Skip to main content
Top
Published in: Diabetologia 3/2016

01-03-2016 | Review

Blood-based signatures in type 1 diabetes

Authors: Susanne M. Cabrera, Yi-Guang Chen, William A. Hagopian, Martin J. Hessner

Published in: Diabetologia | Issue 3/2016

Login to get access

Abstract

Type 1 diabetes mellitus is one of the most common chronic diseases in childhood. It develops through autoimmune destruction of the pancreatic beta cells and results in lifelong dependence on exogenous insulin. The pathogenesis of type 1 diabetes involves a complex interplay of genetic and environmental factors and has historically been attributed to aberrant adaptive immunity; however, there is increasing evidence for a role of innate inflammation. Over the past decade new methodologies for the analysis of nucleic acid and protein signals have been applied to type 1 diabetes. These studies are providing a new understanding of type 1 diabetes pathogenesis and have the potential to inform the development of new biomarkers for predicting diabetes onset and monitoring therapeutic interventions. In this review we will focus on blood-based signatures in type 1 diabetes, with special attention to both direct transcriptomic analyses of whole blood and immunocyte subsets, as well as plasma/serum-induced transcriptional signatures. Attention will also be given to proteomics, microRNA assays and markers of beta cell death. We will also discuss the results of blood-based profiling in type 1 diabetes within the context of the genetic and environmental factors implicated in the natural history of autoimmune diabetes.
Literature
1.
go back to reference Kimpimaki T, Kupila A, Hamalainen AM et al (2001) The first signs of beta-cell autoimmunity appear in infancy in genetically susceptible children from the general population: the Finnish Type 1 Diabetes Prediction and Prevention Study. J Clin Endocrinol Metab 86:4782–4788PubMed Kimpimaki T, Kupila A, Hamalainen AM et al (2001) The first signs of beta-cell autoimmunity appear in infancy in genetically susceptible children from the general population: the Finnish Type 1 Diabetes Prediction and Prevention Study. J Clin Endocrinol Metab 86:4782–4788PubMed
3.
go back to reference Morran MP, Vonberg A, Khadra A, Pietropaolo M (2015) Immunogenetics of type 1 diabetes mellitus. Mol Asp Med 42:42–60CrossRef Morran MP, Vonberg A, Khadra A, Pietropaolo M (2015) Immunogenetics of type 1 diabetes mellitus. Mol Asp Med 42:42–60CrossRef
4.
go back to reference Meier JJ, Bhushan A, Butler AE, Rizza RA, Butler PC (2005) Sustained beta cell apoptosis in patients with long-standing type 1 diabetes: indirect evidence for islet regeneration? Diabetologia 48:2221–2228PubMedCrossRef Meier JJ, Bhushan A, Butler AE, Rizza RA, Butler PC (2005) Sustained beta cell apoptosis in patients with long-standing type 1 diabetes: indirect evidence for islet regeneration? Diabetologia 48:2221–2228PubMedCrossRef
6.
go back to reference Thunander M, Petersson C, Jonzon K et al (2008) Incidence of type 1 and type 2 diabetes in adults and children in Kronoberg, Sweden. Diabetes Res Clin Pract 82:247–255PubMedCrossRef Thunander M, Petersson C, Jonzon K et al (2008) Incidence of type 1 and type 2 diabetes in adults and children in Kronoberg, Sweden. Diabetes Res Clin Pract 82:247–255PubMedCrossRef
7.
go back to reference Haller MJ, Atkinson MA, Schatz D (2005) Type 1 diabetes mellitus: etiology, presentation, and management. Pediatr Clin N Am 52:1553–1578CrossRef Haller MJ, Atkinson MA, Schatz D (2005) Type 1 diabetes mellitus: etiology, presentation, and management. Pediatr Clin N Am 52:1553–1578CrossRef
8.
go back to reference Maahs DM, West NA, Lawrence JM, Mayer-Davis EJ (2010) Epidemiology of type 1 diabetes. Endocrinol Metab Clin N Am 39:481–497CrossRef Maahs DM, West NA, Lawrence JM, Mayer-Davis EJ (2010) Epidemiology of type 1 diabetes. Endocrinol Metab Clin N Am 39:481–497CrossRef
9.
go back to reference Liese AD, D'Agostino RB Jr, Hamman RF et al (2006) The burden of diabetes mellitus among US youth: prevalence estimates from the SEARCH for Diabetes in Youth Study. Pediatrics 118:1510–1518PubMedCrossRef Liese AD, D'Agostino RB Jr, Hamman RF et al (2006) The burden of diabetes mellitus among US youth: prevalence estimates from the SEARCH for Diabetes in Youth Study. Pediatrics 118:1510–1518PubMedCrossRef
10.
go back to reference Dabelea D, Bell RA, D'Agostino RB Jr et al (2007) Incidence of diabetes in youth in the United States. JAMA 297:2716–2724PubMedCrossRef Dabelea D, Bell RA, D'Agostino RB Jr et al (2007) Incidence of diabetes in youth in the United States. JAMA 297:2716–2724PubMedCrossRef
13.
go back to reference Mangalam AK, Taneja V, David CS (2013) HLA class II molecules influence susceptibility versus protection in inflammatory diseases by determining the cytokine profile. J Immunol 190:513–518PubMedCentralPubMedCrossRef Mangalam AK, Taneja V, David CS (2013) HLA class II molecules influence susceptibility versus protection in inflammatory diseases by determining the cytokine profile. J Immunol 190:513–518PubMedCentralPubMedCrossRef
14.
go back to reference Redondo MJ, Fain PR, Eisenbarth GS (2001) Genetics of type 1A diabetes. Recent Prog Horm Res 56:69–89PubMedCrossRef Redondo MJ, Fain PR, Eisenbarth GS (2001) Genetics of type 1A diabetes. Recent Prog Horm Res 56:69–89PubMedCrossRef
15.
