Skip to main content
Top
Published in: Diabetologia 1/2007

01-01-2007 | Review

Peroxisome proliferator-activated receptor-δ, a regulator of oxidative capacity, fuel switching and cholesterol transport

Authors: C. Fürnsinn, T. M. Willson, B. Brunmair

Published in: Diabetologia | Issue 1/2007

Login to get access

Abstract

Synthetic agonists of peroxisome proliferator-activated receptor (PPAR)-δ have shown a promising pharmacological profile in preclinical models of metabolic and cardiovascular disease. At present, the pharmaceutical development of these drugs exploits the potential to raise plasma HDL-cholesterol in animals and their insulin-sensitising and glucose-lowering properties. PPAR-δ agonists have also proven to be powerful research tools that have provided insights into the role of fatty acid metabolism in human physiology and disease. Activation of PPAR-δ induces the expression of genes important for cellular fatty acid combustion and an associated increase in whole-body lipid dissipation. The predominant target tissue in this regard is skeletal muscle, in which PPAR-δ activation regulates the oxidative capacity of the mitochondrial apparatus, switches fuel preference from glucose to fatty acids, and reduces triacylglycerol storage. These changes counter the characteristic derangements of insulin- resistant skeletal muscle but resemble the metabolic adaptation to regular physical exercise. Apart from effects on fuel turnover, there is evidence for direct antiatherogenic properties, because PPAR-δ activation increases cholesterol export and represses inflammatory gene expression in macrophages and atherosclerotic lesions. Whereas conclusions about the full potential of PPAR-δ as a drug target await the result of large scale clinical testing, ongoing investigation of this nuclear receptor has greatly improved our knowledge of the physiological regulation of whole-body fuel turnover and the interdependence of mitochondrial function and insulin sensitivity.
Literature
1.
go back to reference Kliewer SA, Xu HE, Lambert MH, Willson TM (2001) Peroxisome proliferator-activated receptors: from genes to physiology. Recent Prog Horm Res 56:239–263PubMedCrossRef Kliewer SA, Xu HE, Lambert MH, Willson TM (2001) Peroxisome proliferator-activated receptors: from genes to physiology. Recent Prog Horm Res 56:239–263PubMedCrossRef
2.
go back to reference Berger JP, Akiyama TE, Meinke PT (2005) PPARs: therapeutic targets for metabolic disease. Trends Pharmacol Sci 26:244–251PubMedCrossRef Berger JP, Akiyama TE, Meinke PT (2005) PPARs: therapeutic targets for metabolic disease. Trends Pharmacol Sci 26:244–251PubMedCrossRef
3.
go back to reference Auboeuf D, Rieusset J, Fajas L et al (1997) Tissue distribution and quantification of the expression of mRNAs of peroxisome proliferator-activated receptors and liver X receptor-α in humans. No alteration in adipose tissue of obese and NIDDM patients. Diabetes 46:1319–1327PubMed Auboeuf D, Rieusset J, Fajas L et al (1997) Tissue distribution and quantification of the expression of mRNAs of peroxisome proliferator-activated receptors and liver X receptor-α in humans. No alteration in adipose tissue of obese and NIDDM patients. Diabetes 46:1319–1327PubMed
4.
go back to reference Escher P, Braissant O, Basu-Modak S, Michalik L, Wahli W, Desvergne B (2001) Rat PPARs: quantitative analysis in adult rat tissues and regulation in fasting and refeeding. Endocrinology 142:4195–4202PubMedCrossRef Escher P, Braissant O, Basu-Modak S, Michalik L, Wahli W, Desvergne B (2001) Rat PPARs: quantitative analysis in adult rat tissues and regulation in fasting and refeeding. Endocrinology 142:4195–4202PubMedCrossRef
5.
go back to reference Braissant O, Foufelle F, Scotto C, Dauòa M, Wahli W (1996) Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-α, -β and -γ in the adult rat. Endocrinology 137:354–366PubMedCrossRef Braissant O, Foufelle F, Scotto C, Dauòa M, Wahli W (1996) Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-α, -β and -γ in the adult rat. Endocrinology 137:354–366PubMedCrossRef
6.
go back to reference Tan NS, Michalik L, Desvergne B, Wahli W (2003) Peroxisome proliferator-activated receptor (PPAR)-β as a target for wound healing drugs: what is possible? Am J Clin Dermatol 4:523–530PubMedCrossRef Tan NS, Michalik L, Desvergne B, Wahli W (2003) Peroxisome proliferator-activated receptor (PPAR)-β as a target for wound healing drugs: what is possible? Am J Clin Dermatol 4:523–530PubMedCrossRef
7.
go back to reference Lim H, Dey SK (2000) PPARδ functions as a prostacyclin receptor in blastocyst implantation. Trends Endocrinol Metab 11:137–142PubMedCrossRef Lim H, Dey SK (2000) PPARδ functions as a prostacyclin receptor in blastocyst implantation. Trends Endocrinol Metab 11:137–142PubMedCrossRef
