Skip to main content
Top
Published in: Diabetologia 4/2011

01-04-2011 | Article

Defective recruitment, survival and proliferation of bone marrow-derived progenitor cells at sites of delayed diabetic wound healing in mice

Authors: M. Albiero, L. Menegazzo, E. Boscaro, C. Agostini, A. Avogaro, G. P. Fadini

Published in: Diabetologia | Issue 4/2011

Login to get access

Abstract

Aims/hypothesis

Bone marrow (BM)-derived endothelial progenitor cells (EPC) promote tissue healing and angiogenesis, whereas altered EPC biology may favour diabetic complications. We tested the hypothesis that diabetes impairs the contribution of BM-derived cells at sites of wound healing.

Methods

Four weeks after induction of diabetes in C57BL/6 mice, hindlimb skin wounds were created and monitored by digital imaging and histology. Circulating EPCs were quantified by flow cytometry before and after wounding. In separate experiments, bone marrow from C57BL/6 mice constitutively producing green fluorescent protein (GFP) was transplanted into myeloablated wild-type mice before induction of diabetes. We quantified proliferation, apoptosis and endothelial differentiation of tissue GFP+ cells. Net recruitment of GFP+ cells was estimated by correcting the number of tissue GFP+ cells at each time point for basal levels, apoptosis and proliferation rates.

Results

Diabetes delayed wound healing, with reduced granulation tissue thickness and vascularity, and increased apoptosis. Circulating EPC levels were not modified by 4 week diabetes and/or skin wounding. BM-derived EPCs (GFP+vWf+ [von Willebrand factor] cells) within the granulation tissue were significantly reduced in diabetic compared with control mice. BM-derived GFP+ cells showed increased apoptosis and decreased proliferation in diabetic versus non-diabetic wound tissues. Estimated net recruitment of BM-derived GFP+ cells was reduced on day 1 after wounding in diabetic mice.