go back to reference Onengut-Gumuscu S, Chen WM, Burren O et al (2015) Fine mapping of type 1 diabetes susceptibility loci and evidence for colocalization of causal variants with lymphoid gene enhancers. Nat Genet 47:381–386PubMedCentralPubMedCrossRef Onengut-Gumuscu S, Chen WM, Burren O et al (2015) Fine mapping of type 1 diabetes susceptibility loci and evidence for colocalization of causal variants with lymphoid gene enhancers. Nat Genet 47:381–386PubMedCentralPubMedCrossRef
16.
go back to reference Patterson CC, Gyurus E, Rosenbauer J et al (2012) Trends in childhood type 1 diabetes incidence in Europe during 1989-2008: evidence of non-uniformity over time in rates of increase. Diabetologia 55:2142–2147PubMedCrossRef Patterson CC, Gyurus E, Rosenbauer J et al (2012) Trends in childhood type 1 diabetes incidence in Europe during 1989-2008: evidence of non-uniformity over time in rates of increase. Diabetologia 55:2142–2147PubMedCrossRef
17.
go back to reference Vaarala O, Atkinson MA, Neu J (2008) The "perfect storm" for type 1 diabetes: the complex interplay between intestinal microbiota, gut permeability, and mucosal immunity. Diabetes 57:2555–2562PubMedCentralPubMedCrossRef Vaarala O, Atkinson MA, Neu J (2008) The "perfect storm" for type 1 diabetes: the complex interplay between intestinal microbiota, gut permeability, and mucosal immunity. Diabetes 57:2555–2562PubMedCentralPubMedCrossRef
18.
go back to reference Atkinson MA, Chervonsky A (2012) Does the gut microbiota have a role in type 1 diabetes? Early evidence from humans and animal models of the disease. Diabetologia 55:2868–2877PubMedCentralPubMedCrossRef Atkinson MA, Chervonsky A (2012) Does the gut microbiota have a role in type 1 diabetes? Early evidence from humans and animal models of the disease. Diabetologia 55:2868–2877PubMedCentralPubMedCrossRef
19.
go back to reference Fourlanos S, Varney MD, Tait BD et al (2008) The rising incidence of type 1 diabetes is accounted for by cases with lower-risk human leukocyte antigen genotypes. Diabetes Care 31:1546–1549PubMedCentralPubMedCrossRef Fourlanos S, Varney MD, Tait BD et al (2008) The rising incidence of type 1 diabetes is accounted for by cases with lower-risk human leukocyte antigen genotypes. Diabetes Care 31:1546–1549PubMedCentralPubMedCrossRef
20.
go back to reference Borchers AT, Uibo R, Gershwin ME (2010) The geoepidemiology of type 1 diabetes. Autoimmun Rev 9:A355–A365PubMedCrossRef Borchers AT, Uibo R, Gershwin ME (2010) The geoepidemiology of type 1 diabetes. Autoimmun Rev 9:A355–A365PubMedCrossRef
21.
go back to reference Schneider DA, von Herrath MG (2013) Viruses and type 1 diabetes: a dynamic labile equilibrium. Diabetes Manag (Lond) 3:217–223CrossRef Schneider DA, von Herrath MG (2013) Viruses and type 1 diabetes: a dynamic labile equilibrium. Diabetes Manag (Lond) 3:217–223CrossRef
22.
go back to reference Jaidane H, Sauter P, Sane F, Goffard A, Gharbi J, Hober D (2010) Enteroviruses and type 1 diabetes: towards a better understanding of the relationship. Rev Med Virol 20:265–280PubMedCrossRef Jaidane H, Sauter P, Sane F, Goffard A, Gharbi J, Hober D (2010) Enteroviruses and type 1 diabetes: towards a better understanding of the relationship. Rev Med Virol 20:265–280PubMedCrossRef
23.
go back to reference Kahn HS, Morgan TM, Case LD et al (2009) Association of type 1 diabetes with month of birth among U.S. youth: the SEARCH for Diabetes in Youth Study. Diabetes Care 32:2010–2015PubMedCentralPubMedCrossRef Kahn HS, Morgan TM, Case LD et al (2009) Association of type 1 diabetes with month of birth among U.S. youth: the SEARCH for Diabetes in Youth Study. Diabetes Care 32:2010–2015PubMedCentralPubMedCrossRef
24.
go back to reference Moltchanova EV, Schreier N, Lammi N, Karvonen M (2009) Seasonal variation of diagnosis of type 1 diabetes mellitus in children worldwide. Diabet Med 26:673–678PubMedCrossRef Moltchanova EV, Schreier N, Lammi N, Karvonen M (2009) Seasonal variation of diagnosis of type 1 diabetes mellitus in children worldwide. Diabet Med 26:673–678PubMedCrossRef
25.
go back to reference Yeung WC, Rawlinson WD, Craig ME (2011) Enterovirus infection and type 1 diabetes mellitus: systematic review and meta-analysis of observational molecular studies. BMJ 342:d35PubMedCentralPubMedCrossRef Yeung WC, Rawlinson WD, Craig ME (2011) Enterovirus infection and type 1 diabetes mellitus: systematic review and meta-analysis of observational molecular studies. BMJ 342:d35PubMedCentralPubMedCrossRef
26.
go back to reference Richardson SJ, Leete P, Bone AJ, Foulis AK, Morgan NG (2013) Expression of the enteroviral capsid protein VP1 in the islet cells of patients with type 1 diabetes is associated with induction of protein kinase R and downregulation of Mcl-1. Diabetologia 56:185–193PubMedCrossRef Richardson SJ, Leete P, Bone AJ, Foulis AK, Morgan NG (2013) Expression of the enteroviral capsid protein VP1 in the islet cells of patients with type 1 diabetes is associated with induction of protein kinase R and downregulation of Mcl-1. Diabetologia 56:185–193PubMedCrossRef
27.