8.
go back to reference Barak Y, Liao D, He W et al (2002) Effects of peroxisome proliferator-activated receptor δ on placentation, adiposity, and colorectal cancer. Proc Natl Acad Sci USA 99:303–308PubMedCrossRef Barak Y, Liao D, He W et al (2002) Effects of peroxisome proliferator-activated receptor δ on placentation, adiposity, and colorectal cancer. Proc Natl Acad Sci USA 99:303–308PubMedCrossRef
9.
go back to reference Peters JM, Lee SST, Li W et al (2000) Growth, adipose, brain, and skin alterations resulting from targeted disruption of the mouse peroxisome proliferator-activated receptor β(δ). Mol Cell Biol 20:5119–5128PubMedCrossRef Peters JM, Lee SST, Li W et al (2000) Growth, adipose, brain, and skin alterations resulting from targeted disruption of the mouse peroxisome proliferator-activated receptor β(δ). Mol Cell Biol 20:5119–5128PubMedCrossRef
10.
go back to reference Oliver WR, Shenk JL, Snaith MR et al (2001) A selective peroxisome proliferator-activated receptor δ agonist promotes reverse cholesterol transport. Proc Natl Acad Sci USA 98:5306–5311PubMedCrossRef Oliver WR, Shenk JL, Snaith MR et al (2001) A selective peroxisome proliferator-activated receptor δ agonist promotes reverse cholesterol transport. Proc Natl Acad Sci USA 98:5306–5311PubMedCrossRef
11.
go back to reference Sznaidman ML, Haffner CD, Maloney PR et al (2003) Novel selective small molecule agonists for peroxisome proliferator-activated receptor δ (PPARδ)—synthesis and biological activity. Bioorg Med Chem Lett 13:1517–1521PubMedCrossRef Sznaidman ML, Haffner CD, Maloney PR et al (2003) Novel selective small molecule agonists for peroxisome proliferator-activated receptor δ (PPARδ)—synthesis and biological activity. Bioorg Med Chem Lett 13:1517–1521PubMedCrossRef
12.
go back to reference Berger J, Leibowitz MD, Doebber TW et al (1999) Novel peroxisome proliferator-activated receptor (PPAR)γ and PPARδ ligands produce distinct biological effects. J Biol Chem 274:6718–6725PubMedCrossRef Berger J, Leibowitz MD, Doebber TW et al (1999) Novel peroxisome proliferator-activated receptor (PPAR)γ and PPARδ ligands produce distinct biological effects. J Biol Chem 274:6718–6725PubMedCrossRef
13.
go back to reference Leibowitz MD, Fiévet C, Hennuyer N et al (2000) Activation of PPARδ alters lipid metabolism in db/db mice. FEBS Lett 473:333–336PubMedCrossRef Leibowitz MD, Fiévet C, Hennuyer N et al (2000) Activation of PPARδ alters lipid metabolism in db/db mice. FEBS Lett 473:333–336PubMedCrossRef
14.
go back to reference Tanaka T, Yamamoto J, Iwasaki S et al (2003) Activation of peroxisome proliferator-activated receptor δ induces fatty acid β-oxidation in skeletal muscle and attenuates metabolic syndrome. Proc Natl Acad Sci USA 100:15924–15929PubMedCrossRef Tanaka T, Yamamoto J, Iwasaki S et al (2003) Activation of peroxisome proliferator-activated receptor δ induces fatty acid β-oxidation in skeletal muscle and attenuates metabolic syndrome. Proc Natl Acad Sci USA 100:15924–15929PubMedCrossRef
15.
go back to reference Wang Y-X, Zhang C-L, Yu RT et al (2004) Regulation of muscle fiber type and running endurance by PPARδ. PLOS Biol 2:e294PubMedCrossRef Wang Y-X, Zhang C-L, Yu RT et al (2004) Regulation of muscle fiber type and running endurance by PPARδ. PLOS Biol 2:e294PubMedCrossRef
16.
go back to reference Wang Y-X, Lee C-H, Tiep S et al (2003) Peroxisome proliferator-activated receptor δ activates fat metabolism to prevent obesity. Cell 113:159–170PubMedCrossRef Wang Y-X, Lee C-H, Tiep S et al (2003) Peroxisome proliferator-activated receptor δ activates fat metabolism to prevent obesity. Cell 113:159–170PubMedCrossRef
17.
go back to reference Wallace JM, Schwarz M, Coward P et al (2005) Effects of peroxisome proliferator-activated receptor α/δ agonists on HDL-cholesterol in monkeys. J Lipid Res 46:1009–1016PubMedCrossRef Wallace JM, Schwarz M, Coward P et al (2005) Effects of peroxisome proliferator-activated receptor α/δ agonists on HDL-cholesterol in monkeys. J Lipid Res 46:1009–1016PubMedCrossRef
18.
go back to reference van der Veen JN, Kruit JK, Havinga R et al (2005) Reduced cholesterol absorption upon PPARδ activation coincides with decreased intestinal expression of NPC1L1. J Lipid Res 46:526–534PubMedCrossRef van der Veen JN, Kruit JK, Havinga R et al (2005) Reduced cholesterol absorption upon PPARδ activation coincides with decreased intestinal expression of NPC1L1. J Lipid Res 46:526–534PubMedCrossRef
19.
