back to reference Rousseau JF, Ip IK, Raja AS et al (2019) Can automated retrieval of data from emergency department physician notes enhance the imaging order entry process? Appl Clin Inform 10:189–198CrossRef Rousseau JF, Ip IK, Raja AS et al (2019) Can automated retrieval of data from emergency department physician notes enhance the imaging order entry process? Appl Clin Inform 10:189–198CrossRef
5.
go back to reference Brown AD, Marotta TR (2018) Using machine learning for sequence-level automated MRI protocol selection in neuroradiology. J Am Med Inform Assoc 25:568–571CrossRef Brown AD, Marotta TR (2018) Using machine learning for sequence-level automated MRI protocol selection in neuroradiology. J Am Med Inform Assoc 25:568–571CrossRef
6.
go back to reference Richardson ML, Garwood ER, Lee Y et al (2020) Noninterpretive uses of artificial intelligence in radiology. Acad Radiol 28:1225–1235CrossRef Richardson ML, Garwood ER, Lee Y et al (2020) Noninterpretive uses of artificial intelligence in radiology. Acad Radiol 28:1225–1235CrossRef
7.
go back to reference Harvey HB, Liu C, Ai J et al (2017) Predicting no-shows in radiology using regression modeling of data available in the electronic medical record. J Am Coll Radiol 14:1303–1309CrossRef Harvey HB, Liu C, Ai J et al (2017) Predicting no-shows in radiology using regression modeling of data available in the electronic medical record. J Am Coll Radiol 14:1303–1309CrossRef
8.
go back to reference Lacson R, Wang A, Cochon L et al (2020) Factors associated with optimal follow-up in women with BI-RADS 3 breast findings. J Am Coll Radiol 17:469–474CrossRef Lacson R, Wang A, Cochon L et al (2020) Factors associated with optimal follow-up in women with BI-RADS 3 breast findings. J Am Coll Radiol 17:469–474CrossRef
9.
go back to reference Curtis C, Liu C, Bollerman TJ, Pianykh OS (2018) Machine learning for predicting patient wait times and appointment delays. J Am Coll Radiol 15:1310–1316CrossRef Curtis C, Liu C, Bollerman TJ, Pianykh OS (2018) Machine learning for predicting patient wait times and appointment delays. J Am Coll Radiol 15:1310–1316CrossRef
10.
go back to reference Montalt-Tordera J, Muthurangu V, Hauptmann A, Steeden JA (2021) Machine learning in magnetic resonance imaging: image reconstruction. Phys Med 83:79–87CrossRef Montalt-Tordera J, Muthurangu V, Hauptmann A, Steeden JA (2021) Machine learning in magnetic resonance imaging: image reconstruction. Phys Med 83:79–87CrossRef
11.
go back to reference Hauptmann A, Arridge S, Lucka F et al (2019) Real-time cardiovascular MR with spatio-temporal artifact suppression using deep learning — proof of concept in congenital heart disease. Magn Reson Med 81:1143–1156CrossRef Hauptmann A, Arridge S, Lucka F et al (2019) Real-time cardiovascular MR with spatio-temporal artifact suppression using deep learning — proof of concept in congenital heart disease. Magn Reson Med 81:1143–1156CrossRef
12.
go back to reference Steeden JA, Quail M, Gotschy A et al (2020) Rapid whole-heart CMR with single volume super-resolution. J Cardiovasc Magn Reson 22:56CrossRef Steeden JA, Quail M, Gotschy A et al (2020) Rapid whole-heart CMR with single volume super-resolution. J Cardiovasc Magn Reson 22:56CrossRef
13.
go back to reference Vishnevskiy V, Walheim J, Kozerke S (2020) Deep variational network for rapid 4D flow MRI reconstruction. Nat Mach 2:228–235CrossRef Vishnevskiy V, Walheim J, Kozerke S (2020) Deep variational network for rapid 4D flow MRI reconstruction. Nat Mach 2:228–235CrossRef
14.