go back to reference Laitinen OH, Honkanen H, Pakkanen O et al (2014) Coxsackievirus B1 is associated with induction of beta-cell autoimmunity that portends type 1 diabetes. Diabetes 63:446–455PubMedCrossRef Laitinen OH, Honkanen H, Pakkanen O et al (2014) Coxsackievirus B1 is associated with induction of beta-cell autoimmunity that portends type 1 diabetes. Diabetes 63:446–455PubMedCrossRef
28.
go back to reference Anagandula M, Richardson SJ, Oberste MS et al (2014) Infection of human islets of Langerhans with two strains of Coxsackie B virus serotype 1: assessment of virus replication, degree of cell death and induction of genes involved in the innate immunity pathway. J Med Virol 86:1402–1411PubMedCrossRef Anagandula M, Richardson SJ, Oberste MS et al (2014) Infection of human islets of Langerhans with two strains of Coxsackie B virus serotype 1: assessment of virus replication, degree of cell death and induction of genes involved in the innate immunity pathway. J Med Virol 86:1402–1411PubMedCrossRef
29.
go back to reference Tracy S, Smithee S, Alhazmi A, Chapman N (2015) Coxsackievirus can persist in murine pancreas by deletion of 5' terminal genomic sequences. J Med Virol 87:240–247PubMedCrossRef Tracy S, Smithee S, Alhazmi A, Chapman N (2015) Coxsackievirus can persist in murine pancreas by deletion of 5' terminal genomic sequences. J Med Virol 87:240–247PubMedCrossRef
30.
go back to reference Gerstein HC (1994) Cow's milk exposure and type I diabetes mellitus. A critical overview of the clinical literature. Diabetes Care 17:13–19PubMedCrossRef Gerstein HC (1994) Cow's milk exposure and type I diabetes mellitus. A critical overview of the clinical literature. Diabetes Care 17:13–19PubMedCrossRef
31.
32.
go back to reference Norris JM, Barriga K, Klingensmith G et al (2003) Timing of initial cereal exposure in infancy and risk of islet autoimmunity. JAMA 290:1713–1720PubMedCrossRef Norris JM, Barriga K, Klingensmith G et al (2003) Timing of initial cereal exposure in infancy and risk of islet autoimmunity. JAMA 290:1713–1720PubMedCrossRef
33.
go back to reference Ziegler AG, Schmid S, Huber D, Hummel M, Bonifacio E (2003) Early infant feeding and risk of developing type 1 diabetes-associated autoantibodies. JAMA 290:1721–1728PubMedCrossRef Ziegler AG, Schmid S, Huber D, Hummel M, Bonifacio E (2003) Early infant feeding and risk of developing type 1 diabetes-associated autoantibodies. JAMA 290:1721–1728PubMedCrossRef
34.
go back to reference Beyerlein A, Chmiel R, Hummel S, Winkler C, Bonifacio E, Ziegler AG (2014) Timing of gluten introduction and islet autoimmunity in young children: updated results from the BABYDIET study. Diabetes Care 37:e194–e195PubMedCrossRef Beyerlein A, Chmiel R, Hummel S, Winkler C, Bonifacio E, Ziegler AG (2014) Timing of gluten introduction and islet autoimmunity in young children: updated results from the BABYDIET study. Diabetes Care 37:e194–e195PubMedCrossRef
35.
go back to reference Knip M, Akerblom HK, Becker D et al (2014) Hydrolyzed infant formula and early beta-cell autoimmunity: a randomized clinical trial. JAMA 311:2279–2287PubMedCentralPubMedCrossRef Knip M, Akerblom HK, Becker D et al (2014) Hydrolyzed infant formula and early beta-cell autoimmunity: a randomized clinical trial. JAMA 311:2279–2287PubMedCentralPubMedCrossRef
36.
go back to reference Benson AK, Kelly SA, Legge R et al (2010) Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. Proc Natl Acad Sci U S A 107:18933–18938PubMedCentralPubMedCrossRef Benson AK, Kelly SA, Legge R et al (2010) Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. Proc Natl Acad Sci U S A 107:18933–18938PubMedCentralPubMedCrossRef
38.
go back to reference Khachatryan ZA, Ktsoyan ZA, Manukyan GP, Kelly D, Ghazaryan KA, Aminov RI (2008) Predominant role of host genetics in controlling the composition of gut microbiota. PLoS One 3, e3064PubMedCentralPubMedCrossRef Khachatryan ZA, Ktsoyan ZA, Manukyan GP, Kelly D, Ghazaryan KA, Aminov RI (2008) Predominant role of host genetics in controlling the composition of gut microbiota. PLoS One 3, e3064PubMedCentralPubMedCrossRef
39.
go back to reference Murri M, Leiva I, Gomez-Zumaquero JM et al (2013) Gut microbiota in children with type 1 diabetes differs from that in healthy children: a case-control study. BMC Med 11:46PubMedCentralPubMedCrossRef Murri M, Leiva I, Gomez-Zumaquero JM et al (2013) Gut microbiota in children with type 1 diabetes differs from that in healthy children: a case-control study. BMC Med 11:46PubMedCentralPubMedCrossRef
40.
go back to reference Mejia-Leon ME, Petrosino JF, Ajami NJ, Dominguez-Bello MG, de la Barca AM (2014) Fecal microbiota imbalance in Mexican children with type 1 diabetes. Sci Rep 4:3814PubMedCentralPubMedCrossRef Mejia-Leon ME, Petrosino JF, Ajami NJ, Dominguez-Bello MG, de la Barca AM (2014) Fecal microbiota imbalance in Mexican children with type 1 diabetes. Sci Rep 4:3814PubMedCentralPubMedCrossRef
41.
go back to reference Endesfelder D, zu Castell W, Ardissone A et al (2014) Compromised gut microbiota networks in children with anti-islet cell autoimmunity. Diabetes 63:2006–2014PubMedCrossRef Endesfelder D, zu Castell W, Ardissone A et al (2014) Compromised gut microbiota networks in children with anti-islet cell autoimmunity. Diabetes 63:2006–2014PubMedCrossRef
43.