go back to reference Lee C-H, Olson P, Hevener A et al (2006) PPARδ regulates glucose metabolism and insulin sensitivity. Proc Natl Acad Sci USA 103:3444–3449PubMedCrossRef Lee C-H, Olson P, Hevener A et al (2006) PPARδ regulates glucose metabolism and insulin sensitivity. Proc Natl Acad Sci USA 103:3444–3449PubMedCrossRef
20.
go back to reference Skogsberg J, Kannisto K, Cassel TN, Hamsten A, Eriksson P, Ehrenborg E (2003) Evidence that peroxisome proliferator-activated receptor δ influences cholesterol metabolism in men. Arterioscler Thromb Vasc Biol 23:637–643PubMedCrossRef Skogsberg J, Kannisto K, Cassel TN, Hamsten A, Eriksson P, Ehrenborg E (2003) Evidence that peroxisome proliferator-activated receptor δ influences cholesterol metabolism in men. Arterioscler Thromb Vasc Biol 23:637–643PubMedCrossRef
21.
go back to reference Skogsberg J, McMahon AD, Karpe F, Hamsten A, Packard CJ, Ehrenborg E (2003) Peroxisome proliferator-activated receptor δ genotype in relation to cardiovascular risk factors and risk of coronary heart disease in hypercholesterolaemic men. J Intern Med 254:597–604PubMedCrossRef Skogsberg J, McMahon AD, Karpe F, Hamsten A, Packard CJ, Ehrenborg E (2003) Peroxisome proliferator-activated receptor δ genotype in relation to cardiovascular risk factors and risk of coronary heart disease in hypercholesterolaemic men. J Intern Med 254:597–604PubMedCrossRef
22.
go back to reference Sprecher D, Massien C, Pearce G et al. Triglyceride: HDLc effects in healthy subjects administered a peroxisome proliferator activated receptor (PPAR) δ agonist. Arterioscler Thromb Vasc Biol (in press) Sprecher D, Massien C, Pearce G et al. Triglyceride: HDLc effects in healthy subjects administered a peroxisome proliferator activated receptor (PPAR) δ agonist. Arterioscler Thromb Vasc Biol (in press)
23.
go back to reference Rader DJ (2003) Regulation of reverse cholesterol transport and clinical implications. Am J Cardiol 92(Suppl.):42J–49JCrossRef Rader DJ (2003) Regulation of reverse cholesterol transport and clinical implications. Am J Cardiol 92(Suppl.):42J–49JCrossRef
24.
go back to reference Castelli WP, Garrison RJ, Wilson PW, Abbott RD, Kalousdian S, Kannel WB (1986) Incidence of coronary heart disease and lipoprotein cholesterol levels. The Framingham study. J Am Med Assoc 256:2835–2838CrossRef Castelli WP, Garrison RJ, Wilson PW, Abbott RD, Kalousdian S, Kannel WB (1986) Incidence of coronary heart disease and lipoprotein cholesterol levels. The Framingham study. J Am Med Assoc 256:2835–2838CrossRef
25.
go back to reference Desvergne B, Wahli W (1999) Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocrine Rev 20:649–688CrossRef Desvergne B, Wahli W (1999) Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocrine Rev 20:649–688CrossRef
26.
go back to reference Forman BM, Chen J, Evans RM (1997) Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors α and δ. Proc Natl Acad Sci USA 94:4312–4317PubMedCrossRef Forman BM, Chen J, Evans RM (1997) Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors α and δ. Proc Natl Acad Sci USA 94:4312–4317PubMedCrossRef
27.
go back to reference Xu HE, Lambert MH, Montana VG et al (1999) Molecular recognition of fatty acids by peroxisome proliferator-activated receptors. Mol Cell 3:397–403PubMedCrossRef Xu HE, Lambert MH, Montana VG et al (1999) Molecular recognition of fatty acids by peroxisome proliferator-activated receptors. Mol Cell 3:397–403PubMedCrossRef
28.
go back to reference Yu K, Bayona W, Kallen CB et al (1995) Differential activation of peroxisome proliferator-activated receptors by eicosanoids. J Biol Chem 270:23975–23983PubMedCrossRef Yu K, Bayona W, Kallen CB et al (1995) Differential activation of peroxisome proliferator-activated receptors by eicosanoids. J Biol Chem 270:23975–23983PubMedCrossRef
29.
go back to reference Dressel U, Allen TL, Pippal JB, Rohde PR, Lau P, Muscat GO (2003) The peroxisome proliferator-activated receptor β/δ agonist, GW501516, regulates the expression of genes involved in lipid catabolism and energy uncoupling in skeletal muscle cells. Mol Endocrinol 17:2477–2493PubMedCrossRef Dressel U, Allen TL, Pippal JB, Rohde PR, Lau P, Muscat GO (2003) The peroxisome proliferator-activated receptor β/δ agonist, GW501516, regulates the expression of genes involved in lipid catabolism and energy uncoupling in skeletal muscle cells. Mol Endocrinol 17:2477–2493PubMedCrossRef
30.
go back to reference Kliewer SA, Umesono K, Noonan DJ, Heyman RA, Evans RM (1992) Convergence of 9-cis retinoic acid and peroxisome proliferator signalling pathways through heterodimer formation of their receptors. Nature 358:771–774PubMedCrossRef Kliewer SA, Umesono K, Noonan DJ, Heyman RA, Evans RM (1992) Convergence of 9-cis retinoic acid and peroxisome proliferator signalling pathways through heterodimer formation of their receptors. Nature 358:771–774PubMedCrossRef