go back to reference El-Rewaidy H, Neisius U, Mancio J et al (2020) Deep complex convolutional network for fast reconstruction of 3D late gadolinium enhancement cardiac MRI. NMR Biomed 33:e4312 El-Rewaidy H, Neisius U, Mancio J et al (2020) Deep complex convolutional network for fast reconstruction of 3D late gadolinium enhancement cardiac MRI. NMR Biomed 33:e4312
15.
go back to reference Lu X, Jolly MP, Georgescu B et al (2011) Automatic view planning for cardiac MRI acquisition. Med Image Comput Assist Interv 14:479–486 Lu X, Jolly MP, Georgescu B et al (2011) Automatic view planning for cardiac MRI acquisition. Med Image Comput Assist Interv 14:479–486
16.
go back to reference Zhang J, Gajjala S, Agrawal P et al (2018) Fully automated echocardiogram interpretation in clinical practice. Circulation 138:1623–1635CrossRef Zhang J, Gajjala S, Agrawal P et al (2018) Fully automated echocardiogram interpretation in clinical practice. Circulation 138:1623–1635CrossRef
17.
go back to reference Tao Q, Yan W, Wang Y et al (2019) Deep learning-based method for fully automatic quantification of left ventricle function from cine MR images: a multivendor, multi-center study. Radiology 290:81–88CrossRef Tao Q, Yan W, Wang Y et al (2019) Deep learning-based method for fully automatic quantification of left ventricle function from cine MR images: a multivendor, multi-center study. Radiology 290:81–88CrossRef
18.
go back to reference Bai W, Sinclair M, Tarroni G et al (2018) Automated cardiovascular magnetic resonance image analysis with fully convolutional networks. J Cardiovasc Magn Reson 20:65CrossRef Bai W, Sinclair M, Tarroni G et al (2018) Automated cardiovascular magnetic resonance image analysis with fully convolutional networks. J Cardiovasc Magn Reson 20:65CrossRef
19.
go back to reference Benjamin Böttcher B, Beller E et al (2020) Fully automated quantification of left ventricular volumes and function in cardiac MRI: clinical evaluation of a deep learning-based algorithm. Int J Cardiovasc Imaging 36:2239–2247CrossRef Benjamin Böttcher B, Beller E et al (2020) Fully automated quantification of left ventricular volumes and function in cardiac MRI: clinical evaluation of a deep learning-based algorithm. Int J Cardiovasc Imaging 36:2239–2247CrossRef
20.
go back to reference Ruijsink B, Puyol-Antón E, Oksuz I et al (2020) Fully automated, quality-controlled cardiac analysis from CMR: validation and large-scale application to characterize cardiac function. JACC Cardiovasc Imaging 13:684–695CrossRef Ruijsink B, Puyol-Antón E, Oksuz I et al (2020) Fully automated, quality-controlled cardiac analysis from CMR: validation and large-scale application to characterize cardiac function. JACC Cardiovasc Imaging 13:684–695CrossRef
21.
go back to reference Karimi-Bidhendi S, Arafati A, Cheng AL et al (2020) Fully-automated deep-learning segmentation of pediatric cardiovascular magnetic resonance of patients with complex congenital heart diseases. J Cardiovasc Magn Reson 22:80CrossRef Karimi-Bidhendi S, Arafati A, Cheng AL et al (2020) Fully-automated deep-learning segmentation of pediatric cardiovascular magnetic resonance of patients with complex congenital heart diseases. J Cardiovasc Magn Reson 22:80CrossRef
22.
go back to reference Bratt A, Kim J, Pollie M et al (2019) Machine learning derived segmentation of phase velocity encoded cardiovascular magnetic resonance for fully automated aortic flow quantification. J Cardiovasc Magn Reson 21:1CrossRef Bratt A, Kim J, Pollie M et al (2019) Machine learning derived segmentation of phase velocity encoded cardiovascular magnetic resonance for fully automated aortic flow quantification. J Cardiovasc Magn Reson 21:1CrossRef
23.