go back to reference Kostic AD, Gevers D, Siljander H et al (2015) The dynamics of the human infant gut microbiome in development and in progression toward type 1 diabetes. Cell Host Microbe 17:260–273PubMedCrossRef Kostic AD, Gevers D, Siljander H et al (2015) The dynamics of the human infant gut microbiome in development and in progression toward type 1 diabetes. Cell Host Microbe 17:260–273PubMedCrossRef
44.
go back to reference Brown CT, Davis-Richardson AG, Giongo A et al (2011) Gut microbiome metagenomics analysis suggests a functional model for the development of autoimmunity for type 1 diabetes. PLoS One 6, e25792PubMedCentralPubMedCrossRef Brown CT, Davis-Richardson AG, Giongo A et al (2011) Gut microbiome metagenomics analysis suggests a functional model for the development of autoimmunity for type 1 diabetes. PLoS One 6, e25792PubMedCentralPubMedCrossRef
45.
go back to reference Hoeppli RE, Wu D, Cook L, Levings MK (2015) The environment of regulatory T cell biology: cytokines, metabolites, and the microbiome. Front Immunol 6:61PubMedCentralPubMedCrossRef Hoeppli RE, Wu D, Cook L, Levings MK (2015) The environment of regulatory T cell biology: cytokines, metabolites, and the microbiome. Front Immunol 6:61PubMedCentralPubMedCrossRef
47.
go back to reference Li X, Atkinson MA (2015) The role for gut permeability in the pathogenesis of type 1 diabetes—a solid or leaky concept? Pediatr Diabetes 16:485–492PubMedCrossRef Li X, Atkinson MA (2015) The role for gut permeability in the pathogenesis of type 1 diabetes—a solid or leaky concept? Pediatr Diabetes 16:485–492PubMedCrossRef
48.
go back to reference Oresic M, Simell S, Sysi-Aho M et al (2008) Dysregulation of lipid and amino acid metabolism precedes islet autoimmunity in children who later progress to type 1 diabetes. J Exp Med 205:2975–2984PubMedCentralPubMedCrossRef Oresic M, Simell S, Sysi-Aho M et al (2008) Dysregulation of lipid and amino acid metabolism precedes islet autoimmunity in children who later progress to type 1 diabetes. J Exp Med 205:2975–2984PubMedCentralPubMedCrossRef
50.
go back to reference Kupila A, Keskinen P, Simell T et al (2002) Genetic risk determines the emergence of diabetes-associated autoantibodies in young children. Diabetes 51:646–651PubMedCrossRef Kupila A, Keskinen P, Simell T et al (2002) Genetic risk determines the emergence of diabetes-associated autoantibodies in young children. Diabetes 51:646–651PubMedCrossRef
51.
go back to reference Ziegler AG, Rewers M, Simell O et al (2013) Seroconversion to multiple islet autoantibodies and risk of progression to diabetes in children. JAMA 309:2473–2479PubMedCrossRef Ziegler AG, Rewers M, Simell O et al (2013) Seroconversion to multiple islet autoantibodies and risk of progression to diabetes in children. JAMA 309:2473–2479PubMedCrossRef
53.
go back to reference Roberts KG, Mullighan CG (2015) Genomics in acute lymphoblastic leukaemia: insights and treatment implications. Nat Rev Clin Oncol 12:344–357PubMedCrossRef Roberts KG, Mullighan CG (2015) Genomics in acute lymphoblastic leukaemia: insights and treatment implications. Nat Rev Clin Oncol 12:344–357PubMedCrossRef
54.
go back to reference Blankley S, Berry MP, Graham CM, Bloom CI, Lipman M, O'Garra A (2014) The application of transcriptional blood signatures to enhance our understanding of the host response to infection: the example of tuberculosis. Philos Trans R Soc Lond B Biol Sci 369:20130427PubMedCentralPubMedCrossRef Blankley S, Berry MP, Graham CM, Bloom CI, Lipman M, O'Garra A (2014) The application of transcriptional blood signatures to enhance our understanding of the host response to infection: the example of tuberculosis. Philos Trans R Soc Lond B Biol Sci 369:20130427PubMedCentralPubMedCrossRef
56.
57.
go back to reference Burczynski ME, Peterson RL, Twine NC et al (2006) Molecular classification of Crohn's disease and ulcerative colitis patients using transcriptional profiles in peripheral blood mononuclear cells. J Mol Diagn 8:51–61PubMedCentralPubMedCrossRef Burczynski ME, Peterson RL, Twine NC et al (2006) Molecular classification of Crohn's disease and ulcerative colitis patients using transcriptional profiles in peripheral blood mononuclear cells. J Mol Diagn 8:51–61PubMedCentralPubMedCrossRef
58.
go back to reference Lee JC, Lyons PA, McKinney EF et al (2011) Gene expression profiling of CD8+ T cells predicts prognosis in patients with Crohn disease and ulcerative colitis. J Clin Invest 121:4170–4179PubMedCentralPubMedCrossRef Lee JC, Lyons PA, McKinney EF et al (2011) Gene expression profiling of CD8+ T cells predicts prognosis in patients with Crohn disease and ulcerative colitis. J Clin Invest 121:4170–4179PubMedCentralPubMedCrossRef
59.
go back to reference Reynier F, Pachot A, Paye M et al (2010) Specific gene expression signature associated with development of autoimmune type-I diabetes using whole-blood microarray analysis. Genes Immun 11:269–278PubMedCrossRef Reynier F, Pachot A, Paye M et al (2010) Specific gene expression signature associated with development of autoimmune type-I diabetes using whole-blood microarray analysis. Genes Immun 11:269–278PubMedCrossRef
60.
go back to reference Elo LL, Mykkanen J, Nikula T et al (2010) Early suppression of immune response pathways characterizes children with prediabetes in genome-wide gene expression profiling. J Autoimmun 35:70–76PubMedCrossRef Elo LL, Mykkanen J, Nikula T et al (2010) Early suppression of immune response pathways characterizes children with prediabetes in genome-wide gene expression profiling. J Autoimmun 35:70–76PubMedCrossRef
61.