Conclusions/interpretation

Diabetic-delayed wound healing was associated with defective recruitment, survival and proliferation of BM-derived progenitor cells. Local treatments aimed at restoring EPC homing and survival might improve tissue healing in diabetes.
Appendix
Available only for authorised users
Literature
1.
go back to reference Ramsey SD, Newton K, Blough D et al (1999) Incidence, outcomes, and cost of foot ulcers in patients with diabetes. Diabetes Care 22:382–387PubMedCrossRef Ramsey SD, Newton K, Blough D et al (1999) Incidence, outcomes, and cost of foot ulcers in patients with diabetes. Diabetes Care 22:382–387PubMedCrossRef
2.
go back to reference Faglia E, Clerici G, Clerissi J et al (2009) Long-term prognosis of diabetic patients with critical limb ischemia: a population-based cohort study. Diabetes Care 32:822–827PubMedCrossRef Faglia E, Clerici G, Clerissi J et al (2009) Long-term prognosis of diabetic patients with critical limb ischemia: a population-based cohort study. Diabetes Care 32:822–827PubMedCrossRef
3.
go back to reference Yamaguchi Y, Yoshikawa K (2001) Cutaneous wound healing: an update. J Dermatol 28:521–534PubMed Yamaguchi Y, Yoshikawa K (2001) Cutaneous wound healing: an update. J Dermatol 28:521–534PubMed
4.
go back to reference Avogaro A, de Kreutzenberg SV, Fadini G (2008) Endothelial dysfunction: causes and consequences in patients with diabetes mellitus. Diabetes Res Clin Pract 82(Suppl 2):S94–S101PubMedCrossRef Avogaro A, de Kreutzenberg SV, Fadini G (2008) Endothelial dysfunction: causes and consequences in patients with diabetes mellitus. Diabetes Res Clin Pract 82(Suppl 2):S94–S101PubMedCrossRef
5.
go back to reference Asahara T, Murohara T, Sullivan A et al (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967PubMedCrossRef Asahara T, Murohara T, Sullivan A et al (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967PubMedCrossRef
6.
go back to reference Takahashi T, Kalka C, Masuda H et al (1999) Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med 5:434–438PubMedCrossRef Takahashi T, Kalka C, Masuda H et al (1999) Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med 5:434–438PubMedCrossRef
7.
go back to reference Fadini GP, Sartore S, Albiero M et al (2006) Number and function of endothelial progenitor cells as a marker of severity for diabetic vasculopathy. Arterioscler Thromb Vasc Biol 26:2140–2146PubMedCrossRef Fadini GP, Sartore S, Albiero M et al (2006) Number and function of endothelial progenitor cells as a marker of severity for diabetic vasculopathy. Arterioscler Thromb Vasc Biol 26:2140–2146PubMedCrossRef
8.
go back to reference Huang P, Li S, Han M et al (2005) Autologous transplantation of granulocyte colony-stimulating factor-mobilized peripheral blood mononuclear cells improves critical limb ischemia in diabetes. Diabetes Care 28:2155–2160PubMedCrossRef Huang P, Li S, Han M et al (2005) Autologous transplantation of granulocyte colony-stimulating factor-mobilized peripheral blood mononuclear cells improves critical limb ischemia in diabetes. Diabetes Care 28:2155–2160PubMedCrossRef
9.
go back to reference Fadini GP, Sartore S, Schiavon M et al (2006) Diabetes impairs progenitor cell mobilisation after hindlimb ischaemia-reperfusion injury in rats. Diabetologia 49:3075–3084PubMedCrossRef Fadini GP, Sartore S, Schiavon M et al (2006) Diabetes impairs progenitor cell mobilisation after hindlimb ischaemia-reperfusion injury in rats. Diabetologia 49:3075–3084PubMedCrossRef
10.
go back to reference Fadini GP, Albiero M, Menegazzo L et al (2010) The redox enzyme p66Shc contributes to diabetes and ischemia-induced delay in cutaneous wound healing. Diabetes 59:2306–2314PubMedCrossRef Fadini GP, Albiero M, Menegazzo L et al (2010) The redox enzyme p66Shc contributes to diabetes and ischemia-induced delay in cutaneous wound healing. Diabetes 59:2306–2314PubMedCrossRef
11.
go back to reference Fadini GP, Baesso I, Albiero M et al (2008) Technical notes on endothelial progenitor cells: ways to escape from the knowledge plateau. Atherosclerosis 197:496–503PubMedCrossRef Fadini GP, Baesso I, Albiero M et al (2008) Technical notes on endothelial progenitor cells: ways to escape from the knowledge plateau. Atherosclerosis 197:496–503PubMedCrossRef