go back to reference Karim R, Bhagirath P, Claus P et al (2016) Evaluation of state-of-the-art segmentation algorithms for left ventricle infarct from late gadolinium enhancement MR images. Med Image Anal 30:95–107CrossRef Karim R, Bhagirath P, Claus P et al (2016) Evaluation of state-of-the-art segmentation algorithms for left ventricle infarct from late gadolinium enhancement MR images. Med Image Anal 30:95–107CrossRef
24.
go back to reference Fahmy AS, Rausch J, Neisius U et al (2018) Automated cardiac MR scar quantification in hypertrophic cardiomyopathy using deep convolutional neural networks. JACC Cardiovasc Imaging 11:1917–1918CrossRef Fahmy AS, Rausch J, Neisius U et al (2018) Automated cardiac MR scar quantification in hypertrophic cardiomyopathy using deep convolutional neural networks. JACC Cardiovasc Imaging 11:1917–1918CrossRef
25.
go back to reference Cavallo AU, Liu Y, Patterson A et al (2019) CMR fingerprinting for myocardial T1, T2, and ECV quantification in patients with nonischemic cardiomyopathy. JACC Cardiovasc Imaging 12:1584–1585CrossRef Cavallo AU, Liu Y, Patterson A et al (2019) CMR fingerprinting for myocardial T1, T2, and ECV quantification in patients with nonischemic cardiomyopathy. JACC Cardiovasc Imaging 12:1584–1585CrossRef
26.
go back to reference Zuluaga MA, Burgos N, Mendelson AF et al (2015) Voxelwise atlas rating for computer assisted diagnosis: application to congenital heart diseases of the great arteries. Med Image Anal 26:185–194CrossRef Zuluaga MA, Burgos N, Mendelson AF et al (2015) Voxelwise atlas rating for computer assisted diagnosis: application to congenital heart diseases of the great arteries. Med Image Anal 26:185–194CrossRef
27.
go back to reference Martini N, Aimo A, Barison A et al (2020) Deep learning to diagnose cardiac amyloidosis from cardiovascular magnetic resonance. J Cardiovasc Magn Reson 22:84CrossRef Martini N, Aimo A, Barison A et al (2020) Deep learning to diagnose cardiac amyloidosis from cardiovascular magnetic resonance. J Cardiovasc Magn Reson 22:84CrossRef
28.
go back to reference Nath C, Albaghdadi MS, Jonnalagadda SR (2016) A natural language processing tool for large-scale data extraction from echocardiography reports. PLoS One 11:e0153749 Nath C, Albaghdadi MS, Jonnalagadda SR (2016) A natural language processing tool for large-scale data extraction from echocardiography reports. PLoS One 11:e0153749
29.
go back to reference Carrodeguas E, Lacson R, Swanson W, Khorasani R (2019) Use of machine learning to identify follow-up recommendations in radiology reports. J Am Coll Radiol 16:336–343CrossRef Carrodeguas E, Lacson R, Swanson W, Khorasani R (2019) Use of machine learning to identify follow-up recommendations in radiology reports. J Am Coll Radiol 16:336–343CrossRef
30.
go back to reference Dawes TJW, de Marvao A, Shi W et al (2017) Machine learning of three-dimensional right ventricular motion enables outcome prediction in pulmonary hypertension: a cardiac MR imaging study. Radiology 283:381–390CrossRef Dawes TJW, de Marvao A, Shi W et al (2017) Machine learning of three-dimensional right ventricular motion enables outcome prediction in pulmonary hypertension: a cardiac MR imaging study. Radiology 283:381–390CrossRef
31.
go back to reference Diller GP, Orwat S, Vahle J et al (2020) Prediction of prognosis in patients with tetralogy of Fallot based on deep learning imaging analysis. Heart 106:1007–1014CrossRef Diller GP, Orwat S, Vahle J et al (2020) Prediction of prognosis in patients with tetralogy of Fallot based on deep learning imaging analysis. Heart 106:1007–1014CrossRef
32.
