Skip to main content
Top
Published in: Osteoporosis International 12/2017

01-12-2017 | Original Article

Strontium ranelate stimulates trabecular bone formation in a rat tibial bone defect healing process

Authors: C. Lavet, G. Mabilleau, D. Chappard, R. Rizzoli, P. Ammann

Published in: Osteoporosis International | Issue 12/2017

Login to get access

Abstract

Summary

Strontium ranelate treatment is known to prevent fractures. Here, we showed that strontium ranelate treatment enhances bone healing and affects bone cellular activities differently in intact and healing bone compartments: Bone formation was increased only in healing compartment, while resorption was reduced in healing and normal bone compartments.

Introduction

Systemic administration of strontium ranelate (SrRan) accelerates the healing of bone defects; however, controversy about its action on bone formation remains. We hypothesize that SrRan could affect bone formation differently in normal mature bone or in the bone healing process.

Methods

Proximal tibia bone defects were created in 6-month-old female rats, which orally received SrRan (625 mg/kg/day, 5/7 days) or vehicle (control groups) for 4, 8, or 12 weeks. Bone samples were analyzed by micro-computed tomography and histomorphometry in various regions, i.e., metaphyseal 2nd spongiosa, a region close to the defect, within the healing defect and in cortical defect bridging region. Additionally, we evaluated the quality of the new bone formed by quantitative backscattered electron imaging and by red picosirius histology.

Results

Healing of the bone defect was characterized by a rapid onset of bone formation without cartilage formation. Cortical defect bridging was detected earlier compared with healing of trabecular defect. In the healing zone, SrRan stimulated bone formation early and laterly decreased bone resorption improving the healing of the cortical and trabecular compartment without deleterious effects on bone quality. By contrast, in the metaphyseal compartment, SrRan only decreased bone resorption from week 8 without any change in bone formation, leading to little progressive increase of the metaphyseal trabecular bone volume.