go back to reference Kallionpaa H, Elo LL, Laajala E et al (2014) Innate immune activity is detected prior to seroconversion in children with HLA-conferred type 1 diabetes susceptibility. Diabetes 63:2402–2414PubMedCrossRef Kallionpaa H, Elo LL, Laajala E et al (2014) Innate immune activity is detected prior to seroconversion in children with HLA-conferred type 1 diabetes susceptibility. Diabetes 63:2402–2414PubMedCrossRef
62.
go back to reference Jin Y, Sharma A, Bai S et al (2014) Risk of type 1 diabetes progression in islet autoantibody-positive children can be further stratified using expression patterns of multiple genes implicated in peripheral blood lymphocyte activation and function. Diabetes 63:2506–2515PubMedCentralPubMedCrossRef Jin Y, Sharma A, Bai S et al (2014) Risk of type 1 diabetes progression in islet autoantibody-positive children can be further stratified using expression patterns of multiple genes implicated in peripheral blood lymphocyte activation and function. Diabetes 63:2506–2515PubMedCentralPubMedCrossRef
63.
go back to reference Rassi DM, Junta CM, Fachin AL et al (2006) Metabolism genes are among the differentially expressed ones observed in lymphomononuclear cells of recently diagnosed type 1 diabetes mellitus patients. Ann N Y Acad Sci 1079:171–176PubMedCrossRef Rassi DM, Junta CM, Fachin AL et al (2006) Metabolism genes are among the differentially expressed ones observed in lymphomononuclear cells of recently diagnosed type 1 diabetes mellitus patients. Ann N Y Acad Sci 1079:171–176PubMedCrossRef
64.
go back to reference Kaizer EC, Glaser CL, Chaussabel D, Banchereau J, Pascual V, White PC (2007) Gene expression in peripheral blood mononuclear cells from children with diabetes. J Clin Endocrinol Metab 92:3705–3711PubMedCrossRef Kaizer EC, Glaser CL, Chaussabel D, Banchereau J, Pascual V, White PC (2007) Gene expression in peripheral blood mononuclear cells from children with diabetes. J Clin Endocrinol Metab 92:3705–3711PubMedCrossRef
65.
go back to reference Stechova K, Kolar M, Blatny R et al (2012) Healthy first-degree relatives of patients with type 1 diabetes exhibit significant differences in basal gene expression pattern of immunocompetent cells compared to controls: expression pattern as predeterminant of autoimmune diabetes. Scand J Immunol 75:210–219PubMedCrossRef Stechova K, Kolar M, Blatny R et al (2012) Healthy first-degree relatives of patients with type 1 diabetes exhibit significant differences in basal gene expression pattern of immunocompetent cells compared to controls: expression pattern as predeterminant of autoimmune diabetes. Scand J Immunol 75:210–219PubMedCrossRef
66.
go back to reference Evangelista AF, Collares CV, Xavier DJ et al (2014) Integrative analysis of the transcriptome profiles observed in type 1, type 2 and gestational diabetes mellitus reveals the role of inflammation. BMC Med Genomics 7:28PubMedCentralPubMedCrossRef Evangelista AF, Collares CV, Xavier DJ et al (2014) Integrative analysis of the transcriptome profiles observed in type 1, type 2 and gestational diabetes mellitus reveals the role of inflammation. BMC Med Genomics 7:28PubMedCentralPubMedCrossRef
67.
go back to reference Jin Y, Sharma A, Carey C et al (2013) The expression of inflammatory genes is upregulated in peripheral blood of patients with type 1 diabetes. Diabetes Care 36:2794–2802PubMedCentralPubMedCrossRef Jin Y, Sharma A, Carey C et al (2013) The expression of inflammatory genes is upregulated in peripheral blood of patients with type 1 diabetes. Diabetes Care 36:2794–2802PubMedCentralPubMedCrossRef
68.
go back to reference Ferreira RC, Guo H, Coulson RM et al (2014) A type I interferon transcriptional signature precedes autoimmunity in children genetically at risk for type 1 diabetes. Diabetes 63:2538–2550PubMedCentralPubMedCrossRef Ferreira RC, Guo H, Coulson RM et al (2014) A type I interferon transcriptional signature precedes autoimmunity in children genetically at risk for type 1 diabetes. Diabetes 63:2538–2550PubMedCentralPubMedCrossRef
69.
go back to reference Orban T, Kis J, Szereday L et al (2007) Reduced CD4+ T-cell-specific gene expression in human type 1 diabetes mellitus. J Autoimmun 28:177–187PubMedCrossRef Orban T, Kis J, Szereday L et al (2007) Reduced CD4+ T-cell-specific gene expression in human type 1 diabetes mellitus. J Autoimmun 28:177–187PubMedCrossRef
71.
go back to reference Irvine KM, Gallego P, An X et al (2012) Peripheral blood monocyte gene expression profile clinically stratifies patients with recent-onset type 1 diabetes. Diabetes 61:1281–1290PubMedCentralPubMedCrossRef Irvine KM, Gallego P, An X et al (2012) Peripheral blood monocyte gene expression profile clinically stratifies patients with recent-onset type 1 diabetes. Diabetes 61:1281–1290PubMedCentralPubMedCrossRef
72.
go back to reference Beyan H, Drexhage RC, van der Heul Nieuwenhuijsen L et al (2010) Monocyte gene-expression profiles associated with childhood-onset type 1 diabetes and disease risk: a study of identical twins. Diabetes 59:1751–1755PubMedCentralPubMedCrossRef Beyan H, Drexhage RC, van der Heul Nieuwenhuijsen L et al (2010) Monocyte gene-expression profiles associated with childhood-onset type 1 diabetes and disease risk: a study of identical twins. Diabetes 59:1751–1755PubMedCentralPubMedCrossRef
73.