12.
go back to reference Fadini GP, Sartore S, Agostini C, Avogaro A (2007) Significance of endothelial progenitor cells in subjects with diabetes. Diabetes Care 30:1305–1313PubMedCrossRef Fadini GP, Sartore S, Agostini C, Avogaro A (2007) Significance of endothelial progenitor cells in subjects with diabetes. Diabetes Care 30:1305–1313PubMedCrossRef
13.
go back to reference Dessapt C, Karalliedde J, Hernandez-Fuentes M et al (2010) Circulating vascular progenitor cells in patients with type 1 diabetes and microalbuminuria. Diabetes Care 33:875–877PubMedCrossRef Dessapt C, Karalliedde J, Hernandez-Fuentes M et al (2010) Circulating vascular progenitor cells in patients with type 1 diabetes and microalbuminuria. Diabetes Care 33:875–877PubMedCrossRef
14.
go back to reference Werner N, Kosiol S, Schiegl T et al (2005) Circulating endothelial progenitor cells and cardiovascular outcomes. N Engl J Med 353:999–1007PubMedCrossRef Werner N, Kosiol S, Schiegl T et al (2005) Circulating endothelial progenitor cells and cardiovascular outcomes. N Engl J Med 353:999–1007PubMedCrossRef
15.
go back to reference Fadini GP, de Kreutzenberg S, Agostini C et al (2009) Low CD34+ cell count and metabolic syndrome synergistically increase the risk of adverse outcomes. Atherosclerosis 207:213–219PubMedCrossRef Fadini GP, de Kreutzenberg S, Agostini C et al (2009) Low CD34+ cell count and metabolic syndrome synergistically increase the risk of adverse outcomes. Atherosclerosis 207:213–219PubMedCrossRef
16.
go back to reference Tuo QH, Zeng H, Stinnett A et al (2008) Critical role of angiopoietins/Tie-2 in hyperglycemic exacerbation of myocardial infarction and impaired angiogenesis. Am J Physiol Heart Circ Physiol 294:H2547–H2557PubMedCrossRef Tuo QH, Zeng H, Stinnett A et al (2008) Critical role of angiopoietins/Tie-2 in hyperglycemic exacerbation of myocardial infarction and impaired angiogenesis. Am J Physiol Heart Circ Physiol 294:H2547–H2557PubMedCrossRef
17.
go back to reference Tamarat R, Silvestre JS, Le Ricousse-Roussanne S et al (2004) Impairment in ischemia-induced neovascularization in diabetes: bone marrow mononuclear cell dysfunction and therapeutic potential of placenta growth factor treatment. Am J Pathol 164:457–466PubMedCrossRef Tamarat R, Silvestre JS, Le Ricousse-Roussanne S et al (2004) Impairment in ischemia-induced neovascularization in diabetes: bone marrow mononuclear cell dysfunction and therapeutic potential of placenta growth factor treatment. Am J Pathol 164:457–466PubMedCrossRef
18.
go back to reference Remuzzi G, Benigni A, Remuzzi A (2006) Mechanisms of progression and regression of renal lesions of chronic nephropathies and diabetes. J Clin Invest 116:288–296PubMedCrossRef Remuzzi G, Benigni A, Remuzzi A (2006) Mechanisms of progression and regression of renal lesions of chronic nephropathies and diabetes. J Clin Invest 116:288–296PubMedCrossRef
19.
go back to reference Busik JV, Tikhonenko M, Bhatwadekar A et al (2009) Diabetic retinopathy is associated with bone marrow neuropathy and a depressed peripheral clock. J Exp Med 206:2897–2906PubMedCrossRef Busik JV, Tikhonenko M, Bhatwadekar A et al (2009) Diabetic retinopathy is associated with bone marrow neuropathy and a depressed peripheral clock. J Exp Med 206:2897–2906PubMedCrossRef
20.
go back to reference Gallagher KA, Liu ZJ, Xiao M et al (2007) Diabetic impairments in NO-mediated endothelial progenitor cell mobilization and homing are reversed by hyperoxia and SDF-1 alpha. J Clin Invest 117:1249–1259PubMedCrossRef Gallagher KA, Liu ZJ, Xiao M et al (2007) Diabetic impairments in NO-mediated endothelial progenitor cell mobilization and homing are reversed by hyperoxia and SDF-1 alpha. J Clin Invest 117:1249–1259PubMedCrossRef
21.
go back to reference Ceradini DJ, Yao D, Grogan RH et al (2008) Decreasing intracellular superoxide corrects defective ischemia-induced new vessel formation in diabetic mice. J Biol Chem 283:10930–10938PubMedCrossRef Ceradini DJ, Yao D, Grogan RH et al (2008) Decreasing intracellular superoxide corrects defective ischemia-induced new vessel formation in diabetic mice. J Biol Chem 283:10930–10938PubMedCrossRef