Conclusions

SrRan affects bone formation differently in normal mature bone or in the bone healing process. Despite this selective action, this led to similar increased bone volume in both compartments without deleterious effects on the newly bone-formed quality.
Appendix
Available only for authorised users
Literature
1.
go back to reference Curtis R, Goldhahn J, Schwyn R, Regazzoni P, Suhm N (2005) Fixation principles in metaphyseal bone—a patent based review. Osteoporos Int 16(Suppl 2):S54–S64CrossRefPubMed Curtis R, Goldhahn J, Schwyn R, Regazzoni P, Suhm N (2005) Fixation principles in metaphyseal bone—a patent based review. Osteoporos Int 16(Suppl 2):S54–S64CrossRefPubMed
2.
go back to reference Claes L, Veeser A, Gockelmann M, Simon U, Ignatius A (2009) A novel model to study metaphyseal bone healing under defined biomechanical conditions. Arch Orthop Trauma Surg 129:923–928CrossRefPubMed Claes L, Veeser A, Gockelmann M, Simon U, Ignatius A (2009) A novel model to study metaphyseal bone healing under defined biomechanical conditions. Arch Orthop Trauma Surg 129:923–928CrossRefPubMed
3.
go back to reference Shapiro F (2008) Bone development and its relation to fracture repair. The role of mesenchymal osteoblasts and surface osteoblasts. Eur Cells Mater 15:53–76CrossRef Shapiro F (2008) Bone development and its relation to fracture repair. The role of mesenchymal osteoblasts and surface osteoblasts. Eur Cells Mater 15:53–76CrossRef
5.
go back to reference Goldhahn J, Feron JM, Kanis J, Papapoulos S, Reginster JY, Rizzoli R, Dere W, Mitlak B, Tsouderos Y, Boonen S (2012) Implications for fracture healing of current and new osteoporosis treatments: an ESCEO consensus paper. Calcif Tissue Int 90:343–353CrossRefPubMed Goldhahn J, Feron JM, Kanis J, Papapoulos S, Reginster JY, Rizzoli R, Dere W, Mitlak B, Tsouderos Y, Boonen S (2012) Implications for fracture healing of current and new osteoporosis treatments: an ESCEO consensus paper. Calcif Tissue Int 90:343–353CrossRefPubMed
6.
go back to reference Zacchetti G, Dayer R, Rizzoli R, Ammann P (2014) Systemic treatment with strontium ranelate accelerates the filling of a bone defect and improves the material level properties of the healing bone. Biomed Res Int 2014:549785CrossRefPubMedPubMedCentral Zacchetti G, Dayer R, Rizzoli R, Ammann P (2014) Systemic treatment with strontium ranelate accelerates the filling of a bone defect and improves the material level properties of the healing bone. Biomed Res Int 2014:549785CrossRefPubMedPubMedCentral
7.
go back to reference Tarantino U, Celi M, Saturnino L, Scialdoni A, Cerocchi I (2010) Strontium ranelate and bone healing: report of two cases. Clinical Cases Miner Bone Metab : Off Journal Ital Soc Osteoporos Miner Metab Skelet Dis 7:65–68 Tarantino U, Celi M, Saturnino L, Scialdoni A, Cerocchi I (2010) Strontium ranelate and bone healing: report of two cases. Clinical Cases Miner Bone Metab : Off Journal Ital Soc Osteoporos Miner Metab Skelet Dis 7:65–68
8.
go back to reference Alegre DN, Ribeiro C, Sousa C, Correia J, Silva L, de Almeida L (2012) Possible benefits of strontium ranelate in complicated long bone fractures. Rheumatol Int 32:439–443CrossRefPubMed Alegre DN, Ribeiro C, Sousa C, Correia J, Silva L, de Almeida L (2012) Possible benefits of strontium ranelate in complicated long bone fractures. Rheumatol Int 32:439–443CrossRefPubMed
9.
go back to reference Ozturan KE, Demir B, Yucel I, Cakici H, Yilmaz F, Haberal A (2011) Effect of strontium ranelate on fracture healing in the osteoporotic rats. J Orthop Res : Off Publ Orthop Res Soc 29:138–142CrossRef Ozturan KE, Demir B, Yucel I, Cakici H, Yilmaz F, Haberal A (2011) Effect of strontium ranelate on fracture healing in the osteoporotic rats. J Orthop Res : Off Publ Orthop Res Soc 29:138–142CrossRef