31.
go back to reference Juge-Aubry C, Pernin A, Favez T et al (1997) DNA binding properties of peroxisome proliferator-activated receptor subtypes on various natural peroxisome proliferator response elements. Importance of the 5′-flanking region. J Biol Chem 272:25252–25259PubMedCrossRef Juge-Aubry C, Pernin A, Favez T et al (1997) DNA binding properties of peroxisome proliferator-activated receptor subtypes on various natural peroxisome proliferator response elements. Importance of the 5′-flanking region. J Biol Chem 272:25252–25259PubMedCrossRef
32.
go back to reference Gilde AJ, van der Lee KAJM, Willemsen PHM et al (2003) Peroxisome proliferator-activated receptor (PPAR)α and PPARβ/δ, but not PPARγ, modulate the expression of genes involved in cardiac lipid metabolism. Circ Res 92:518–524PubMedCrossRef Gilde AJ, van der Lee KAJM, Willemsen PHM et al (2003) Peroxisome proliferator-activated receptor (PPAR)α and PPARβ/δ, but not PPARγ, modulate the expression of genes involved in cardiac lipid metabolism. Circ Res 92:518–524PubMedCrossRef
33.
go back to reference Cheng L, Ding G, Qin Q et al (2004) Peroxisome proliferator-activated receptor activates fatty acid oxidation in cultured neonatal and adult cardiomyocytes. Biochem Biophys Res Commun 313:277–286PubMedCrossRef Cheng L, Ding G, Qin Q et al (2004) Peroxisome proliferator-activated receptor activates fatty acid oxidation in cultured neonatal and adult cardiomyocytes. Biochem Biophys Res Commun 313:277–286PubMedCrossRef
34.
go back to reference Itoh H, Nishimura H, Inoue G, Yoshimasa Y, Yamori Y, Nakao K (2001) Up-regulation of uncoupling protein 2 gene expression by fatty acids and agonists for PPARs in L6 myotubes. Endocrinology 142:4189–4194PubMedCrossRef Itoh H, Nishimura H, Inoue G, Yoshimasa Y, Yamori Y, Nakao K (2001) Up-regulation of uncoupling protein 2 gene expression by fatty acids and agonists for PPARs in L6 myotubes. Endocrinology 142:4189–4194PubMedCrossRef
35.
go back to reference Chevilotte E, Rieusset J, Roques M, Desage M, Vidal H (2001) The regulation of uncoupling protein 2 gene expression by ω-6 polyunsaturated fatty acids in human skeletal muscle cells involves multiple pathways, including the nuclear receptor peroxisome proliferator-activated receptor β. J Biol Chem 276:10853–10860CrossRef Chevilotte E, Rieusset J, Roques M, Desage M, Vidal H (2001) The regulation of uncoupling protein 2 gene expression by ω-6 polyunsaturated fatty acids in human skeletal muscle cells involves multiple pathways, including the nuclear receptor peroxisome proliferator-activated receptor β. J Biol Chem 276:10853–10860CrossRef
36.
go back to reference Luquet S, Lopez-Soriano J, Holst D et al (2003) Peroxisome proliferator-activated receptor δ controls muscle development and oxidative capability. FASEB J 17:2299–2301PubMed Luquet S, Lopez-Soriano J, Holst D et al (2003) Peroxisome proliferator-activated receptor δ controls muscle development and oxidative capability. FASEB J 17:2299–2301PubMed
37.
go back to reference Muoio DM, MacLean PS, Lang DB et al (2002) Fatty acid homeostasis and induction of lipid regulatory genes in skeletal muscles of peroxisome proliferator-activated receptor (PPAR) α knock-out mice. Evidence for compensatory regulation by PPARδ. J Biol Chem 277:26089–26097PubMedCrossRef Muoio DM, MacLean PS, Lang DB et al (2002) Fatty acid homeostasis and induction of lipid regulatory genes in skeletal muscles of peroxisome proliferator-activated receptor (PPAR) α knock-out mice. Evidence for compensatory regulation by PPARδ. J Biol Chem 277:26089–26097PubMedCrossRef
38.
go back to reference Muoio DM, Way JM, Tanner CJ et al (2002) Peroxisome proliferator-activated receptor-α regulates fatty acid utilization in primary human skeletal muscle cells. Diabetes 51:901–909PubMed Muoio DM, Way JM, Tanner CJ et al (2002) Peroxisome proliferator-activated receptor-α regulates fatty acid utilization in primary human skeletal muscle cells. Diabetes 51:901–909PubMed
39.
go back to reference Brunmair B, Staniek K, Dörig J et al (2006) Activation of PPAR-δ in isolated rat skeletal muscle switches fuel preference from glucose to fatty acids. Diabetologia DOI 10.1007/s00125-006-0357-6 Brunmair B, Staniek K, Dörig J et al (2006) Activation of PPAR-δ in isolated rat skeletal muscle switches fuel preference from glucose to fatty acids. Diabetologia DOI 10.​1007/​s00125-006-0357-6
40.
go back to reference Kersten S, Seydoux J, Peters JM, Gonzalez FJ, Desvergne B, Wahli W (1999) Peroxisome-proliferator-activated receptor α mediates the adaptive response to fasting. J Clin Invest 103:1489–1498PubMedCrossRef Kersten S, Seydoux J, Peters JM, Gonzalez FJ, Desvergne B, Wahli W (1999) Peroxisome-proliferator-activated receptor α mediates the adaptive response to fasting. J Clin Invest 103:1489–1498PubMedCrossRef