22.
go back to reference Oikawa A, Siragusa M, Quaini F et al (2010) Diabetes mellitus induces bone marrow microangiopathy. Arterioscler Thromb Vasc Biol 30:498–508PubMedCrossRef Oikawa A, Siragusa M, Quaini F et al (2010) Diabetes mellitus induces bone marrow microangiopathy. Arterioscler Thromb Vasc Biol 30:498–508PubMedCrossRef
23.
go back to reference Marchetti V, Menghini R, Rizza S et al (2006) Benfotiamine counteracts glucose toxicity effects on endothelial progenitor cell differentiation via Akt/FoxO signaling. Diabetes 55:2231–2237PubMedCrossRef Marchetti V, Menghini R, Rizza S et al (2006) Benfotiamine counteracts glucose toxicity effects on endothelial progenitor cell differentiation via Akt/FoxO signaling. Diabetes 55:2231–2237PubMedCrossRef
24.
go back to reference Seeger FH, Haendeler J, Walter DH et al (2005) p38 mitogen-activated protein kinase downregulates endothelial progenitor cells. Circulation 111:1184–1191PubMedCrossRef Seeger FH, Haendeler J, Walter DH et al (2005) p38 mitogen-activated protein kinase downregulates endothelial progenitor cells. Circulation 111:1184–1191PubMedCrossRef
25.
go back to reference Fadini GP, Boscaro E, de Kreutzenberg S et al (2010) Time course and mechanisms of circulating progenitor cell reduction in the natural history of type 2 diabetes. Diabetes Care 33:1097–1102PubMedCrossRef Fadini GP, Boscaro E, de Kreutzenberg S et al (2010) Time course and mechanisms of circulating progenitor cell reduction in the natural history of type 2 diabetes. Diabetes Care 33:1097–1102PubMedCrossRef
26.
go back to reference Hristov M, Erl W, Weber PC (2003) Endothelial progenitor cells: isolation and characterization. Trends Cardiovasc Med 13:201–206PubMedCrossRef Hristov M, Erl W, Weber PC (2003) Endothelial progenitor cells: isolation and characterization. Trends Cardiovasc Med 13:201–206PubMedCrossRef
27.
go back to reference Tepper OM, Capla JM, Galiano RD et al (2005) Adult vasculogenesis occurs through in situ recruitment, proliferation, and tubulization of circulating bone marrow-derived cells. Blood 105:1068–1077PubMedCrossRef Tepper OM, Capla JM, Galiano RD et al (2005) Adult vasculogenesis occurs through in situ recruitment, proliferation, and tubulization of circulating bone marrow-derived cells. Blood 105:1068–1077PubMedCrossRef
28.
go back to reference Barcelos LS, Duplaa C, Krankel N et al (2009) Human CD133+ progenitor cells promote the healing of diabetic ischemic ulcers by paracrine stimulation of angiogenesis and activation of Wnt signaling. Circ Res 104:1095–1102PubMedCrossRef Barcelos LS, Duplaa C, Krankel N et al (2009) Human CD133+ progenitor cells promote the healing of diabetic ischemic ulcers by paracrine stimulation of angiogenesis and activation of Wnt signaling. Circ Res 104:1095–1102PubMedCrossRef
29.
go back to reference Sivan-Loukianova E, Awad OA, Stepanovic V, Bickenbach J, Schatteman GC (2003) CD34+ blood cells accelerate vascularization and healing of diabetic mouse skin wounds. J Vasc Res 40:368–377PubMedCrossRef Sivan-Loukianova E, Awad OA, Stepanovic V, Bickenbach J, Schatteman GC (2003) CD34+ blood cells accelerate vascularization and healing of diabetic mouse skin wounds. J Vasc Res 40:368–377PubMedCrossRef
30.
go back to reference Rosso A, Balsamo A, Gambino R et al (2006) p53 Mediates the accelerated onset of senescence of endothelial progenitor cells in diabetes. J Biol Chem 281:4339–4347PubMedCrossRef Rosso A, Balsamo A, Gambino R et al (2006) p53 Mediates the accelerated onset of senescence of endothelial progenitor cells in diabetes. J Biol Chem 281:4339–4347PubMedCrossRef
Metadata
Title
Defective recruitment, survival and proliferation of bone marrow-derived progenitor cells at sites of delayed diabetic wound healing in mice
Authors
M. Albiero
L. Menegazzo
E. Boscaro
C. Agostini
A. Avogaro
G. P. Fadini
Publication date
01-04-2011
Publisher
Springer-Verlag
Published in
Diabetologia / Issue 4/2011
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-010-2007-2

Other articles of this Issue 4/2011

Diabetologia 4/2011 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.