10.
go back to reference Li YF, Luo E, Feng G, Zhu SS, Li JH, Hu J (2010) Systemic treatment with strontium ranelate promotes tibial fracture healing in ovariectomized rats. Osteoporos Int : J Established Result Coop Eur Found Osteoporos Natl Osteoporos Found USA 21:1889–1897CrossRef Li YF, Luo E, Feng G, Zhu SS, Li JH, Hu J (2010) Systemic treatment with strontium ranelate promotes tibial fracture healing in ovariectomized rats. Osteoporos Int : J Established Result Coop Eur Found Osteoporos Natl Osteoporos Found USA 21:1889–1897CrossRef
11.
go back to reference Habermann B, Kafchitsas K, Olender G, Augat P, Kurth A (2010) Strontium ranelate enhances callus strength more than PTH 1-34 in an osteoporotic rat model of fracture healing. Calcif Tissue Int 86:82–89CrossRefPubMed Habermann B, Kafchitsas K, Olender G, Augat P, Kurth A (2010) Strontium ranelate enhances callus strength more than PTH 1-34 in an osteoporotic rat model of fracture healing. Calcif Tissue Int 86:82–89CrossRefPubMed
12.
go back to reference Wang J, Zhu X, Liu L, Shi X, Yin L, Zhang Y, Li X, Wang Z, Liu G (2013) Effects of strontium on collagen content and expression of related genes in rat chondrocytes cultured in vitro. Biol Trace Elem Res 153:212–219CrossRefPubMed Wang J, Zhu X, Liu L, Shi X, Yin L, Zhang Y, Li X, Wang Z, Liu G (2013) Effects of strontium on collagen content and expression of related genes in rat chondrocytes cultured in vitro. Biol Trace Elem Res 153:212–219CrossRefPubMed
13.
go back to reference Henrotin Y, Labasse A, Zheng SX, Galais P, Tsouderos Y, Crielaard JM, Reginster JY (2001) Strontium ranelate increases cartilage matrix formation. J Bone Miner Res : Off J Am Soc Bone Miner Res 16:299–308CrossRef Henrotin Y, Labasse A, Zheng SX, Galais P, Tsouderos Y, Crielaard JM, Reginster JY (2001) Strontium ranelate increases cartilage matrix formation. J Bone Miner Res : Off J Am Soc Bone Miner Res 16:299–308CrossRef
14.
go back to reference Bain SD, Jerome C, Shen V, Dupin-Roger I, Ammann P (2009) Strontium ranelate improves bone strength in ovariectomized rat by positively influencing bone resistance determinants. Osteoporos Int : J Established Result Coop Eur Found Osteoporos Natl Osteoporos Found USA 20:1417–1428CrossRef Bain SD, Jerome C, Shen V, Dupin-Roger I, Ammann P (2009) Strontium ranelate improves bone strength in ovariectomized rat by positively influencing bone resistance determinants. Osteoporos Int : J Established Result Coop Eur Found Osteoporos Natl Osteoporos Found USA 20:1417–1428CrossRef
15.
go back to reference Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR (1987) Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 2:595–610CrossRefPubMed Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR (1987) Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 2:595–610CrossRefPubMed
16.
go back to reference Junqueira LC, Bignolas G, Brentani RR (1979) Picrosirius staining plus polarization microscopy, a specific method for collagen detection in tissue sections. Histochem J 11:447–455CrossRefPubMed Junqueira LC, Bignolas G, Brentani RR (1979) Picrosirius staining plus polarization microscopy, a specific method for collagen detection in tissue sections. Histochem J 11:447–455CrossRefPubMed
17.
go back to reference Dayan D, Hiss Y, Hirshberg A, Bubis JJ, Wolman M (1989) Are the polarization colors of picrosirius red-stained collagen determined only by the diameter of the fibers? Histochemistry 93:27–29CrossRefPubMed Dayan D, Hiss Y, Hirshberg A, Bubis JJ, Wolman M (1989) Are the polarization colors of picrosirius red-stained collagen determined only by the diameter of the fibers? Histochemistry 93:27–29CrossRefPubMed