go back to reference Pascual V, Allantaz F, Arce E, Punaro M, Banchereau J (2005) Role of interleukin-1 (IL-1) in the pathogenesis of systemic onset juvenile idiopathic arthritis and clinical response to IL-1 blockade. J Exp Med 201:1479–1486PubMedCentralPubMedCrossRef Pascual V, Allantaz F, Arce E, Punaro M, Banchereau J (2005) Role of interleukin-1 (IL-1) in the pathogenesis of systemic onset juvenile idiopathic arthritis and clinical response to IL-1 blockade. J Exp Med 201:1479–1486PubMedCentralPubMedCrossRef
74.
go back to reference Khaenam P, Rinchai D, Altman MC et al (2014) A transcriptomic reporter assay employing neutrophils to measure immunogenic activity of septic patients' plasma. J Transl Med 12:65PubMedCentralPubMedCrossRef Khaenam P, Rinchai D, Altman MC et al (2014) A transcriptomic reporter assay employing neutrophils to measure immunogenic activity of septic patients' plasma. J Transl Med 12:65PubMedCentralPubMedCrossRef
75.
go back to reference Jia S, Kaldunski M, Jailwala P et al (2011) Use of transcriptional signatures induced in lymphoid and myeloid cell lines as an inflammatory biomarker in type 1 diabetes. Physiol Genomics 43:697–709PubMedCentralPubMedCrossRef Jia S, Kaldunski M, Jailwala P et al (2011) Use of transcriptional signatures induced in lymphoid and myeloid cell lines as an inflammatory biomarker in type 1 diabetes. Physiol Genomics 43:697–709PubMedCentralPubMedCrossRef
76.
go back to reference Jackson AM, Kanak MA, Grishman EK, Chaussabel D, Levy MF, Naziruddin B (2012) Gene expression changes in human islets exposed to type 1 diabetic serum. Islets 4:312–319PubMedCentralPubMedCrossRef Jackson AM, Kanak MA, Grishman EK, Chaussabel D, Levy MF, Naziruddin B (2012) Gene expression changes in human islets exposed to type 1 diabetic serum. Islets 4:312–319PubMedCentralPubMedCrossRef
78.
79.
go back to reference Chen YG, Mordes JP, Blankenhorn EP et al (2013) Temporal induction of immunoregulatory processes coincides with age-dependent resistance to viral-induced type 1 diabetes. Genes Immun 14:387–400PubMedCentralPubMedCrossRef Chen YG, Mordes JP, Blankenhorn EP et al (2013) Temporal induction of immunoregulatory processes coincides with age-dependent resistance to viral-induced type 1 diabetes. Genes Immun 14:387–400PubMedCentralPubMedCrossRef
80.
go back to reference Levy H, Wang X, Kaldunski M et al (2012) Transcriptional signatures as a disease-specific and predictive inflammatory biomarker for type 1 diabetes. Genes Immun 13:593–604PubMedCentralPubMedCrossRef Levy H, Wang X, Kaldunski M et al (2012) Transcriptional signatures as a disease-specific and predictive inflammatory biomarker for type 1 diabetes. Genes Immun 13:593–604PubMedCentralPubMedCrossRef
81.
go back to reference Wang X, Jia S, Geoffrey R, Alemzadeh R, Ghosh S, Hessner MJ (2008) Identification of a molecular signature in human type 1 diabetes mellitus using serum and functional genomics. J Immunol 180:1929–1937PubMedCrossRef Wang X, Jia S, Geoffrey R, Alemzadeh R, Ghosh S, Hessner MJ (2008) Identification of a molecular signature in human type 1 diabetes mellitus using serum and functional genomics. J Immunol 180:1929–1937PubMedCrossRef
82.
go back to reference Aly TA, Ide A, Humphrey K et al (2005) Genetic prediction of autoimmunity: initial oligogenic prediction of anti-islet autoimmunity amongst DR3/DR4-DQ8 relatives of patients with type 1A diabetes. J Autoimmun 25(Suppl):40–45PubMedCrossRef Aly TA, Ide A, Humphrey K et al (2005) Genetic prediction of autoimmunity: initial oligogenic prediction of anti-islet autoimmunity amongst DR3/DR4-DQ8 relatives of patients with type 1A diabetes. J Autoimmun 25(Suppl):40–45PubMedCrossRef
83.
go back to reference Dogan Y, Akarsu S, Ustundag B, Yilmaz E, Gurgoze MK (2006) Serum IL-1β, IL-2, and IL-6 in insulin-dependent diabetic children. Mediat Inflamm 2006:59206CrossRef Dogan Y, Akarsu S, Ustundag B, Yilmaz E, Gurgoze MK (2006) Serum IL-1β, IL-2, and IL-6 in insulin-dependent diabetic children. Mediat Inflamm 2006:59206CrossRef
84.
go back to reference Hussain MJ, Maher J, Warnock T, Vats A, Peakman M, Vergani D (1998) Cytokine overproduction in healthy first degree relatives of patients with IDDM. Diabetologia 41:343–349PubMedCrossRef Hussain MJ, Maher J, Warnock T, Vats A, Peakman M, Vergani D (1998) Cytokine overproduction in healthy first degree relatives of patients with IDDM. Diabetologia 41:343–349PubMedCrossRef
85.
go back to reference Meyers AJ, Shah RR, Gottlieb PA, Zipris D (2010) Altered Toll-like receptor signaling pathways in human type 1 diabetes. J Mol Med (Berl) 88:1221–1231CrossRef Meyers AJ, Shah RR, Gottlieb PA, Zipris D (2010) Altered Toll-like receptor signaling pathways in human type 1 diabetes. J Mol Med (Berl) 88:1221–1231CrossRef
86.
go back to reference Bradshaw EM, Raddassi K, Elyaman W et al (2009) Monocytes from patients with type 1 diabetes spontaneously secrete proinflammatory cytokines inducing Th17 cells. J Immunol 183:4432–4439PubMedCentralPubMedCrossRef Bradshaw EM, Raddassi K, Elyaman W et al (2009) Monocytes from patients with type 1 diabetes spontaneously secrete proinflammatory cytokines inducing Th17 cells. J Immunol 183:4432–4439PubMedCentralPubMedCrossRef
87.