go back to reference Xu B, Kocyigit D, Grimm R et al (2020) Applications of artificial intelligence in multimodality cardiovascular imaging: a state-of-the-art review. Prog Cardiovasc Dis 63:367–376CrossRef Xu B, Kocyigit D, Grimm R et al (2020) Applications of artificial intelligence in multimodality cardiovascular imaging: a state-of-the-art review. Prog Cardiovasc Dis 63:367–376CrossRef
33.
go back to reference Aquila I, Gonzalez A, Fernandez-Golfin C et al (2016) Reproducibility of a novel echocardiographic 3D automated software for the assessment of mitral valve anatomy. Cardiovasc Ultrasound 14:17CrossRef Aquila I, Gonzalez A, Fernandez-Golfin C et al (2016) Reproducibility of a novel echocardiographic 3D automated software for the assessment of mitral valve anatomy. Cardiovasc Ultrasound 14:17CrossRef
34.
go back to reference Prihadi EA, vanRosendael PJ, Vollema EM et al (2018) Feasibility, accuracy, and reproducibility of aortic annular and root sizing for transcatheter aortic valve replacement using novel automated three-dimensional echocardiographic software: comparison with multi-detector row computed tomography. J Am Soc Echocardiogr 31:505–514CrossRef Prihadi EA, vanRosendael PJ, Vollema EM et al (2018) Feasibility, accuracy, and reproducibility of aortic annular and root sizing for transcatheter aortic valve replacement using novel automated three-dimensional echocardiographic software: comparison with multi-detector row computed tomography. J Am Soc Echocardiogr 31:505–514CrossRef
35.
go back to reference Mahmoud A, Bansal M, Sengupta PP (2017) New cardiac imaging algorithms to diagnose constrictive pericarditis versus restrictive cardiomyopathy. Curr Cardiol Rep 19:43CrossRef Mahmoud A, Bansal M, Sengupta PP (2017) New cardiac imaging algorithms to diagnose constrictive pericarditis versus restrictive cardiomyopathy. Curr Cardiol Rep 19:43CrossRef
36.
go back to reference Narula S, Shameer K, Salem Omar AM et al (2016) Machine-learning algorithms to automate morphological and functional assessments in 2D echocardiography. J Am Coll Cardiol 68:2287–2295CrossRef Narula S, Shameer K, Salem Omar AM et al (2016) Machine-learning algorithms to automate morphological and functional assessments in 2D echocardiography. J Am Coll Cardiol 68:2287–2295CrossRef
37.
go back to reference Motwani M, Dey D, Berman DS et al (2017) Machine learning for prediction of all-cause mortality in patients with suspected coronary artery disease: a 5-year multicentre prospective registry analysis. Eur Heart J 38:500–507PubMed Motwani M, Dey D, Berman DS et al (2017) Machine learning for prediction of all-cause mortality in patients with suspected coronary artery disease: a 5-year multicentre prospective registry analysis. Eur Heart J 38:500–507PubMed
38.
go back to reference Taylor CA, Fonte TA, Min JK (2013) Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reserve: scientific basis. J Am Coll Cardiol 61:2233–2241CrossRef Taylor CA, Fonte TA, Min JK (2013) Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reserve: scientific basis. J Am Coll Cardiol 61:2233–2241CrossRef
Metadata
Title
The role of artificial intelligence in paediatric cardiovascular magnetic resonance imaging
Author
Andrew M. Taylor
Publication date
22-12-2021
Publisher
Springer Berlin Heidelberg
Published in
Pediatric Radiology / Issue 11/2022
Print ISSN: 0301-0449
Electronic ISSN: 1432-1998
DOI
https://doi.org/10.1007/s00247-021-05218-1

Other articles of this Issue 11/2022

Pediatric Radiology 11/2022 Go to the issue