18.
go back to reference Roschger P, Fratzl P, Eschberger J, Klaushofer K (1998) Validation of quantitative backscattered electron imaging for the measurement of mineral density distribution in human bone biopsies. Bone 23:319–326CrossRefPubMed Roschger P, Fratzl P, Eschberger J, Klaushofer K (1998) Validation of quantitative backscattered electron imaging for the measurement of mineral density distribution in human bone biopsies. Bone 23:319–326CrossRefPubMed
19.
go back to reference Gaudin-Audrain C, Irwin N, Mansur S, Flatt PR, Thorens B, Basle M, Chappard D, Mabilleau G (2013) Glucose-dependent insulinotropic polypeptide receptor deficiency leads to modifications of trabecular bone volume and quality in mice. Bone 53:221–230CrossRefPubMed Gaudin-Audrain C, Irwin N, Mansur S, Flatt PR, Thorens B, Basle M, Chappard D, Mabilleau G (2013) Glucose-dependent insulinotropic polypeptide receptor deficiency leads to modifications of trabecular bone volume and quality in mice. Bone 53:221–230CrossRefPubMed
20.
go back to reference Beuvelot J, Mauras Y, Mabilleau G, Marchand-Libouban H, Chappard D (2013) Adsorption and release of strontium from hydroxyapatite crystals developed in simulated body fluid (SBF) on poly (2-hydroxyethyl) methacrylate substrates. Dig J Nanomater Biostruct 207–217 Beuvelot J, Mauras Y, Mabilleau G, Marchand-Libouban H, Chappard D (2013) Adsorption and release of strontium from hydroxyapatite crystals developed in simulated body fluid (SBF) on poly (2-hydroxyethyl) methacrylate substrates. Dig J Nanomater Biostruct 207–217
21.
go back to reference Lloyd GE (1987) Atomic number and crystallographic contrast images with SEM: a review of backscattered electron techniques. Mineralog Mag 51:3–19CrossRef Lloyd GE (1987) Atomic number and crystallographic contrast images with SEM: a review of backscattered electron techniques. Mineralog Mag 51:3–19CrossRef
22.
go back to reference Lavet C, Martin A, Linossier MT et al (2016) Fat and sucrose intake induces obesity-related bone metabolism disturbances: kinetic and reversibility studies in growing and adult rats. J Bone Miner Res : Off J Am Soc Bone Miner Res 31:98–115CrossRef Lavet C, Martin A, Linossier MT et al (2016) Fat and sucrose intake induces obesity-related bone metabolism disturbances: kinetic and reversibility studies in growing and adult rats. J Bone Miner Res : Off J Am Soc Bone Miner Res 31:98–115CrossRef
23.
go back to reference Hadjiargyrou M, Lombardo F, Zhao S, Ahrens W, Joo J, Ahn H, Jurman M, White DW, Rubin CT (2002) Transcriptional profiling of bone regeneration. Insight into the molecular complexity of wound repair. J Biol Chem 277:30177–30182CrossRefPubMed Hadjiargyrou M, Lombardo F, Zhao S, Ahrens W, Joo J, Ahn H, Jurman M, White DW, Rubin CT (2002) Transcriptional profiling of bone regeneration. Insight into the molecular complexity of wound repair. J Biol Chem 277:30177–30182CrossRefPubMed
24.
go back to reference Schmidmaier G, Wildemann B, Melis B, Krummrey G, Einhorn A, Haas NP, Raschke M (2004) Development and characterization of a standard closed tibial fracture model in the rat. Eur J Trauma 30:35–42CrossRef Schmidmaier G, Wildemann B, Melis B, Krummrey G, Einhorn A, Haas NP, Raschke M (2004) Development and characterization of a standard closed tibial fracture model in the rat. Eur J Trauma 30:35–42CrossRef
25.
go back to reference Fisher M, Hyzy S, Guldberg RE, Schwartz Z, Boyan BD (2010) Regeneration of bone marrow after tibial ablation in immunocompromised rats is age dependent. Bone 46:396–401CrossRefPubMed Fisher M, Hyzy S, Guldberg RE, Schwartz Z, Boyan BD (2010) Regeneration of bone marrow after tibial ablation in immunocompromised rats is age dependent. Bone 46:396–401CrossRefPubMed
26.