go back to reference Plesner A, Greenbaum CJ, Gaur LK, Ernst RK, Lernmark A (2002) Macrophages from high-risk HLA-DQB1*0201/*0302 type 1 diabetes mellitus patients are hypersensitive to lipopolysaccharide stimulation. Scand J Immunol 56:522–529PubMedCrossRef Plesner A, Greenbaum CJ, Gaur LK, Ernst RK, Lernmark A (2002) Macrophages from high-risk HLA-DQB1*0201/*0302 type 1 diabetes mellitus patients are hypersensitive to lipopolysaccharide stimulation. Scand J Immunol 56:522–529PubMedCrossRef
88.
go back to reference Kayserova J, Vcelakova J, Stechova K et al (2014) Decreased dendritic cell numbers but increased TLR9-mediated interferon-alpha production in first degree relatives of type 1 diabetes patients. Clin Immunol 153:49–55PubMedCrossRef Kayserova J, Vcelakova J, Stechova K et al (2014) Decreased dendritic cell numbers but increased TLR9-mediated interferon-alpha production in first degree relatives of type 1 diabetes patients. Clin Immunol 153:49–55PubMedCrossRef
89.
go back to reference Zhang Q, Fillmore TL, Schepmoes AA et al (2013) Serum proteomics reveals systemic dysregulation of innate immunity in type 1 diabetes. J Exp Med 210:191–203PubMedCentralPubMedCrossRef Zhang Q, Fillmore TL, Schepmoes AA et al (2013) Serum proteomics reveals systemic dysregulation of innate immunity in type 1 diabetes. J Exp Med 210:191–203PubMedCentralPubMedCrossRef
90.
go back to reference von Herrath M, Sanda S, Herold K (2007) Type 1 diabetes as a relapsing-remitting disease? Nat Rev Immunol 7:988–994CrossRef von Herrath M, Sanda S, Herold K (2007) Type 1 diabetes as a relapsing-remitting disease? Nat Rev Immunol 7:988–994CrossRef
91.
go back to reference Petrich de Marquesini LG, Fu J, Connor KJ et al (2010) IFN-γ and IL-10 islet-antigen-specific T cell responses in autoantibody-negative first-degree relatives of patients with type 1 diabetes. Diabetologia 53:1451–1460PubMedCrossRef Petrich de Marquesini LG, Fu J, Connor KJ et al (2010) IFN-γ and IL-10 islet-antigen-specific T cell responses in autoantibody-negative first-degree relatives of patients with type 1 diabetes. Diabetologia 53:1451–1460PubMedCrossRef
93.
go back to reference Zhi W, Purohit S, Carey C, Wang M, She JX (2010) Proteomic technologies for the discovery of type 1 diabetes biomarkers. J Diabetes Sci Technol 4:993–1002PubMedCentralPubMedCrossRef Zhi W, Purohit S, Carey C, Wang M, She JX (2010) Proteomic technologies for the discovery of type 1 diabetes biomarkers. J Diabetes Sci Technol 4:993–1002PubMedCentralPubMedCrossRef
94.
go back to reference Moulder R, Bhosale SD, Erkkila T et al (2015) Serum proteomes distinguish children developing type 1 diabetes in a cohort with HLA-conferred susceptibility. Diabetes 64:2265–2278PubMedCrossRef Moulder R, Bhosale SD, Erkkila T et al (2015) Serum proteomes distinguish children developing type 1 diabetes in a cohort with HLA-conferred susceptibility. Diabetes 64:2265–2278PubMedCrossRef
95.
go back to reference Burch TC, Morris MA, Campbell-Thompson M, Pugliese A, Nadler JL, Nyalwidhe JO (2015) Proteomic analysis of disease stratified human pancreas tissue indicates unique signature of type 1 diabetes. PLoS One 10, e0135663PubMedCentralPubMedCrossRef Burch TC, Morris MA, Campbell-Thompson M, Pugliese A, Nadler JL, Nyalwidhe JO (2015) Proteomic analysis of disease stratified human pancreas tissue indicates unique signature of type 1 diabetes. PLoS One 10, e0135663PubMedCentralPubMedCrossRef
96.
go back to reference Simpson LJ, Ansel KM (2015) MicroRNA regulation of lymphocyte tolerance and autoimmunity. J Clin Invest 125:2242–2249PubMedCrossRef Simpson LJ, Ansel KM (2015) MicroRNA regulation of lymphocyte tolerance and autoimmunity. J Clin Invest 125:2242–2249PubMedCrossRef
97.
go back to reference Nielsen LB, Wang C, Sorensen K et al (2012) Circulating levels of microRNA from children with newly diagnosed type 1 diabetes and healthy controls: evidence that miR-25 associates to residual beta-cell function and glycaemic control during disease progression. Exp Diabetes Res 2012:896362PubMedCentralPubMed Nielsen LB, Wang C, Sorensen K et al (2012) Circulating levels of microRNA from children with newly diagnosed type 1 diabetes and healthy controls: evidence that miR-25 associates to residual beta-cell function and glycaemic control during disease progression. Exp Diabetes Res 2012:896362PubMedCentralPubMed
98.
go back to reference Takahashi P, Xavier DJ, Evangelista AF et al (2014) MicroRNA expression profiling and functional annotation analysis of their targets in patients with type 1 diabetes mellitus. Gene 539:213–223PubMedCrossRef Takahashi P, Xavier DJ, Evangelista AF et al (2014) MicroRNA expression profiling and functional annotation analysis of their targets in patients with type 1 diabetes mellitus. Gene 539:213–223PubMedCrossRef
99.