41.
go back to reference Holst D, Luquet S, Nogueira V, Kristiansen K, Leverve X, Grimaldi PA (2003) Nutritional regulation and role of peroxisome proliferator-activated receptor δ in fatty acid catabolism in skeletal muscle. Biochim Biophys Acta 1633:43–50PubMed Holst D, Luquet S, Nogueira V, Kristiansen K, Leverve X, Grimaldi PA (2003) Nutritional regulation and role of peroxisome proliferator-activated receptor δ in fatty acid catabolism in skeletal muscle. Biochim Biophys Acta 1633:43–50PubMed
42.
go back to reference McCarty MF (2005) Up-regulation of PPARγ coactivator-1α as a strategy for preventing and reversing insulin resistance and obesity. Med Hypothesis 64:399–407CrossRef McCarty MF (2005) Up-regulation of PPARγ coactivator-1α as a strategy for preventing and reversing insulin resistance and obesity. Med Hypothesis 64:399–407CrossRef
43.
go back to reference Wu Z, Puigserver P, Andersson U et al (1999) Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98:115–124PubMedCrossRef Wu Z, Puigserver P, Andersson U et al (1999) Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98:115–124PubMedCrossRef
44.
go back to reference Lin J, Wu H, Tarr PT et al (2002) Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres. Nature 418:797–801PubMedCrossRef Lin J, Wu H, Tarr PT et al (2002) Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres. Nature 418:797–801PubMedCrossRef
45.
go back to reference Loviscach M, Rehmann N, Carter L et al (2000) Distribution of expression of mRNAs of peroxisome proliferator-activated receptors (PPARs) in human skeletal muscle and adipose tissue: relation to insulin action. Diabetologia 43:304–311PubMedCrossRef Loviscach M, Rehmann N, Carter L et al (2000) Distribution of expression of mRNAs of peroxisome proliferator-activated receptors (PPARs) in human skeletal muscle and adipose tissue: relation to insulin action. Diabetologia 43:304–311PubMedCrossRef
46.
go back to reference Pattie ME, Butte AJ, Crunkhorn S et al (2003) Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: potential role of PGC1 and NRF1. Proc Natl Acad Sci USA 100:8466–8471CrossRef Pattie ME, Butte AJ, Crunkhorn S et al (2003) Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: potential role of PGC1 and NRF1. Proc Natl Acad Sci USA 100:8466–8471CrossRef
47.
go back to reference Hood DA (2001) Contractile activity-induced mitochondrial biogenesis in skeletal muscle. J Appl Physiol 90:1137–1157PubMed Hood DA (2001) Contractile activity-induced mitochondrial biogenesis in skeletal muscle. J Appl Physiol 90:1137–1157PubMed
48.
go back to reference Goodpaster BH, Katsiaras A, Kelley DE (2003) Enhanced fat oxidation through physical activity is associated with improvements in insulin sensitivity in obesity. Diabetes 52:2191–2197PubMed Goodpaster BH, Katsiaras A, Kelley DE (2003) Enhanced fat oxidation through physical activity is associated with improvements in insulin sensitivity in obesity. Diabetes 52:2191–2197PubMed
49.
go back to reference Kuhl JE, Ruderman NB, Musi N et al (2006) Exercise training decreases the concentration of malonyl-CoA and increases the expression and activity of malonyl-CoA decarboxylase in human muscle. Am J Physiol 290:E1296–E1303 Kuhl JE, Ruderman NB, Musi N et al (2006) Exercise training decreases the concentration of malonyl-CoA and increases the expression and activity of malonyl-CoA decarboxylase in human muscle. Am J Physiol 290:E1296–E1303
50.
go back to reference Randle PJ, Garland PB, Hales CN, Newsholme EA (1963) The glucose-fatty acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 281:785–789CrossRef Randle PJ, Garland PB, Hales CN, Newsholme EA (1963) The glucose-fatty acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 281:785–789CrossRef
51.
go back to reference Roden M, Price TB, Perseghin G et al (1996) Mechanism of free fatty acid-induced insulin resistance in humans. J Clin Invest 97:2859–2865PubMed Roden M, Price TB, Perseghin G et al (1996) Mechanism of free fatty acid-induced insulin resistance in humans. J Clin Invest 97:2859–2865PubMed
52.
go back to reference Kelley DE, Mandarino LJ (2000) Fuel selection in human skeletal muscle in insulin resistance. A reexamination. Diabetes 49:677–683PubMed Kelley DE, Mandarino LJ (2000) Fuel selection in human skeletal muscle in insulin resistance. A reexamination. Diabetes 49:677–683PubMed
53.