go back to reference Monfoulet L, Rabier B, Chassande O, Fricain JC (2010) Drilled hole defects in mouse femur as models of intramembranous cortical and cancellous bone regeneration. Calcif Tissue Int 86:72–81CrossRefPubMed Monfoulet L, Rabier B, Chassande O, Fricain JC (2010) Drilled hole defects in mouse femur as models of intramembranous cortical and cancellous bone regeneration. Calcif Tissue Int 86:72–81CrossRefPubMed
27.
go back to reference Raisz LG, Seeman E (2001) Causes of age-related bone loss and bone fragility: an alternative view. J Bone Miner Res : Off J Am Soc Bone Miner Res 16:1948–1952CrossRef Raisz LG, Seeman E (2001) Causes of age-related bone loss and bone fragility: an alternative view. J Bone Miner Res : Off J Am Soc Bone Miner Res 16:1948–1952CrossRef
28.
go back to reference McNulty MA, Virdi AS, Christopherson KW, Sena K, Frank RR, Sumner DR (2012) Adult stem cell mobilization enhances intramembranous bone regeneration: a pilot study. Clin Orthop Relat Res 470:2503–2512CrossRefPubMedPubMedCentral McNulty MA, Virdi AS, Christopherson KW, Sena K, Frank RR, Sumner DR (2012) Adult stem cell mobilization enhances intramembranous bone regeneration: a pilot study. Clin Orthop Relat Res 470:2503–2512CrossRefPubMedPubMedCentral
29.
go back to reference Wise JK, Sena K, Vranizan K, Pollock JF, Healy KE, Hughes WF, Sumner DR, Virdi AS (2010) Temporal gene expression profiling during rat femoral marrow ablation-induced intramembranous bone regeneration. PloS one:5 Wise JK, Sena K, Vranizan K, Pollock JF, Healy KE, Hughes WF, Sumner DR, Virdi AS (2010) Temporal gene expression profiling during rat femoral marrow ablation-induced intramembranous bone regeneration. PloS one:5
30.
go back to reference Chavassieux P, Meunier PJ, Roux JP, Portero-Muzy N, Pierre M, Chapurlat R (2014) Bone histomorphometry of transiliac paired bone biopsies after 6 or 12 months of treatment with oral strontium ranelate in 387 osteoporotic women: randomized comparison to alendronate. J Bone Miner Res : Off J Am Soc Bone Miner Res 29:618–628CrossRef Chavassieux P, Meunier PJ, Roux JP, Portero-Muzy N, Pierre M, Chapurlat R (2014) Bone histomorphometry of transiliac paired bone biopsies after 6 or 12 months of treatment with oral strontium ranelate in 387 osteoporotic women: randomized comparison to alendronate. J Bone Miner Res : Off J Am Soc Bone Miner Res 29:618–628CrossRef
31.
go back to reference Recker RR, Marin F, Ish-Shalom S et al (2009) Comparative effects of teriparatide and strontium ranelate on bone biopsies and biochemical markers of bone turnover in postmenopausal women with osteoporosis. J Bone Miner Res : Off J Am Soc Bone Miner Res 24:1358–1368CrossRef Recker RR, Marin F, Ish-Shalom S et al (2009) Comparative effects of teriparatide and strontium ranelate on bone biopsies and biochemical markers of bone turnover in postmenopausal women with osteoporosis. J Bone Miner Res : Off J Am Soc Bone Miner Res 24:1358–1368CrossRef
32.
go back to reference Fournier C, Perrier A, Thomas M, Laroche N, Dumas V, Rattner A, Vico L, Guignandon A (2012) Reduction by strontium of the bone marrow adiposity in mice and repression of the adipogenic commitment of multipotent C3H10T1/2 cells. Bone 50:499–509CrossRefPubMed Fournier C, Perrier A, Thomas M, Laroche N, Dumas V, Rattner A, Vico L, Guignandon A (2012) Reduction by strontium of the bone marrow adiposity in mice and repression of the adipogenic commitment of multipotent C3H10T1/2 cells. Bone 50:499–509CrossRefPubMed
33.