go back to reference Akirav EM, Lebastchi J, Galvan EM et al (2011) Detection of beta cell death in diabetes using differentially methylated circulating DNA. Proc Natl Acad Sci U S A 108:19018–19023PubMedCentralPubMedCrossRef Akirav EM, Lebastchi J, Galvan EM et al (2011) Detection of beta cell death in diabetes using differentially methylated circulating DNA. Proc Natl Acad Sci U S A 108:19018–19023PubMedCentralPubMedCrossRef
100.
go back to reference Fisher MM, Watkins RA, Blum J et al (2015) Elevations in circulating methylated and unmethylated preproinsulin DNA in new-onset type 1 diabetes. Diabetes 64:3867–3872PubMedCrossRef Fisher MM, Watkins RA, Blum J et al (2015) Elevations in circulating methylated and unmethylated preproinsulin DNA in new-onset type 1 diabetes. Diabetes 64:3867–3872PubMedCrossRef
101.
go back to reference Herold KC, Usmani-Brown S, Ghazi T et al (2015) beta cell death and dysfunction during type 1 diabetes development in at-risk individuals. J Clin Invest 125:1163–1173PubMedCentralPubMedCrossRef Herold KC, Usmani-Brown S, Ghazi T et al (2015) beta cell death and dysfunction during type 1 diabetes development in at-risk individuals. J Clin Invest 125:1163–1173PubMedCentralPubMedCrossRef
103.
go back to reference von Herrath MG, Fujinami RS, Whitton JL (2003) Microorganisms and autoimmunity: making the barren field fertile? Nat Rev Microbiol 1:151–157CrossRef von Herrath MG, Fujinami RS, Whitton JL (2003) Microorganisms and autoimmunity: making the barren field fertile? Nat Rev Microbiol 1:151–157CrossRef
104.
go back to reference Chen Z, Barbi J, Bu S et al (2013) The ubiquitin ligase Stub1 negatively modulates regulatory T cell suppressive activity by promoting degradation of the transcription factor Foxp3. Immunity 39:272–285PubMedCrossRef Chen Z, Barbi J, Bu S et al (2013) The ubiquitin ligase Stub1 negatively modulates regulatory T cell suppressive activity by promoting degradation of the transcription factor Foxp3. Immunity 39:272–285PubMedCrossRef
105.
go back to reference van Loosdregt J, Fleskens V, Fu J et al (2013) Stabilization of the transcription factor Foxp3 by the deubiquitinase USP7 increases Treg-cell-suppressive capacity. Immunity 39:259–271PubMedCentralPubMedCrossRef van Loosdregt J, Fleskens V, Fu J et al (2013) Stabilization of the transcription factor Foxp3 by the deubiquitinase USP7 increases Treg-cell-suppressive capacity. Immunity 39:259–271PubMedCentralPubMedCrossRef
106.
go back to reference Kaldunski M, Jia S, Geoffrey R et al (2010) Identification of a serum-induced transcriptional signature associated with type 1 diabetes in the BioBreeding rat. Diabetes 59:2375–2385PubMedCentralPubMedCrossRef Kaldunski M, Jia S, Geoffrey R et al (2010) Identification of a serum-induced transcriptional signature associated with type 1 diabetes in the BioBreeding rat. Diabetes 59:2375–2385PubMedCentralPubMedCrossRef
107.
go back to reference Bottazzo GF, Florin-Christensen A, Doniach D (1974) Islet-cell antibodies in diabetes mellitus with autoimmune polyendocrine deficiencies. Lancet 2:1279–1283PubMedCrossRef Bottazzo GF, Florin-Christensen A, Doniach D (1974) Islet-cell antibodies in diabetes mellitus with autoimmune polyendocrine deficiencies. Lancet 2:1279–1283PubMedCrossRef
108.
go back to reference Cabrera SM, Wang X, Chen YG et al (2015) Interleukin-1 antagonism moderates the inflammatory state associated with type 1 diabetes during clinical trials conducted at disease onset. Eur J Immunol DOI:10.1002/eji.201546005 Cabrera SM, Wang X, Chen YG et al (2015) Interleukin-1 antagonism moderates the inflammatory state associated with type 1 diabetes during clinical trials conducted at disease onset. Eur J Immunol DOI:10.​1002/​eji.​201546005
109.
go back to reference Woo W, LaGasse JM, Zhou Z et al (2000) A novel high-throughput method for accurate, rapid, and economical measurement of multiple type 1 diabetes autoantibodies. J Immunol Methods 244:91–103PubMedCrossRef Woo W, LaGasse JM, Zhou Z et al (2000) A novel high-throughput method for accurate, rapid, and economical measurement of multiple type 1 diabetes autoantibodies. J Immunol Methods 244:91–103PubMedCrossRef
110.
go back to reference Miyara M, Yoshioka Y, Kitoh A et al (2009) Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity 30:899–911PubMedCrossRef Miyara M, Yoshioka Y, Kitoh A et al (2009) Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity 30:899–911PubMedCrossRef
111.
go back to reference Eisenbarth GS (1986) Type I diabetes mellitus. A chronic autoimmune disease. N Engl J Med 314:1360–1368PubMedCrossRef Eisenbarth GS (1986) Type I diabetes mellitus. A chronic autoimmune disease. N Engl J Med 314:1360–1368PubMedCrossRef
112.
go back to reference Coppieters KT, von Herrath MG (2014) The type 1 diabetes signature: hardwired to trigger inflammation? Diabetes 63:3581–3583PubMedCrossRef Coppieters KT, von Herrath MG (2014) The type 1 diabetes signature: hardwired to trigger inflammation? Diabetes 63:3581–3583PubMedCrossRef
Metadata
Title
Blood-based signatures in type 1 diabetes
Authors
Susanne M. Cabrera
Yi-Guang Chen
William A. Hagopian
Martin J. Hessner
Publication date
01-03-2016
Publisher
Springer Berlin Heidelberg
Published in
Diabetologia / Issue 3/2016
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-015-3843-x

Other articles of this Issue 3/2016

Diabetologia 3/2016 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.