go back to reference Kelley DE, Simoneau J-A (1994) Impaired free fatty acid utilization by skeletal muscle in non-insulin-dependent diabetes mellitus. J Clin Invest 94:2349–2356PubMed Kelley DE, Simoneau J-A (1994) Impaired free fatty acid utilization by skeletal muscle in non-insulin-dependent diabetes mellitus. J Clin Invest 94:2349–2356PubMed
54.
go back to reference Kelley DE, Goodpaster B, Wing RR, Simoneau J-A (1999) Skeletal muscle fatty acid metabolism in association with insulin resistance, obesity, and weight loss. Am J Physiol 277:E1130–E1141PubMed Kelley DE, Goodpaster B, Wing RR, Simoneau J-A (1999) Skeletal muscle fatty acid metabolism in association with insulin resistance, obesity, and weight loss. Am J Physiol 277:E1130–E1141PubMed
55.
go back to reference Tanner CJ, Barakat HA, Dohm GL et al (2002) Muscle fiber type is associated with obesity and weight loss. Am J Physiol:E1191–E1196 Tanner CJ, Barakat HA, Dohm GL et al (2002) Muscle fiber type is associated with obesity and weight loss. Am J Physiol:E1191–E1196
56.
go back to reference Hickey MS, Carey JO, Azevedo JL et al (1995) Skeletal muscle fiber composition is related to adiposity and in vitro glucose transport rate in humans. Am J Physiol 268:E453–E457PubMed Hickey MS, Carey JO, Azevedo JL et al (1995) Skeletal muscle fiber composition is related to adiposity and in vitro glucose transport rate in humans. Am J Physiol 268:E453–E457PubMed
57.
go back to reference Kelley DE, He E, Menshikova EV, Ritov VB (2002) Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes 51:2944–2950PubMed Kelley DE, He E, Menshikova EV, Ritov VB (2002) Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes 51:2944–2950PubMed
58.
59.
go back to reference Perseghin G, Scifo P, De Cobelli F et al (1999) Intramyocellular triglyceride content is a determinant of in vivo insulin resistance in humans: a 1H–13C nuclear magnetic resonance spectroscopy assessment in offspring of type 2 diabetic parents. Diabetes 48:1600–1606PubMed Perseghin G, Scifo P, De Cobelli F et al (1999) Intramyocellular triglyceride content is a determinant of in vivo insulin resistance in humans: a 1H–13C nuclear magnetic resonance spectroscopy assessment in offspring of type 2 diabetic parents. Diabetes 48:1600–1606PubMed
60.
go back to reference Kelley DE, Goodpaster BH (2001) Skeletal muscle triglyceride. An aspect of regional adiposity and insulin resistance. Diabetes Care 24:933–941PubMed Kelley DE, Goodpaster BH (2001) Skeletal muscle triglyceride. An aspect of regional adiposity and insulin resistance. Diabetes Care 24:933–941PubMed
61.
go back to reference Petersen KF, Befroy D, Dufour S et al (2003) Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science 300:1140–1142PubMedCrossRef Petersen KF, Befroy D, Dufour S et al (2003) Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science 300:1140–1142PubMedCrossRef
62.
go back to reference Petersen KF, Dufour S, Befroy D, Garcia R, Shulman GI (2004) Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med 350:664–670PubMedCrossRef Petersen KF, Dufour S, Befroy D, Garcia R, Shulman GI (2004) Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med 350:664–670PubMedCrossRef
63.
go back to reference Perseghin G (2005) Muscle lipid metabolism in the metabolic syndrome. Curr Opin Lipidol 16:416–420PubMedCrossRef Perseghin G (2005) Muscle lipid metabolism in the metabolic syndrome. Curr Opin Lipidol 16:416–420PubMedCrossRef
64.
go back to reference Cheng L, Ding G, Qin Q et al (2004) Cardiomyocyte-restricted peroxisome proliferator-activated receptor-δ deletion perturbs myocardial fatty acid oxidation and leads to cardiomyopathy. Nat Med 10:1245–1250PubMedCrossRef Cheng L, Ding G, Qin Q et al (2004) Cardiomyocyte-restricted peroxisome proliferator-activated receptor-δ deletion perturbs myocardial fatty acid oxidation and leads to cardiomyopathy. Nat Med 10:1245–1250PubMedCrossRef
65.
go back to reference Stanley WC, Recchia FA, Lopaschuk GD (2005) Myocardial substrate metabolism in the normal and failing heart. Physiol Rev 85:1093–1129PubMedCrossRef Stanley WC, Recchia FA, Lopaschuk GD (2005) Myocardial substrate metabolism in the normal and failing heart. Physiol Rev 85:1093–1129PubMedCrossRef
66.
go back to reference Sell H, Deshaies Y, Richard D (2004) The brown adipocyte: update on its metabolic role. Int J Biochem Cell Biol 36:2098–2104PubMedCrossRef Sell H, Deshaies Y, Richard D (2004) The brown adipocyte: update on its metabolic role. Int J Biochem Cell Biol 36:2098–2104PubMedCrossRef
67.
go back to reference Tiraby C, Langin D (2003) Conversion from white to brown adipocytes: a strategy for the control of fat mass? Trends Endocrinol Metab 14:439–441PubMedCrossRef Tiraby C, Langin D (2003) Conversion from white to brown adipocytes: a strategy for the control of fat mass? Trends Endocrinol Metab 14:439–441PubMedCrossRef