go back to reference Peng S, Liu XS, Wang T, Li Z, Zhou G, Luk KD, Guo XE, Lu WW (2010) In vivo anabolic effect of strontium on trabecular bone was associated with increased osteoblastogenesis of bone marrow stromal cells. J Orthop Res 28:1208–1214CrossRefPubMed Peng S, Liu XS, Wang T, Li Z, Zhou G, Luk KD, Guo XE, Lu WW (2010) In vivo anabolic effect of strontium on trabecular bone was associated with increased osteoblastogenesis of bone marrow stromal cells. J Orthop Res 28:1208–1214CrossRefPubMed
34.
go back to reference Komrakova M, Weidemann A, Dullin C, Ebert J, Tezval M, Stuermer KM, Sehmisch S (2015) The impact of strontium ranelate on metaphyseal bone healing in ovariectomized rats. Calcif Tissue Int Komrakova M, Weidemann A, Dullin C, Ebert J, Tezval M, Stuermer KM, Sehmisch S (2015) The impact of strontium ranelate on metaphyseal bone healing in ovariectomized rats. Calcif Tissue Int
35.
go back to reference Kates SL, Ackert-Bicknell CL (2016) How do bisphosphonates affect fracture healing? Injury Suppl 1:S65–8 Kates SL, Ackert-Bicknell CL (2016) How do bisphosphonates affect fracture healing? Injury Suppl 1:S65–8
36.
go back to reference Stathopoulos KD, Giannitsioti E, Fragkou AN, Zoubos AB, Papaggelopoulos PJ, Skarantavos G (2014) Strontium ranelate improves delayed healing of osteolytic lesions of the jaw in a man with chronic osteomyelitis. Case report. Clin Cases Miner Bone Metab : Off J Ital Soc Osteoporos Miner Metab Skelet Dis 11:77–81 Stathopoulos KD, Giannitsioti E, Fragkou AN, Zoubos AB, Papaggelopoulos PJ, Skarantavos G (2014) Strontium ranelate improves delayed healing of osteolytic lesions of the jaw in a man with chronic osteomyelitis. Case report. Clin Cases Miner Bone Metab : Off J Ital Soc Osteoporos Miner Metab Skelet Dis 11:77–81
37.
go back to reference Doublier A, Farlay D, Bala Y, Boivin G (2014) Strontium does not affect the intrinsic bone quality at tissue and BSU levels in iliac samples from Macaca fascicularis monkeys. Bone 64:18–24CrossRefPubMed Doublier A, Farlay D, Bala Y, Boivin G (2014) Strontium does not affect the intrinsic bone quality at tissue and BSU levels in iliac samples from Macaca fascicularis monkeys. Bone 64:18–24CrossRefPubMed
38.
go back to reference Boivin G, Farlay D, Khebbab MT, Jaurand X, Delmas PD, Meunier PJ (2010) In osteoporotic women treated with strontium ranelate, strontium is located in bone formed during treatment with a maintained degree of mineralization. Osteoporos Int : J Established Result Coop Eur Found Osteoporos Natl Osteoporos Found USA 21:667–677CrossRef Boivin G, Farlay D, Khebbab MT, Jaurand X, Delmas PD, Meunier PJ (2010) In osteoporotic women treated with strontium ranelate, strontium is located in bone formed during treatment with a maintained degree of mineralization. Osteoporos Int : J Established Result Coop Eur Found Osteoporos Natl Osteoporos Found USA 21:667–677CrossRef
39.
go back to reference Cattani-Lorente M, Rizzoli R, Ammann P (2013) In vitro bone exposure to strontium improves bone material level properties. Acta Biomater 9:7005–7013CrossRefPubMed Cattani-Lorente M, Rizzoli R, Ammann P (2013) In vitro bone exposure to strontium improves bone material level properties. Acta Biomater 9:7005–7013CrossRefPubMed
40.
go back to reference Heiner DE, Meyer MH, Frick SL, Kellam JF, Fiechtl J, Meyer RA Jr (2006) Gene expression during fracture healing in rats comparing intramedullary fixation to plate fixation by DNA microarray. J Orthop Trauma 20:27–38CrossRefPubMed Heiner DE, Meyer MH, Frick SL, Kellam JF, Fiechtl J, Meyer RA Jr (2006) Gene expression during fracture healing in rats comparing intramedullary fixation to plate fixation by DNA microarray. J Orthop Trauma 20:27–38CrossRefPubMed
41.
go back to reference Brennan TC, Rizzoli R, Ammann P (2009) The mode of action of strontium ranelate involves the stimulation of IGF-I production and a decrease in signals for osteoclastogenesis in vivo. Bone 44:S236CrossRef Brennan TC, Rizzoli R, Ammann P (2009) The mode of action of strontium ranelate involves the stimulation of IGF-I production and a decrease in signals for osteoclastogenesis in vivo. Bone 44:S236CrossRef
42.
go back to reference Jiang J, Lichtler AC, Gronowicz GA, Adams DJ, Clark SH, Rosen CJ, Kream BE (2006) Transgenic mice with osteoblast-targeted insulin-like growth factor-I show increased bone remodeling. Bone 39:494–504CrossRefPubMed Jiang J, Lichtler AC, Gronowicz GA, Adams DJ, Clark SH, Rosen CJ, Kream BE (2006) Transgenic mice with osteoblast-targeted insulin-like growth factor-I show increased bone remodeling. Bone 39:494–504CrossRefPubMed
43.
go back to reference Zhang M, Xuan S, Bouxsein ML et al (2002) Osteoblast-specific knockout of the insulin-like growth factor (IGF) receptor gene reveals an essential role of IGF signaling in bone matrix mineralization. J Biol Chem 277:44005–44012CrossRefPubMed Zhang M, Xuan S, Bouxsein ML et al (2002) Osteoblast-specific knockout of the insulin-like growth factor (IGF) receptor gene reveals an essential role of IGF signaling in bone matrix mineralization. J Biol Chem 277:44005–44012CrossRefPubMed
44.
45.
go back to reference Street J, Bao M, deGuzman L et al (2002) Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proc Natl Acad Sci U S A 99:9656–9661CrossRefPubMedPubMedCentral Street J, Bao M, deGuzman L et al (2002) Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proc Natl Acad Sci U S A 99:9656–9661CrossRefPubMedPubMedCentral
46.
go back to reference Tatsuyama K, Maezawa Y, Baba H, Imamura Y, Fukuda M (2000) Expression of various growth factors for cell proliferation and cytodifferentiation during fracture repair of bone. Eur J Histochem : EJH 44:269–278PubMed Tatsuyama K, Maezawa Y, Baba H, Imamura Y, Fukuda M (2000) Expression of various growth factors for cell proliferation and cytodifferentiation during fracture repair of bone. Eur J Histochem : EJH 44:269–278PubMed
47.
go back to reference Gu Z, Xie H, Li L, Zhang X, Liu F, Yu X (2013) Application of strontium-doped calcium polyphosphate scaffold on angiogenesis for bone tissue engineering. J Mater Sci Mater Med 24:1251–1260CrossRefPubMed Gu Z, Xie H, Li L, Zhang X, Liu F, Yu X (2013) Application of strontium-doped calcium polyphosphate scaffold on angiogenesis for bone tissue engineering. J Mater Sci Mater Med 24:1251–1260CrossRefPubMed
48.
go back to reference Liu F, Zhang X, Yu X, Xu Y, Feng T, Ren D (2011) In vitro study in stimulating the secretion of angiogenic growth factors of strontium-doped calcium polyphosphate for bone tissue engineering. J Mater Sci Mater Med 22:683–692CrossRefPubMed Liu F, Zhang X, Yu X, Xu Y, Feng T, Ren D (2011) In vitro study in stimulating the secretion of angiogenic growth factors of strontium-doped calcium polyphosphate for bone tissue engineering. J Mater Sci Mater Med 22:683–692CrossRefPubMed
49.
go back to reference Dahl SG, Allain P, Marie PJ, Mauras Y, Boivin G, Ammann P, Tsouderos Y, Delmas PD, Christiansen C (2001) Incorporation and distribution of strontium in bone. Bone 28:446–453CrossRefPubMed Dahl SG, Allain P, Marie PJ, Mauras Y, Boivin G, Ammann P, Tsouderos Y, Delmas PD, Christiansen C (2001) Incorporation and distribution of strontium in bone. Bone 28:446–453CrossRefPubMed
Metadata
Title
Strontium ranelate stimulates trabecular bone formation in a rat tibial bone defect healing process
Authors
C. Lavet
G. Mabilleau
D. Chappard
R. Rizzoli
P. Ammann
Publication date
01-12-2017
Publisher
Springer London
Published in
Osteoporosis International / Issue 12/2017
Print ISSN: 0937-941X
Electronic ISSN: 1433-2965
DOI
https://doi.org/10.1007/s00198-017-4156-3

Other articles of this Issue 12/2017

Osteoporosis International 12/2017 Go to the issue