68.
go back to reference Tiraby C, Tavernier G, Lefort C et al (2003) Acquirement of brown fat cell features by human white adipocytes. J Biol Chem 278:33370–33376PubMedCrossRef Tiraby C, Tavernier G, Lefort C et al (2003) Acquirement of brown fat cell features by human white adipocytes. J Biol Chem 278:33370–33376PubMedCrossRef
69.
go back to reference Fürnsinn C, Waldhäusl W (2002) Thiazolidinediones: metabolic actions in vitro. Diabetologia 45:1211–1223PubMedCrossRef Fürnsinn C, Waldhäusl W (2002) Thiazolidinediones: metabolic actions in vitro. Diabetologia 45:1211–1223PubMedCrossRef
71.
go back to reference Fasshauer M, Paschke R (2003) Regulation of adipokines and insulin resistance. Diabetologia 46:1594–1603PubMedCrossRef Fasshauer M, Paschke R (2003) Regulation of adipokines and insulin resistance. Diabetologia 46:1594–1603PubMedCrossRef
72.
go back to reference Okuno A, Tamemoto H, Tobe K et al (1998) Troglitazone increases the number of small adipocytes without the change of white adipose tissue mass in obese Zucker rats. J Clin Invest 101:1354–1361PubMed Okuno A, Tamemoto H, Tobe K et al (1998) Troglitazone increases the number of small adipocytes without the change of white adipose tissue mass in obese Zucker rats. J Clin Invest 101:1354–1361PubMed
73.
go back to reference Hallakou S, Doare L, Foufelle F et al (1997) Pioglitazone induces in vivo adipocyte differentiation in the obese Zucker fa/fa rat. Diabetes 46:1393–1399PubMed Hallakou S, Doare L, Foufelle F et al (1997) Pioglitazone induces in vivo adipocyte differentiation in the obese Zucker fa/fa rat. Diabetes 46:1393–1399PubMed
74.
go back to reference Yamauchi T, Kamon J, Waki H et al (2001) The mechanisms by which both heterozygous peroxisome proliferator-activated receptor γ (PPARγ) deficiency and PPARγ agonist improve insulin resistance. J Biol Chem 276:41245–41254PubMedCrossRef Yamauchi T, Kamon J, Waki H et al (2001) The mechanisms by which both heterozygous peroxisome proliferator-activated receptor γ (PPARγ) deficiency and PPARγ agonist improve insulin resistance. J Biol Chem 276:41245–41254PubMedCrossRef
75.
go back to reference Arner P (2003) The adipocyte in insulin resistance: key molecules and the impact of the thiazolidinediones. Trends Endocrinol Metab 14:137–145PubMedCrossRef Arner P (2003) The adipocyte in insulin resistance: key molecules and the impact of the thiazolidinediones. Trends Endocrinol Metab 14:137–145PubMedCrossRef
76.
go back to reference Amri E-Z, Bonino F, Ailhaud G, Abumrad NA, Grimaldi PA (1995) Cloning of a protein that mediates transcriptional effects of fatty acids in preadipocytes. Homology to peroxisome proliferator-activated receptors. J Biol Chem 270:2367–2371PubMedCrossRef Amri E-Z, Bonino F, Ailhaud G, Abumrad NA, Grimaldi PA (1995) Cloning of a protein that mediates transcriptional effects of fatty acids in preadipocytes. Homology to peroxisome proliferator-activated receptors. J Biol Chem 270:2367–2371PubMedCrossRef
77.
go back to reference Bastie C, Holst D, Gaillard D, Jehl-Petri C, Grimaldi PA (1999) Expression of peroxisome proliferator-activated receptor PPARδ promotes induction of PPARγ and adipocyte differentiation in 3T3C2 fibroblasts. J Biol Chem 274:21920–21925PubMedCrossRef Bastie C, Holst D, Gaillard D, Jehl-Petri C, Grimaldi PA (1999) Expression of peroxisome proliferator-activated receptor PPARδ promotes induction of PPARγ and adipocyte differentiation in 3T3C2 fibroblasts. J Biol Chem 274:21920–21925PubMedCrossRef
78.
go back to reference Matsusue K, Peters JM, Gonzalez FJ (2004) PPARβ/δ potentiates PPARγ-stimulated adipocyte differentiation. FASEB J 18:1477–1479PubMed Matsusue K, Peters JM, Gonzalez FJ (2004) PPARβ/δ potentiates PPARγ-stimulated adipocyte differentiation. FASEB J 18:1477–1479PubMed
79.
go back to reference Holst D, Luquet S, Kristiansen K, Grimaldi PA (2003) Roles of peroxisome proliferator-activated receptors delta and gamma in myoblast transdifferentiation. Exp Cell Res 288:168–176PubMedCrossRef Holst D, Luquet S, Kristiansen K, Grimaldi PA (2003) Roles of peroxisome proliferator-activated receptors delta and gamma in myoblast transdifferentiation. Exp Cell Res 288:168–176PubMedCrossRef
80.
go back to reference Chawla A, Lee C-H, Barak Y et al (2003) PPARδ is a very low-density lipoprotein sensor in macrophages. Proc Natl Acad Sci USA 100:1268–1273PubMedCrossRef Chawla A, Lee C-H, Barak Y et al (2003) PPARδ is a very low-density lipoprotein sensor in macrophages. Proc Natl Acad Sci USA 100:1268–1273PubMedCrossRef
81.
go back to reference Lee CH, Kang K, Mehl IR et al (2006) Peroxisome proliferator-activated receptor δ promotes very low-density lipoprotein-derived fatty acid catabolism in the macrophage. Proc Natl Acad Sci USA 103:2434–2439PubMedCrossRef Lee CH, Kang K, Mehl IR et al (2006) Peroxisome proliferator-activated receptor δ promotes very low-density lipoprotein-derived fatty acid catabolism in the macrophage. Proc Natl Acad Sci USA 103:2434–2439PubMedCrossRef
82.
go back to reference Vosper H, Patel L, Graham TL et al (2001) The peroxisome proliferator-activated receptor δ promotes lipid accumulation in human macrophages. J Biol Chem 47:44258–44265CrossRef Vosper H, Patel L, Graham TL et al (2001) The peroxisome proliferator-activated receptor δ promotes lipid accumulation in human macrophages. J Biol Chem 47:44258–44265CrossRef
83.
go back to reference Tall AR, Costet P, Wang N (2002) Regulation and mechanisms of macrophage cholesterol efflux. J Clin Invest 110:899–904PubMedCrossRef Tall AR, Costet P, Wang N (2002) Regulation and mechanisms of macrophage cholesterol efflux. J Clin Invest 110:899–904PubMedCrossRef
84.
go back to reference Li AC, Binder CJ, Gutierrez A et al (2004) Differential inhibition of macrophage foam-cell formation and atherosclerosis in mice by PPARα, β/δ, and γ. J Clin Invest 114:1564–1576PubMedCrossRef Li AC, Binder CJ, Gutierrez A et al (2004) Differential inhibition of macrophage foam-cell formation and atherosclerosis in mice by PPARα, β/δ, and γ. J Clin Invest 114:1564–1576PubMedCrossRef
85.
go back to reference Lee C-H, Chawla A, Urbiztondo N et al (2003) Transcriptional repression of atherogenic inflammation: modulation by PPARδ. Science 302:453–457PubMedCrossRef Lee C-H, Chawla A, Urbiztondo N et al (2003) Transcriptional repression of atherogenic inflammation: modulation by PPARδ. Science 302:453–457PubMedCrossRef
86.
go back to reference Graham TL, Mookherjee C, Suckling KE, Palmer CNA, Patel L (2005) The PPARδ agonist GW0742X reduces atherosclerosis in LDLR−/− mice. Atherosclerosis 181:29–37PubMedCrossRef Graham TL, Mookherjee C, Suckling KE, Palmer CNA, Patel L (2005) The PPARδ agonist GW0742X reduces atherosclerosis in LDLR−/− mice. Atherosclerosis 181:29–37PubMedCrossRef
87.
go back to reference Peters JM, Aoyama T, Burns AM, Gonzalez FJ (2003) Bezafibrate is a dual ligand for PPARα and PPARβ: studies using null mice. Biochim Biophys Acta 1632:80–89PubMed Peters JM, Aoyama T, Burns AM, Gonzalez FJ (2003) Bezafibrate is a dual ligand for PPARα and PPARβ: studies using null mice. Biochim Biophys Acta 1632:80–89PubMed
88.
go back to reference Poirier H, Niot I, Monnot MC et al (2001) Differential involvement of peroxisome-proliferator-activated receptors alpha and delta in fibrate and fatty-acid-mediated inductions of the gene encoding liver fatty-acid-binding protein in the liver and the small intestine. Biochem J 355:481–488PubMedCrossRef Poirier H, Niot I, Monnot MC et al (2001) Differential involvement of peroxisome-proliferator-activated receptors alpha and delta in fibrate and fatty-acid-mediated inductions of the gene encoding liver fatty-acid-binding protein in the liver and the small intestine. Biochem J 355:481–488PubMedCrossRef
89.
go back to reference Tenenbaum A, Motro M, Fisman EZ (2005) Dual and pan-peroxisome proliferator-activated receptors (PPAR) co-agonism: the bezafibrate lessons. Cardiovasc Diabetol 4:14PubMedCrossRef Tenenbaum A, Motro M, Fisman EZ (2005) Dual and pan-peroxisome proliferator-activated receptors (PPAR) co-agonism: the bezafibrate lessons. Cardiovasc Diabetol 4:14PubMedCrossRef
Metadata
Title
Peroxisome proliferator-activated receptor-δ, a regulator of oxidative capacity, fuel switching and cholesterol transport
Authors
C. Fürnsinn
T. M. Willson
B. Brunmair
Publication date
01-01-2007
Publisher
Springer-Verlag
Published in
Diabetologia / Issue 1/2007
Print ISSN: 0012-186X
Electronic ISSN: 1432-0428
DOI
https://doi.org/10.1007/s00125-006-0492-0

Other articles of this Issue 1/2007

Diabetologia 1/2007 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine

Highlights from the ACC 2024 Congress

Year in Review: Pediatric cardiology

Watch Dr. Anne Marie Valente present the last year's highlights in pediatric and congenital heart disease in the official ACC.24 Year in Review session.

Year in Review: Pulmonary vascular disease

The last year's highlights in pulmonary vascular disease are presented by Dr. Jane Leopold in this official video from ACC.24.

Year in Review: Valvular heart disease

Watch Prof. William Zoghbi present the last year's highlights in valvular heart disease from the official ACC.24 Year in Review session.

Year in Review: Heart failure and cardiomyopathies

Watch this official video from ACC.24. Dr. Biykem Bozkurt discusses last year's major advances in heart failure and cardiomyopathies.